code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from math import factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 20 ): snake_case_ = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case_ = n // 2 return int(factorial(SCREAMING_SNAKE_CASE__ ) / (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: lowerCAmelCase_ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number.''')
39
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset A = random.Random() def __A ( a_ :Tuple , a_ :Dict=1.0 , a_ :str=None , a_ :List[Any]=None) -> Dict: if rng is None: __a : Any = global_rng __a : Tuple = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=400 , _UpperCAmelCase=2000 , _UpperCAmelCase=2048 , _UpperCAmelCase=128 , _UpperCAmelCase=1 , _UpperCAmelCase=512 , _UpperCAmelCase=30 , _UpperCAmelCase=44100 , ): __a : Any = parent __a : Tuple = batch_size __a : Tuple = min_seq_length __a : List[str] = max_seq_length __a : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a : Tuple = spectrogram_length __a : int = feature_size __a : int = num_audio_channels __a : Tuple = hop_length __a : List[Any] = chunk_length __a : Any = sampling_rate def _lowerCamelCase ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def _lowerCamelCase ( self , _UpperCAmelCase=False , _UpperCAmelCase=False ): def _flatten(_UpperCAmelCase ): return list(itertools.chain(*_UpperCAmelCase ) ) if equal_length: __a : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __a : Tuple = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a : Optional[Any] = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = TvltFeatureExtractor def _lowerCamelCase ( self ): __a : Optional[Any] = TvltFeatureExtractionTester(self ) def _lowerCamelCase ( self ): __a : int = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_UpperCAmelCase , '''spectrogram_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''feature_size''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''num_audio_channels''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''hop_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''chunk_length''' ) ) self.assertTrue(hasattr(_UpperCAmelCase , '''sampling_rate''' ) ) def _lowerCamelCase ( self ): __a : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : List[str] = feat_extract_first.save_pretrained(_UpperCAmelCase )[0] check_json_file_has_correct_format(_UpperCAmelCase ) __a : Union[str, Any] = self.feature_extraction_class.from_pretrained(_UpperCAmelCase ) __a : Tuple = feat_extract_first.to_dict() __a : List[Any] = feat_extract_second.to_dict() __a : int = dict_first.pop('''mel_filters''' ) __a : List[Any] = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __a : int = os.path.join(_UpperCAmelCase , '''feat_extract.json''' ) feat_extract_first.to_json_file(_UpperCAmelCase ) __a : Optional[Any] = self.feature_extraction_class.from_json_file(_UpperCAmelCase ) __a : Optional[Any] = feat_extract_first.to_dict() __a : Any = feat_extract_second.to_dict() __a : Optional[Any] = dict_first.pop('''mel_filters''' ) __a : Dict = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): # Initialize feature_extractor __a : str = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 __a : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a : Union[str, Any] = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input __a : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched __a : int = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking __a : List[Any] = feature_extractor( _UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 , mask_audio=_UpperCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. __a : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a : Any = np.asarray(_UpperCAmelCase ) __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : int = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __a : int = ds.sort('''id''' ).select(range(_UpperCAmelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self ): __a : List[str] = self._load_datasamples(1 ) __a : Tuple = TvltFeatureExtractor() __a : Optional[Any] = feature_extractor(_UpperCAmelCase , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) __a : Dict = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _UpperCAmelCase , atol=1e-4 ) )
52
0
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __lowerCamelCase : List[Any] = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __lowerCamelCase : Dict = concatenate_datasets __lowerCamelCase : Optional[int] = DownloadConfig __lowerCamelCase : Optional[int] = DownloadManager __lowerCamelCase : int = DownloadMode __lowerCamelCase : int = DownloadConfig __lowerCamelCase : Any = DownloadMode __lowerCamelCase : Optional[Any] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
418
'''simple docstring''' import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class lowerCAmelCase__ : def __init__( self : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any]=14 , UpperCamelCase_ : Dict=7 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : str=True , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[Any]=99 , UpperCamelCase_ : List[Any]=32 , UpperCamelCase_ : Any=4 , UpperCamelCase_ : Tuple=4 , UpperCamelCase_ : int=4 , UpperCamelCase_ : Optional[Any]=37 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : Tuple=512 , UpperCamelCase_ : Tuple=0.02 , ) -> int: """simple docstring""" lowerCamelCase_ : List[Any] = parent lowerCamelCase_ : str = batch_size lowerCamelCase_ : List[Any] = seq_length lowerCamelCase_ : str = is_training lowerCamelCase_ : Optional[Any] = use_input_mask lowerCamelCase_ : Dict = use_token_type_ids lowerCamelCase_ : Union[str, Any] = use_labels lowerCamelCase_ : Optional[int] = vocab_size lowerCamelCase_ : str = hidden_size lowerCamelCase_ : int = rotary_dim lowerCamelCase_ : List[str] = num_hidden_layers lowerCamelCase_ : List[Any] = num_attention_heads lowerCamelCase_ : Dict = intermediate_size lowerCamelCase_ : Optional[Any] = hidden_act lowerCamelCase_ : List[Any] = hidden_dropout_prob lowerCamelCase_ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase_ : Union[str, Any] = max_position_embeddings lowerCamelCase_ : Optional[int] = initializer_range lowerCamelCase_ : List[Any] = None lowerCamelCase_ : Optional[int] = vocab_size - 1 lowerCamelCase_ : int = vocab_size - 1 lowerCamelCase_ : str = vocab_size - 1 def __UpperCamelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : Dict = None if self.use_input_mask: lowerCamelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ : int = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCamelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def __UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" lowerCamelCase_ : Tuple = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Dict = config_and_inputs lowerCamelCase_ : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def __UpperCamelCase ( self : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] ) -> List[Any]: """simple docstring""" lowerCamelCase_ : List[Any] = 20 lowerCamelCase_ : Optional[Any] = model_class_name(UpperCamelCase_ ) lowerCamelCase_ : Union[str, Any] = model.init_cache(input_ids.shape[0] , UpperCamelCase_ ) lowerCamelCase_ : str = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) lowerCamelCase_ : int = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCamelCase_ : Union[str, Any] = model( input_ids[:, :-1] , attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , position_ids=UpperCamelCase_ , ) lowerCamelCase_ : Optional[Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCamelCase_ : Optional[Any] = model( input_ids[:, -1:] , attention_mask=UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=UpperCamelCase_ , ) lowerCamelCase_ : int = model(UpperCamelCase_ ) lowerCamelCase_ : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" ) def __UpperCamelCase ( self : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple ) -> Optional[int]: """simple docstring""" lowerCamelCase_ : str = 20 lowerCamelCase_ : int = model_class_name(UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowerCamelCase_ : Any = model.init_cache(input_ids.shape[0] , UpperCamelCase_ ) lowerCamelCase_ : Union[str, Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCamelCase_ : Any = model( input_ids[:, :-1] , attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , position_ids=UpperCamelCase_ , ) lowerCamelCase_ : Optional[Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) lowerCamelCase_ : List[str] = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCamelCase_ , position_ids=UpperCamelCase_ , ) lowerCamelCase_ : List[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) lowerCamelCase_ : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F"""Max diff is {diff}""" ) @require_flax class lowerCAmelCase__ ( _lowerCAmelCase ,_lowerCAmelCase ,unittest.TestCase ): A = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () A = (FlaxGPTJForCausalLM,) if is_flax_available() else () def __UpperCamelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase_ : int = FlaxGPTJModelTester(self ) def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" for model_class_name in self.all_model_classes: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def __UpperCamelCase ( self : Dict ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) @tooslow def __UpperCamelCase ( self : int ) -> Any: """simple docstring""" lowerCamelCase_ : Any = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) lowerCamelCase_ : int = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=UpperCamelCase_ , truncation=UpperCamelCase_ ) lowerCamelCase_ : Union[str, Any] = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) lowerCamelCase_ : Union[str, Any] = False lowerCamelCase_ : str = model.config.eos_token_id lowerCamelCase_ : Any = jax.jit(model.generate ) lowerCamelCase_ : Union[str, Any] = jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences lowerCamelCase_ : Optional[int] = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) lowerCamelCase_ : Union[str, Any] = [ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) @is_pt_flax_cross_test def __UpperCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCamelCase_ : Union[str, Any] = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase_ : str = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCamelCase_ : List[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCamelCase_ : Tuple = getattr(UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase_ , lowerCamelCase_ : Any = pt_inputs['''input_ids'''].shape lowerCamelCase_ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCamelCase_ ): lowerCamelCase_ : str = 0 lowerCamelCase_ : Dict = 1 lowerCamelCase_ : Optional[Any] = 0 lowerCamelCase_ : Tuple = 1 lowerCamelCase_ : Union[str, Any] = pt_model_class(UpperCamelCase_ ).eval() lowerCamelCase_ : int = model_class(UpperCamelCase_ , dtype=jnp.floataa ) lowerCamelCase_ : Dict = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCamelCase_ ) lowerCamelCase_ : Optional[int] = fx_state with torch.no_grad(): lowerCamelCase_ : Optional[int] = pt_model(**UpperCamelCase_ ).to_tuple() lowerCamelCase_ : List[Any] = fx_model(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCamelCase_ ) lowerCamelCase_ : Optional[int] = model_class.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ ) lowerCamelCase_ : Dict = fx_model_loaded(**UpperCamelCase_ ).to_tuple() self.assertEqual( len(UpperCamelCase_ ) , len(UpperCamelCase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCamelCase_ : Optional[Any] = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase_ : List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCamelCase_ : List[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCamelCase_ : Optional[int] = getattr(UpperCamelCase_ , UpperCamelCase_ ) lowerCamelCase_ : Optional[int] = pt_model_class(UpperCamelCase_ ).eval() lowerCamelCase_ : str = model_class(UpperCamelCase_ , dtype=jnp.floataa ) lowerCamelCase_ : Tuple = load_flax_weights_in_pytorch_model(UpperCamelCase_ , fx_model.params ) lowerCamelCase_ , lowerCamelCase_ : List[Any] = pt_inputs['''input_ids'''].shape lowerCamelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCamelCase_ ): lowerCamelCase_ : Dict = 0 lowerCamelCase_ : Union[str, Any] = 1 lowerCamelCase_ : str = 0 lowerCamelCase_ : List[str] = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowerCamelCase_ : List[Any] = pt_model(**UpperCamelCase_ ).to_tuple() lowerCamelCase_ : str = fx_model(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCamelCase_ ) lowerCamelCase_ : Optional[int] = pt_model_class.from_pretrained(UpperCamelCase_ , from_flax=UpperCamelCase_ ) with torch.no_grad(): lowerCamelCase_ : Tuple = pt_model_loaded(**UpperCamelCase_ ).to_tuple() self.assertEqual( len(UpperCamelCase_ ) , len(UpperCamelCase_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def __UpperCamelCase ( self : Dict ) -> Any: """simple docstring""" for model_class_name in self.all_model_classes: lowerCamelCase_ : Optional[Any] = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) lowerCamelCase_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ )
418
1
from math import isclose, sqrt def __UpperCAmelCase ( __a : float ,__a : float ,__a : float ) -> tuple[float, float, float]: """simple docstring""" _a : Any = point_y / 4 / point_x _a : Dict = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) _a : Optional[Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) _a : Optional[Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 _a : List[Any] = outgoing_gradient**2 + 4 _a : int = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) _a : Optional[int] = (point_y - outgoing_gradient * point_x) ** 2 - 100 _a : List[str] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) _a : Dict = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point _a : Optional[Any] = x_minus if isclose(__a ,__a ) else x_plus _a : Optional[Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def __UpperCAmelCase ( __a : float = 1.4 ,__a : float = -9.6 ) -> int: """simple docstring""" _a : int = 0 _a : float = first_x_coord _a : float = first_y_coord _a : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): _a , _a , _a : Dict = next_point(__a ,__a ,__a ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
14
def __UpperCAmelCase ( __a : str ) -> list: """simple docstring""" if n_term == "": return [] _a : list = [] for temp in range(int(__a ) ): series.append(F"""1/{temp + 1}""" if series else '''1''' ) return series if __name__ == "__main__": a__ = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
14
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['MaskFormerFeatureExtractor'] UpperCAmelCase_ = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] UpperCAmelCase_ = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
712
from __future__ import annotations from math import ceil, floor, sqrt def lowerCamelCase__ ( A__ : int = 2000000 ): '''simple docstring''' __lowerCamelCase = [0] __lowerCamelCase = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __lowerCamelCase = 0 # the area corresponding to the grid that gives the product closest to target __lowerCamelCase = 0 # an estimate of b, using the quadratic formula __lowerCamelCase = 42 # the largest integer less than b_estimate __lowerCamelCase = 42 # the largest integer less than b_estimate __lowerCamelCase = 42 # the triangle number corresponding to b_floor __lowerCamelCase = 42 # the triangle number corresponding to b_ceil __lowerCamelCase = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __lowerCamelCase = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __lowerCamelCase = floor(A__ ) __lowerCamelCase = ceil(A__ ) __lowerCamelCase = triangle_numbers[b_floor] __lowerCamelCase = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __lowerCamelCase = triangle_b_first_guess * triangle_a __lowerCamelCase = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __lowerCamelCase = triangle_b_second_guess * triangle_a __lowerCamelCase = idx_a * b_ceil return area if __name__ == "__main__": print(f"""{solution() = }""")
80
0
"""simple docstring""" import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() A : Optional[Any] = logging.get_logger(__name__) A : Optional[int] = "Hello world! cécé herlolip" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = FairseqRobertaModel.from_pretrained(_UpperCamelCase ) roberta.eval() # disable dropout __lowerCAmelCase = roberta.model.encoder.sentence_encoder __lowerCAmelCase = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: __lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print("Our RoBERTa config:" , _UpperCamelCase ) __lowerCAmelCase = XLMRobertaXLForSequenceClassification(_UpperCamelCase ) if classification_head else XLMRobertaXLForMaskedLM(_UpperCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings __lowerCAmelCase = roberta_sent_encoder.embed_tokens.weight __lowerCAmelCase = roberta_sent_encoder.embed_positions.weight __lowerCAmelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. __lowerCAmelCase = roberta_sent_encoder.layer_norm.weight __lowerCAmelCase = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowerCAmelCase = model.roberta.encoder.layer[i] __lowerCAmelCase = roberta_sent_encoder.layers[i] __lowerCAmelCase = layer.attention __lowerCAmelCase = roberta_layer.self_attn_layer_norm.weight __lowerCAmelCase = roberta_layer.self_attn_layer_norm.bias # self attention __lowerCAmelCase = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) __lowerCAmelCase = roberta_layer.self_attn.q_proj.weight __lowerCAmelCase = roberta_layer.self_attn.q_proj.bias __lowerCAmelCase = roberta_layer.self_attn.k_proj.weight __lowerCAmelCase = roberta_layer.self_attn.k_proj.bias __lowerCAmelCase = roberta_layer.self_attn.v_proj.weight __lowerCAmelCase = roberta_layer.self_attn.v_proj.bias # self-attention output __lowerCAmelCase = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape __lowerCAmelCase = roberta_layer.self_attn.out_proj.weight __lowerCAmelCase = roberta_layer.self_attn.out_proj.bias # this one is final layer norm __lowerCAmelCase = roberta_layer.final_layer_norm.weight __lowerCAmelCase = roberta_layer.final_layer_norm.bias # intermediate __lowerCAmelCase = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape __lowerCAmelCase = roberta_layer.fca.weight __lowerCAmelCase = roberta_layer.fca.bias # output __lowerCAmelCase = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape __lowerCAmelCase = roberta_layer.fca.weight __lowerCAmelCase = roberta_layer.fca.bias # end of layer if classification_head: __lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.weight __lowerCAmelCase = roberta.model.classification_heads['''mnli'''].dense.bias __lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.weight __lowerCAmelCase = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head __lowerCAmelCase = roberta.model.encoder.lm_head.dense.weight __lowerCAmelCase = roberta.model.encoder.lm_head.dense.bias __lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.weight __lowerCAmelCase = roberta.model.encoder.lm_head.layer_norm.bias __lowerCAmelCase = roberta.model.encoder.lm_head.weight __lowerCAmelCase = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. __lowerCAmelCase = roberta.encode(_UpperCamelCase ).unsqueeze(0 ) # batch of size 1 __lowerCAmelCase = model(_UpperCamelCase )[0] if classification_head: __lowerCAmelCase = roberta.model.classification_heads['''mnli'''](roberta.extract_features(_UpperCamelCase ) ) else: __lowerCAmelCase = roberta.model(_UpperCamelCase )[0] print(our_output.shape , their_output.shape ) __lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(f"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 __lowerCAmelCase = torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(_UpperCamelCase ).mkdir(parents=_UpperCamelCase , exist_ok=_UpperCamelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) A : Optional[Any] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
636
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class _lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=64 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ): lowerCAmelCase__ : Optional[int] = parent lowerCAmelCase__ : Tuple = batch_size lowerCAmelCase__ : Union[str, Any] = seq_length lowerCAmelCase__ : str = is_training lowerCAmelCase__ : Union[str, Any] = use_input_mask lowerCAmelCase__ : List[Any] = use_token_type_ids lowerCAmelCase__ : int = use_labels lowerCAmelCase__ : List[Any] = vocab_size lowerCAmelCase__ : Optional[int] = hidden_size lowerCAmelCase__ : List[str] = embedding_size lowerCAmelCase__ : Optional[int] = num_hidden_layers lowerCAmelCase__ : Optional[int] = num_attention_heads lowerCAmelCase__ : List[str] = intermediate_size lowerCAmelCase__ : Tuple = hidden_act lowerCAmelCase__ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase__ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase__ : Union[str, Any] = max_position_embeddings lowerCAmelCase__ : List[Any] = type_vocab_size lowerCAmelCase__ : Optional[Any] = type_sequence_label_size lowerCAmelCase__ : List[Any] = initializer_range lowerCAmelCase__ : Optional[Any] = num_labels lowerCAmelCase__ : List[str] = num_choices lowerCAmelCase__ : Any = scope def __magic_name__( self ): lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : str = None if self.use_input_mask: lowerCAmelCase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ : Optional[Any] = None if self.use_token_type_ids: lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ : Dict = None lowerCAmelCase__ : Dict = None lowerCAmelCase__ : Optional[int] = None if self.use_labels: lowerCAmelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__( self ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : Union[str, Any] = MegatronBertModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : List[Any] = MegatronBertForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : Optional[Any] = MegatronBertForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : str = MegatronBertForNextSentencePrediction(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : str = MegatronBertForPreTraining(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : int = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , next_sentence_label=__UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : str = MegatronBertForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : Union[str, Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : Optional[Any] = self.num_labels lowerCAmelCase__ : Union[str, Any] = MegatronBertForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : Optional[Any] = self.num_labels lowerCAmelCase__ : str = MegatronBertForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : Optional[Any] = self.num_choices lowerCAmelCase__ : Dict = MegatronBertForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowerCAmelCase__ : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase__ : Any = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__( self ): lowerCAmelCase__ : Union[str, Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) : Optional[int] = config_and_inputs lowerCAmelCase__ : int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( _lowercase , _lowercase , unittest.TestCase ): A__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) A__ = ( { 'feature-extraction': MegatronBertModel, 'fill-mask': MegatronBertForMaskedLM, 'question-answering': MegatronBertForQuestionAnswering, 'text-classification': MegatronBertForSequenceClassification, 'text-generation': MegatronBertForCausalLM, 'token-classification': MegatronBertForTokenClassification, 'zero-shot': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) A__ = True # test_resize_embeddings = False A__ = False def __magic_name__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): lowerCAmelCase__ : List[Any] = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class in get_values(__UpperCAmelCase ): lowerCAmelCase__ : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) return inputs_dict def __magic_name__( self ): lowerCAmelCase__ : str = MegatronBertModelTester(self ) lowerCAmelCase__ : Dict = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __magic_name__( self ): self.config_tester.run_common_tests() def __magic_name__( self ): lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__UpperCAmelCase ) def __magic_name__( self ): lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__UpperCAmelCase ) def __magic_name__( self ): lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__UpperCAmelCase ) def __magic_name__( self ): lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__UpperCAmelCase ) def __magic_name__( self ): lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__UpperCAmelCase ) def __magic_name__( self ): lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__UpperCAmelCase ) def __magic_name__( self ): lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__UpperCAmelCase ) def __magic_name__( self ): lowerCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__UpperCAmelCase ) def __lowerCAmelCase ( UpperCamelCase ) -> Optional[int]: return torch.tensor( UpperCamelCase , dtype=torch.long , device=UpperCamelCase , ) lowerCAmelCase_ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): @slow @unittest.skip('''Model is not available.''' ) def __magic_name__( self ): lowerCAmelCase__ : int = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: lowerCAmelCase__ : Union[str, Any] = os.path.join(os.environ['''MYDIR'''] , __UpperCAmelCase ) lowerCAmelCase__ : Tuple = MegatronBertModel.from_pretrained(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.half() lowerCAmelCase__ : Optional[int] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(__UpperCAmelCase )[0] lowerCAmelCase__ : List[Any] = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , __UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): lowerCAmelCase__ : Union[str, Any] = output[0, ii, jj] lowerCAmelCase__ : Optional[Any] = expected[3 * ii + jj] lowerCAmelCase__ : List[str] = '''ii={} jj={} a={} b={}'''.format(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) self.assertTrue(math.isclose(__UpperCAmelCase , __UpperCAmelCase , rel_tol=__UpperCAmelCase , abs_tol=__UpperCAmelCase ) , msg=__UpperCAmelCase )
678
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class a ( lowerCAmelCase_ ): _snake_case : str = 'visual_bert' def __init__( self : Optional[Any] , __lowerCAmelCase : Optional[Any]=3_0522 , __lowerCAmelCase : Dict=768 , __lowerCAmelCase : Optional[Any]=512 , __lowerCAmelCase : List[Any]=12 , __lowerCAmelCase : str=12 , __lowerCAmelCase : Tuple=3072 , __lowerCAmelCase : Optional[int]="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : Optional[Any]=0.1 , __lowerCAmelCase : List[str]=512 , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Any=0.02 , __lowerCAmelCase : Union[str, Any]=1e-1_2 , __lowerCAmelCase : int=False , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]=1 , __lowerCAmelCase : List[Any]=0 , __lowerCAmelCase : Any=2 , **__lowerCAmelCase : str , ): super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = visual_embedding_dim _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = type_vocab_size _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = bypass_transformer _UpperCAmelCase = special_visual_initialize
275
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( lowercase ): """simple docstring""" return [ord(lowercase ) - 96 for elem in plain] def __UpperCAmelCase ( lowercase ): """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ ,lowercase ) print("""Decoded:""" ,decode(lowercase ) ) if __name__ == "__main__": main()
275
1
from __future__ import annotations class snake_case : '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE_ = order # a_{0} ... a_{k} SCREAMING_SNAKE_CASE_ = [1.0] + [0.0] * order # b_{0} ... b_{k} SCREAMING_SNAKE_CASE_ = [1.0] + [0.0] * order # x[n-1] ... x[n-k] SCREAMING_SNAKE_CASE_ = [0.0] * self.order # y[n-1] ... y[n-k] SCREAMING_SNAKE_CASE_ = [0.0] * self.order def _lowercase ( self : Optional[int] , lowerCAmelCase_ : list[float] , lowerCAmelCase_ : list[float] ) -> None: """simple docstring""" if len(UpperCAmelCase_ ) < self.order: SCREAMING_SNAKE_CASE_ = [1.0, *a_coeffs] if len(UpperCAmelCase_ ) != self.order + 1: SCREAMING_SNAKE_CASE_ = ( F'''Expected a_coeffs to have {self.order + 1} elements ''' F'''for {self.order}-order filter, got {len(UpperCAmelCase_ )}''' ) raise ValueError(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) != self.order + 1: SCREAMING_SNAKE_CASE_ = ( F'''Expected b_coeffs to have {self.order + 1} elements ''' F'''for {self.order}-order filter, got {len(UpperCAmelCase_ )}''' ) raise ValueError(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ = a_coeffs SCREAMING_SNAKE_CASE_ = b_coeffs def _lowercase ( self : str , lowerCAmelCase_ : float ) -> float: """simple docstring""" SCREAMING_SNAKE_CASE_ = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) SCREAMING_SNAKE_CASE_ = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] SCREAMING_SNAKE_CASE_ = self.input_history[:-1] SCREAMING_SNAKE_CASE_ = self.output_history[:-1] SCREAMING_SNAKE_CASE_ = sample SCREAMING_SNAKE_CASE_ = result return result
393
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __A = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Optional[int] , **UpperCAmelCase_ : List[Any]) ->List[str]: '''simple docstring''' super().__init__(**UpperCAmelCase_) requires_backends(self , "vision") self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__(self : List[str] , UpperCAmelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCAmelCase_ : List[Any]) ->Tuple: '''simple docstring''' return super().__call__(UpperCAmelCase_ , **UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , **UpperCAmelCase_ : Optional[int]) ->Any: '''simple docstring''' lowerCamelCase__: Optional[int] ={} if "candidate_labels" in kwargs: lowerCamelCase__: Tuple =kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowerCamelCase__: Tuple =kwargs["hypothesis_template"] return preprocess_params, {}, {} def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Optional[Any]="This is a photo of {}.") ->str: '''simple docstring''' lowerCamelCase__: int =load_image(UpperCAmelCase_) lowerCamelCase__: Any =self.image_processor(images=[image] , return_tensors=self.framework) lowerCamelCase__: Any =candidate_labels lowerCamelCase__: List[str] =[hypothesis_template.format(UpperCAmelCase_) for x in candidate_labels] lowerCamelCase__: int =self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework , padding=UpperCAmelCase_) lowerCamelCase__: str =[text_inputs] return inputs def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : Any) ->Tuple: '''simple docstring''' lowerCamelCase__: int =model_inputs.pop("candidate_labels") lowerCamelCase__: List[str] =model_inputs.pop("text_inputs") if isinstance(text_inputs[0] , UpperCAmelCase_): lowerCamelCase__: List[Any] =text_inputs[0] else: # Batching case. lowerCamelCase__: List[Any] =text_inputs[0][0] lowerCamelCase__: List[str] =self.model(**UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: str ={ "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Union[str, Any]) ->int: '''simple docstring''' lowerCamelCase__: List[Any] =model_outputs.pop("candidate_labels") lowerCamelCase__: Optional[int] =model_outputs["logits"][0] if self.framework == "pt": lowerCamelCase__: Optional[Any] =logits.softmax(dim=-1).squeeze(-1) lowerCamelCase__: Optional[Any] =probs.tolist() if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): lowerCamelCase__: Optional[int] =[scores] elif self.framework == "tf": lowerCamelCase__: List[str] =stable_softmax(UpperCAmelCase_ , axis=-1) lowerCamelCase__: Optional[int] =probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""") lowerCamelCase__: Optional[int] =[ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(UpperCAmelCase_ , UpperCAmelCase_) , key=lambda UpperCAmelCase_: -x[0]) ] return result
59
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input UpperCamelCase = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCAmelCase ( ) -> Optional[int]: '''simple docstring''' _a = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _a = get_sagemaker_input() else: _a = get_cluster_input() return config def lowerCAmelCase ( UpperCamelCase_: List[Any]=None ) -> str: '''simple docstring''' if subparsers is not None: _a = subparsers.add_parser("config" , description=UpperCamelCase_ ) else: _a = argparse.ArgumentParser("Accelerate config command" , description=UpperCamelCase_ ) parser.add_argument( "--config_file" , default=UpperCamelCase_ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=UpperCamelCase_ ) return parser def lowerCAmelCase ( UpperCamelCase_: Union[str, Any] ) -> Dict: '''simple docstring''' _a = get_user_input() if args.config_file is not None: _a = args.config_file else: if not os.path.isdir(UpperCamelCase_ ): os.makedirs(UpperCamelCase_ ) _a = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(UpperCamelCase_ ) else: config.to_yaml_file(UpperCamelCase_ ) print(f'''accelerate configuration saved at {config_file}''' ) def lowerCAmelCase ( ) -> List[str]: '''simple docstring''' _a = config_command_parser() _a = parser.parse_args() config_command(UpperCamelCase_ ) if __name__ == "__main__": main()
612
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCAmelCase ( UpperCamelCase_: ndarray ) -> float: '''simple docstring''' return np.dot(UpperCamelCase_ , UpperCamelCase_ ) class lowercase_ : def __init__( self , *, a_ = np.inf , a_ = "linear" , a_ = 0.0 , ) ->None: '''simple docstring''' _a = regularization _a = gamma if kernel == "linear": _a = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("rbf kernel requires gamma" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("gamma must be float or int" ) if not self.gamma > 0: raise ValueError("gamma must be > 0" ) _a = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: _a = f'''Unknown kernel: {kernel}''' raise ValueError(a_ ) def lowerCamelCase__ ( self , a_ , a_ ) ->float: '''simple docstring''' return np.dot(a_ , a_ ) def lowerCamelCase__ ( self , a_ , a_ ) ->float: '''simple docstring''' return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def lowerCamelCase__ ( self , a_ , a_ ) ->None: '''simple docstring''' _a = observations _a = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((_a) , ) = np.shape(a_ ) def to_minimize(a_ ) -> float: _a = 0 ((_a) , ) = np.shape(a_ ) for i in range(a_ ): for j in range(a_ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(a_ ) _a = LinearConstraint(a_ , 0 , 0 ) _a = Bounds(0 , self.regularization ) _a = minimize( a_ , np.ones(a_ ) , bounds=a_ , constraints=[ly_contraint] ).x _a = l_star # calculating mean offset of separation plane to points _a = 0 for i in range(a_ ): for j in range(a_ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) _a = s / n def lowerCamelCase__ ( self , a_ ) ->int: '''simple docstring''' _a = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , a_ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
612
1
a_ :Optional[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a_ :Any = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] a_ :Any = { 0: "Sunday", 1: "Monday", 2: "Tuesday", 3: "Wednesday", 4: "Thursday", 5: "Friday", 6: "Saturday", } def lowercase_ (A : int , A : int , A : int ): assert len(str(A ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: snake_case__ : Any = year // 1_0_0 snake_case__ : List[str] = (5 * (century % 4) + 2) % 7 snake_case__ : List[Any] = year % 1_0_0 snake_case__ : Tuple = centurian % 1_2 snake_case__ : Tuple = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 snake_case__ : Optional[int] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) snake_case__ : str = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
478
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ :Optional[int] = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :Any = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :str = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys a_ :str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
478
1
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def _lowerCamelCase ( ): lowerCamelCase :Optional[int] = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } lowerCamelCase :Optional[int] = Dataset.from_dict(a_) return dataset class _lowerCAmelCase ( _UpperCAmelCase ): def snake_case ( self : Tuple ): lowerCamelCase :Any = get_dataset() lowerCamelCase :int = make_duplicate_clusters(lowerCamelCase_ , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def snake_case ( self : List[str] ): lowerCamelCase :List[Any] = get_dataset() lowerCamelCase :Optional[Any] = deduplicate_dataset(lowerCamelCase_ ) self.assertEqual(len(lowerCamelCase_ ) , 2 ) print(lowerCamelCase_ ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , lowerCamelCase_ )
718
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def snake_case ( *__snake_case : str , **__snake_case : str ): pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): @require_torch def snake_case ( self : Union[str, Any] ): lowerCamelCase :Optional[int] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__snake_case ) , [ [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}], [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}], ] , ) lowerCamelCase :Tuple = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @require_tf def snake_case ( self : Tuple ): lowerCamelCase :Tuple = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__snake_case ) , [{'''score''': 0.3_3_3, '''label''': '''a'''}, {'''score''': 0.3_3_3, '''label''': '''b'''}, {'''score''': 0.3_3_3, '''label''': '''c'''}] , ) lowerCamelCase :int = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, {'''score''': 0.3_3_3, '''label''': ANY(__snake_case )}, ], ] , ) @slow @require_torch def snake_case ( self : Any ): lowerCamelCase :str = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Optional[Any] = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def snake_case ( self : Optional[Any] ): lowerCamelCase :Union[str, Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowerCamelCase :Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowerCamelCase :Dict = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ] , ) lowerCamelCase :Any = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.5_1_1, '''label''': '''remote'''}, {'''score''': 0.4_8_5, '''label''': '''cat'''}, {'''score''': 0.0_0_4, '''label''': '''plane'''}, ], ] * 5 , )
49
0
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } lowerCAmelCase__ = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } lowerCAmelCase__ = { 'ctrl': 2_56, } lowerCAmelCase__ = { 'Pregnancy': 16_86_29, 'Christianity': 76_75, 'Explain': 10_64_23, 'Fitness': 6_34_40, 'Saving': 6_31_63, 'Ask': 2_71_71, 'Ass': 9_59_85, 'Joke': 16_35_09, 'Questions': 4_56_22, 'Thoughts': 4_96_05, 'Retail': 5_23_42, 'Feminism': 16_43_38, 'Writing': 1_19_92, 'Atheism': 19_22_63, 'Netflix': 4_86_16, 'Computing': 3_96_39, 'Opinion': 4_32_13, 'Alone': 4_49_67, 'Funny': 5_89_17, 'Gaming': 4_03_58, 'Human': 40_88, 'India': 13_31, 'Joker': 7_71_38, 'Diet': 3_62_06, 'Legal': 1_18_59, 'Norman': 49_39, 'Tip': 7_26_89, 'Weight': 5_23_43, 'Movies': 4_62_73, 'Running': 2_34_25, 'Science': 20_90, 'Horror': 3_77_93, 'Confession': 6_05_72, 'Finance': 1_22_50, 'Politics': 1_63_60, 'Scary': 19_19_85, 'Support': 1_26_54, 'Technologies': 3_25_16, 'Teenage': 6_61_60, 'Event': 3_27_69, 'Learned': 6_74_60, 'Notion': 18_27_70, 'Wikipedia': 3_75_83, 'Books': 66_65, 'Extract': 7_60_50, 'Confessions': 10_27_01, 'Conspiracy': 7_59_32, 'Links': 6_36_74, 'Narcissus': 15_04_25, 'Relationship': 5_47_66, 'Relationships': 13_47_96, 'Reviews': 4_16_71, 'News': 42_56, 'Translation': 2_68_20, 'multilingual': 12_84_06, } def _UpperCAmelCase (UpperCamelCase__ : int ): _A : Union[str, Any] = set() _A : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A : str = char _A : str = set(UpperCamelCase__ ) return pairs class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = CONTROL_CODES def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase="<unk>" , **__lowerCamelCase) -> int: super().__init__(unk_token=__lowerCamelCase , **__lowerCamelCase) with open(__lowerCamelCase , encoding="utf-8") as vocab_handle: _A : Optional[Any] = json.load(__lowerCamelCase) _A : Tuple = {v: k for k, v in self.encoder.items()} with open(__lowerCamelCase , encoding="utf-8") as merges_handle: _A : Dict = merges_handle.read().split("\n")[1:-1] _A : Union[str, Any] = [tuple(merge.split()) for merge in merges] _A : List[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase)))) _A : Tuple = {} @property def _lowerCamelCase ( self) -> Optional[Any]: return len(self.encoder) def _lowerCamelCase ( self) -> int: return dict(self.encoder , **self.added_tokens_encoder) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: if token in self.cache: return self.cache[token] _A : int = tuple(__lowerCamelCase) _A : Optional[Any] = tuple(list(word[:-1]) + [word[-1] + "</w>"]) _A : str = get_pairs(__lowerCamelCase) if not pairs: return token while True: _A : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase: self.bpe_ranks.get(__lowerCamelCase , float("inf"))) if bigram not in self.bpe_ranks: break _A , _A : Optional[Any] = bigram _A : str = [] _A : str = 0 while i < len(__lowerCamelCase): try: _A : int = word.index(__lowerCamelCase , __lowerCamelCase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _A : Union[str, Any] = j if word[i] == first and i < len(__lowerCamelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _A : Optional[Any] = tuple(__lowerCamelCase) _A : List[str] = new_word if len(__lowerCamelCase) == 1: break else: _A : Tuple = get_pairs(__lowerCamelCase) _A : Any = "@@ ".join(__lowerCamelCase) _A : Dict = word[:-4] _A : str = word return word def _lowerCamelCase ( self , __lowerCamelCase) -> Union[str, Any]: _A : Tuple = [] _A : str = re.findall(r"\S+\n?" , __lowerCamelCase) for token in words: split_tokens.extend(list(self.bpe(__lowerCamelCase).split(" "))) return split_tokens def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token)) def _lowerCamelCase ( self , __lowerCamelCase) -> str: return self.decoder.get(__lowerCamelCase , self.unk_token) def _lowerCamelCase ( self , __lowerCamelCase) -> Any: _A : List[str] = " ".join(__lowerCamelCase).replace("@@ " , "").strip() return out_string def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _A : Optional[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) _A : Optional[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(__lowerCamelCase , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase) + "\n") _A : List[str] = 0 with open(__lowerCamelCase , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") _A : List[Any] = token_index writer.write(" ".join(__lowerCamelCase) + "\n") index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
503
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase__ ( a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = KandinskyVaaControlnetImgaImgPipeline __SCREAMING_SNAKE_CASE = ["image_embeds", "negative_image_embeds", "image", "hint"] __SCREAMING_SNAKE_CASE = ["image_embeds", "negative_image_embeds", "image", "hint"] __SCREAMING_SNAKE_CASE = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __SCREAMING_SNAKE_CASE = False @property def _lowerCamelCase ( self) -> Tuple: return 3_2 @property def _lowerCamelCase ( self) -> Dict: return 3_2 @property def _lowerCamelCase ( self) -> str: return self.time_input_dim @property def _lowerCamelCase ( self) -> str: return self.time_input_dim * 4 @property def _lowerCamelCase ( self) -> str: return 1_0_0 @property def _lowerCamelCase ( self) -> Tuple: torch.manual_seed(0) _A : str = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } _A : str = UNetaDConditionModel(**__lowerCamelCase) return model @property def _lowerCamelCase ( self) -> str: return { "block_out_channels": [3_2, 3_2, 6_4, 6_4], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _lowerCamelCase ( self) -> List[Any]: torch.manual_seed(0) _A : int = VQModel(**self.dummy_movq_kwargs) return model def _lowerCamelCase ( self) -> Any: _A : List[str] = self.dummy_unet _A : Optional[int] = self.dummy_movq _A : str = { "num_train_timesteps": 1_0_0_0, "beta_schedule": "linear", "beta_start": 0.0_0_0_8_5, "beta_end": 0.0_1_2, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } _A : int = DDIMScheduler(**__lowerCamelCase) _A : Optional[Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase=0) -> Any: _A : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase)).to(__lowerCamelCase) _A : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( __lowerCamelCase) # create init_image _A : List[Any] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__lowerCamelCase)).to(__lowerCamelCase) _A : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1)[0] _A : Union[str, Any] = Image.fromarray(np.uinta(__lowerCamelCase)).convert("RGB").resize((2_5_6, 2_5_6)) # create hint _A : Dict = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__lowerCamelCase)).to(__lowerCamelCase) if str(__lowerCamelCase).startswith("mps"): _A : Dict = torch.manual_seed(__lowerCamelCase) else: _A : Tuple = torch.Generator(device=__lowerCamelCase).manual_seed(__lowerCamelCase) _A : Tuple = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 1_0, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def _lowerCamelCase ( self) -> int: _A : List[Any] = "cpu" _A : List[Any] = self.get_dummy_components() _A : Any = self.pipeline_class(**__lowerCamelCase) _A : Any = pipe.to(__lowerCamelCase) pipe.set_progress_bar_config(disable=__lowerCamelCase) _A : str = pipe(**self.get_dummy_inputs(__lowerCamelCase)) _A : int = output.images _A : Dict = pipe( **self.get_dummy_inputs(__lowerCamelCase) , return_dict=__lowerCamelCase , )[0] _A : Any = image[0, -3:, -3:, -1] _A : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) _A : List[str] = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self) -> Tuple: _A : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy") _A : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png") _A : str = init_image.resize((5_1_2, 5_1_2)) _A : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png") _A : Optional[Any] = torch.from_numpy(np.array(__lowerCamelCase)).float() / 2_5_5.0 _A : Optional[Any] = hint.permute(2 , 0 , 1).unsqueeze(0) _A : List[str] = "A robot, 4k photo" _A : Any = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa) pipe_prior.to(__lowerCamelCase) _A : List[str] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa) _A : Dict = pipeline.to(__lowerCamelCase) pipeline.set_progress_bar_config(disable=__lowerCamelCase) _A : Tuple = torch.Generator(device="cpu").manual_seed(0) _A , _A : List[str] = pipe_prior( __lowerCamelCase , image=__lowerCamelCase , strength=0.8_5 , generator=__lowerCamelCase , negative_prompt="" , ).to_tuple() _A : Optional[int] = pipeline( image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , hint=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=1_0_0 , height=5_1_2 , width=5_1_2 , strength=0.5 , output_type="np" , ) _A : Tuple = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase)
503
1
"""simple docstring""" def A_ ( _lowerCAmelCase : int ) -> List[str]: """simple docstring""" assert ( isinstance(_lowerCAmelCase, _lowerCAmelCase ) and number_of_steps > 0 ), f'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 _a , _a = 1, 1 for _ in range(number_of_steps - 1 ): _a , _a = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
704
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : Optional[int]=False, _lowerCAmelCase : Any=False ): """simple docstring""" _a = '''backbone.''' if is_semantic else '''''' _a = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'{prefix}blocks.{i}.norm1.weight', f'beit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm1.bias', f'beit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.weight', f'beit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'{prefix}blocks.{i}.attn.proj.bias', f'beit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.weight', f'beit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'{prefix}blocks.{i}.norm2.bias', f'beit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.weight', f'beit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc1.bias', f'beit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.weight', f'beit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'{prefix}blocks.{i}.mlp.fc2.bias', f'beit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ (f'{prefix}cls_token', '''beit.embeddings.cls_token'''), (f'{prefix}patch_embed.proj.weight', '''beit.embeddings.patch_embeddings.projection.weight'''), (f'{prefix}patch_embed.proj.bias', '''beit.embeddings.patch_embeddings.projection.bias'''), (f'{prefix}pos_embed', '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Any=False, _lowerCAmelCase : List[Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): _a = '''backbone.''' if is_semantic else '''''' # queries, keys and values _a = state_dict.pop(f'{prefix}blocks.{i}.attn.qkv.weight' ) _a = state_dict.pop(f'{prefix}blocks.{i}.attn.q_bias' ) _a = state_dict.pop(f'{prefix}blocks.{i}.attn.v_bias' ) _a = in_proj_weight[ : config.hidden_size, : ] _a = q_bias _a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _a = in_proj_weight[ -config.hidden_size :, : ] _a = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained _a = state_dict.pop(f'{prefix}blocks.{i}.gamma_1' ) _a = state_dict.pop(f'{prefix}blocks.{i}.gamma_2' ) _a = gamma_a _a = gamma_a def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any, _lowerCAmelCase : List[Any] ): """simple docstring""" _a = dct.pop(_lowerCAmelCase ) _a = val def A_ ( ): """simple docstring""" _a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a = Image.open(requests.get(_lowerCAmelCase, stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[int]=False ): """simple docstring""" _a = False if '''rvlcdip''' in checkpoint_url else True _a = BeitConfig(use_absolute_position_embeddings=_lowerCAmelCase, use_mask_token=_lowerCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: _a = 10_24 _a = 40_96 _a = 24 _a = 16 # labels if "rvlcdip" in checkpoint_url: _a = 16 _a = '''huggingface/label-files''' _a = '''rvlcdip-id2label.json''' _a = json.load(open(hf_hub_download(_lowerCAmelCase, _lowerCAmelCase, repo_type='''dataset''' ), '''r''' ) ) _a = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys _a = torch.hub.load_state_dict_from_url(_lowerCAmelCase, map_location='''cpu''' )['''model'''] _a = create_rename_keys(_lowerCAmelCase, has_lm_head=_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase, _lowerCAmelCase, has_lm_head=_lowerCAmelCase ) # load HuggingFace model _a = BeitForMaskedImageModeling(_lowerCAmelCase ) if has_lm_head else BeitForImageClassification(_lowerCAmelCase ) model.eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image _a = BeitImageProcessor( size=config.image_size, resample=PILImageResampling.BILINEAR, do_center_crop=_lowerCAmelCase ) _a = prepare_img() _a = image_processor(images=_lowerCAmelCase, return_tensors='''pt''' ) _a = encoding['''pixel_values'''] _a = model(_lowerCAmelCase ) _a = outputs.logits # verify logits _a = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(_lowerCAmelCase ), "Shape of logits not as expected" Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: if has_lm_head: _a = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: _a = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(_lowerCAmelCase, _lowerCAmelCase ), organization='''nielsr''', commit_message='''Add image processor''', use_temp_dir=_lowerCAmelCase, ) model.push_to_hub( repo_path_or_name=Path(_lowerCAmelCase, _lowerCAmelCase ), organization='''nielsr''', commit_message='''Add model''', use_temp_dir=_lowerCAmelCase, ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) __snake_case = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
285
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Tuple ="detr" UpperCAmelCase_ : Union[str, Any] =["past_key_values"] UpperCAmelCase_ : List[Any] ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=3 , UpperCAmelCase=100 , UpperCAmelCase=6 , UpperCAmelCase=2048 , UpperCAmelCase=8 , UpperCAmelCase=6 , UpperCAmelCase=2048 , UpperCAmelCase=8 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=256 , UpperCAmelCase=0.1 , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , UpperCAmelCase=1.0 , UpperCAmelCase=False , UpperCAmelCase="sine" , UpperCAmelCase="resnet50" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=1 , UpperCAmelCase=5 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=1 , UpperCAmelCase=5 , UpperCAmelCase=2 , UpperCAmelCase=0.1 , **UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __snake_case : Optional[Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): __snake_case : Optional[int] = backbone_config.get("model_type" ) __snake_case : Any = CONFIG_MAPPING[backbone_model_type] __snake_case : Tuple = config_class.from_dict(UpperCAmelCase ) # set timm attributes to None __snake_case , __snake_case , __snake_case : Tuple = None, None, None __snake_case : str = use_timm_backbone __snake_case : Union[str, Any] = backbone_config __snake_case : Tuple = num_channels __snake_case : Optional[Any] = num_queries __snake_case : Tuple = d_model __snake_case : str = encoder_ffn_dim __snake_case : Dict = encoder_layers __snake_case : Optional[Any] = encoder_attention_heads __snake_case : str = decoder_ffn_dim __snake_case : Any = decoder_layers __snake_case : Optional[Any] = decoder_attention_heads __snake_case : Any = dropout __snake_case : Optional[int] = attention_dropout __snake_case : Any = activation_dropout __snake_case : Tuple = activation_function __snake_case : Optional[int] = init_std __snake_case : str = init_xavier_std __snake_case : List[Any] = encoder_layerdrop __snake_case : List[Any] = decoder_layerdrop __snake_case : Dict = encoder_layers __snake_case : Tuple = auxiliary_loss __snake_case : str = position_embedding_type __snake_case : Tuple = backbone __snake_case : Union[str, Any] = use_pretrained_backbone __snake_case : List[str] = dilation # Hungarian matcher __snake_case : List[str] = class_cost __snake_case : int = bbox_cost __snake_case : Union[str, Any] = giou_cost # Loss coefficients __snake_case : str = mask_loss_coefficient __snake_case : Optional[int] = dice_loss_coefficient __snake_case : Union[str, Any] = bbox_loss_coefficient __snake_case : List[str] = giou_loss_coefficient __snake_case : str = eos_coefficient super().__init__(is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , UpperCAmelCase , **UpperCAmelCase ) -> List[Any]: '''simple docstring''' return cls(backbone_config=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self ) -> Dict[str, any]: '''simple docstring''' __snake_case : List[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __snake_case : Union[str, Any] = self.backbone_config.to_dict() __snake_case : Dict = self.__class__.model_type return output class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : str =version.parse("1.11" ) @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCAmelCase ( self ) -> float: '''simple docstring''' return 1E-5 @property def UpperCAmelCase ( self ) -> int: '''simple docstring''' return 12
243
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Dict ="ClapFeatureExtractor" UpperCAmelCase_ : Union[str, Any] =("RobertaTokenizer", "RobertaTokenizerFast") def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> Tuple: '''simple docstring''' super().__init__(UpperCAmelCase , UpperCAmelCase ) def __call__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' __snake_case : List[str] = kwargs.pop("sampling_rate" , UpperCAmelCase ) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none." ) if text is not None: __snake_case : Optional[int] = self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if audios is not None: __snake_case : int = self.feature_extractor( UpperCAmelCase , sampling_rate=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and audios is not None: __snake_case : str = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , *UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def UpperCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case : Tuple = self.tokenizer.model_input_names __snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
243
1
'''simple docstring''' import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml lowerCamelCase_ : int = logging.get_logger(__name__) def __magic_name__( _A , _A ): '''simple docstring''' def run_func(_A ): @wraps(lowerCAmelCase__ ) def run_in_eager_mode(*_A , **_A ): return func(*lowerCAmelCase__ , **lowerCAmelCase__ ) @wraps(lowerCAmelCase__ ) @tf.function(experimental_compile=lowerCAmelCase__ ) def run_in_graph_mode(*_A , **_A ): return func(*lowerCAmelCase__ , **lowerCAmelCase__ ) if do_eager_mode is True: if use_xla is not False: raise ValueError( """Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.""" ) return run_in_eager_mode else: return run_in_graph_mode return run_func def __magic_name__( _A , _A , _A ): '''simple docstring''' UpperCamelCase__ = random.Random() UpperCamelCase__ = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(lowerCAmelCase__ , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class _SCREAMING_SNAKE_CASE ( __A ): '''simple docstring''' __a : TensorFlowBenchmarkArguments __a : PretrainedConfig __a : str = "TensorFlow" @property def A ( self : Union[str, Any] ) -> Dict: '''simple docstring''' return tf.__version__ def A ( self : Tuple , lowercase : List[str] , lowercase : Optional[int] , lowercase : Any ) -> List[str]: '''simple docstring''' UpperCamelCase__ = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) UpperCamelCase__ = self._prepare_inference_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_speed(_inference ) def A ( self : Optional[Any] , lowercase : int , lowercase : Optional[Any] , lowercase : int ) -> Tuple: '''simple docstring''' UpperCamelCase__ = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) UpperCamelCase__ = self._prepare_train_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_speed(_train ) def A ( self : Dict , lowercase : Tuple , lowercase : Any , lowercase : Tuple ) -> str: '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , UpperCamelCase__ ) UpperCamelCase__ = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) UpperCamelCase__ = self._prepare_inference_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_memory(_inference ) def A ( self : Optional[int] , lowercase : str , lowercase : Dict , lowercase : Any ) -> Union[str, Any]: '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , UpperCamelCase__ ) UpperCamelCase__ = self.args.strategy if strategy is None: raise ValueError("""A device strategy has to be initialized before using TensorFlow.""" ) UpperCamelCase__ = self._prepare_train_func(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return self._measure_memory(_train ) def A ( self : List[str] , lowercase : Any , lowercase : Optional[Any] , lowercase : int ) -> Dict: '''simple docstring''' UpperCamelCase__ = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) UpperCamelCase__ = ( hasattr(UpperCamelCase__ , """architectures""" ) and isinstance(config.architectures , UpperCamelCase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCamelCase__ = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model UpperCamelCase__ = __import__("""transformers""" , fromlist=[model_class] ) UpperCamelCase__ = getattr(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase__ = model_cls(UpperCamelCase__ ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: UpperCamelCase__ = TF_MODEL_MAPPING[config.__class__](UpperCamelCase__ ) # encoder-decoder has vocab size saved differently UpperCamelCase__ = config.vocab_size if hasattr(UpperCamelCase__ , """vocab_size""" ) else config.encoder.vocab_size UpperCamelCase__ = random_input_ids(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ , training=UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(UpperCamelCase__ , training=UpperCamelCase__ ) UpperCamelCase__ = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def A ( self : Tuple , lowercase : Tuple , lowercase : str , lowercase : List[str] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError("""Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.""" ) if self.args.fpaa: raise NotImplementedError("""Mixed precision is currently not supported.""" ) UpperCamelCase__ = ( hasattr(UpperCamelCase__ , """architectures""" ) and isinstance(config.architectures , UpperCamelCase__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCamelCase__ = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model UpperCamelCase__ = __import__("""transformers""" , fromlist=[model_class] ) UpperCamelCase__ = getattr(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase__ = model_cls(UpperCamelCase__ ) except ImportError: raise ImportError( f"{model_class} does not exist. If you just want to test the pretrained model, you might want to" """ set `--only_pretrain_model` or `args.only_pretrain_model=True`.""" ) else: UpperCamelCase__ = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](UpperCamelCase__ ) # encoder-decoder has vocab size saved differently UpperCamelCase__ = config.vocab_size if hasattr(UpperCamelCase__ , """vocab_size""" ) else config.encoder.vocab_size UpperCamelCase__ = random_input_ids(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): UpperCamelCase__ = model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ )[0] UpperCamelCase__ = tf.gradients(UpperCamelCase__ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): UpperCamelCase__ = model(UpperCamelCase__ , labels=UpperCamelCase__ , training=UpperCamelCase__ )[0] UpperCamelCase__ = tf.gradients(UpperCamelCase__ , model.trainable_variables ) return gradients UpperCamelCase__ = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def A ( self : Tuple , lowercase : Any ) -> str: '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info("""Do inference on TPU. Running model 5 times to stabilize compilation""" ) timeit.repeat(UpperCamelCase__ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCamelCase__ = timeit.repeat( UpperCamelCase__ , repeat=self.args.repeat , number=1_0 , ) return min(UpperCamelCase__ ) / 1_0.0 except ResourceExhaustedError as e: self.print_fn(f"Doesn\'t fit on GPU. {e}" ) def A ( self : Union[str, Any] , lowercase : Tuple ) -> str: '''simple docstring''' logger.info( """Note that TensorFlow allocates more memory than """ """it might need to speed up computation. """ """The memory reported here corresponds to the memory """ """reported by `nvidia-smi`, which can vary depending """ """on total available memory on the GPU that is used.""" ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( """`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory""" """ consumption line by line.""" ) UpperCamelCase__ = start_memory_tracing("""transformers""" ) if self.args.is_tpu: # tpu raise NotImplementedError( """Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking""" """ with `args.memory=False`""" ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( """py3nvml not installed, we won\'t log GPU memory usage. """ """Install py3nvml (pip install py3nvml) to log information about GPU.""" ) UpperCamelCase__ = 'N/A' else: logger.info( """Measuring total GPU usage on GPU device. Make sure to not have additional processes""" """ running on the same GPU.""" ) # init nvml nvml.nvmlInit() func() UpperCamelCase__ = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCamelCase__ = nvml.nvmlDeviceGetMemoryInfo(UpperCamelCase__ ) UpperCamelCase__ = meminfo.used UpperCamelCase__ = Memory(UpperCamelCase__ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( """When enabling line by line tracing, the max peak memory for CPU is inaccurate in""" """ TensorFlow.""" ) UpperCamelCase__ = None else: UpperCamelCase__ = measure_peak_memory_cpu(UpperCamelCase__ ) UpperCamelCase__ = Memory(UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCamelCase__ = stop_memory_tracing(UpperCamelCase__ ) if memory is None: UpperCamelCase__ = summary.total else: UpperCamelCase__ = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"Doesn\'t fit on GPU. {e}" ) return "N/A", None
709
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class _SCREAMING_SNAKE_CASE ( yaml.SafeLoader ): '''simple docstring''' def A ( self : List[str] , lowercase : List[Any] ) -> int: '''simple docstring''' UpperCamelCase__ = [self.constructed_objects[key_node] for key_node, _ in node.value] UpperCamelCase__ = [tuple(lowercase ) if isinstance(lowercase , lowercase ) else key for key in keys] UpperCamelCase__ = Counter(lowercase ) UpperCamelCase__ = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f"Got duplicate yaml keys: {duplicate_keys}" ) def A ( self : List[str] , lowercase : int , lowercase : str=False ) -> Any: '''simple docstring''' UpperCamelCase__ = super().construct_mapping(lowercase , deep=lowercase ) self._check_no_duplicates_on_constructed_node(lowercase ) return mapping def __magic_name__( _A ): '''simple docstring''' UpperCamelCase__ = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: UpperCamelCase__ = full_content[1:].index("""---""" ) + 1 UpperCamelCase__ = """\n""".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(_A ) class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __a : Tuple = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def A ( cls : int , lowercase : Path ) -> "DatasetMetadata": '''simple docstring''' with open(lowercase , encoding="""utf-8""" ) as readme_file: UpperCamelCase__ , UpperCamelCase__ = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(lowercase ) else: return cls() def A ( self : int , lowercase : Path ) -> Dict: '''simple docstring''' if path.exists(): with open(lowercase , encoding="""utf-8""" ) as readme_file: UpperCamelCase__ = readme_file.read() else: UpperCamelCase__ = None UpperCamelCase__ = self._to_readme(lowercase ) with open(lowercase , """w""" , encoding="""utf-8""" ) as readme_file: readme_file.write(lowercase ) def A ( self : Any , lowercase : Optional[str] = None ) -> str: '''simple docstring''' if readme_content is not None: UpperCamelCase__ , UpperCamelCase__ = _split_yaml_from_readme(lowercase ) UpperCamelCase__ = """---\n""" + self.to_yaml_string() + """---\n""" + content else: UpperCamelCase__ = """---\n""" + self.to_yaml_string() + """---\n""" return full_content @classmethod def A ( cls : Tuple , lowercase : str ) -> "DatasetMetadata": '''simple docstring''' UpperCamelCase__ = yaml.load(lowercase , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields UpperCamelCase__ = { (key.replace("""-""" , """_""" ) if key.replace("""-""" , """_""" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowercase ) def A ( self : Dict ) -> str: '''simple docstring''' return yaml.safe_dump( { (key.replace("""_""" , """-""" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowercase , allow_unicode=lowercase , encoding="""utf-8""" , ).decode("""utf-8""" ) lowerCamelCase_ : str = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser lowerCamelCase_ : Tuple = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') lowerCamelCase_ : str = ap.parse_args() lowerCamelCase_ : List[str] = Path(args.readme_filepath) lowerCamelCase_ : Tuple = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
265
0
from math import isqrt def _a ( lowerCAmelCase )-> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(lowerCAmelCase ) + 1 ) ) def _a ( lowerCAmelCase = 10**6 )-> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 7 while prime_candidate < max_prime: primes_count += is_prime(lowerCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f"""{solution() = }""")
360
from math import isqrt def _a ( lowerCAmelCase )-> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(lowerCAmelCase ) + 1 ) ) def _a ( lowerCAmelCase = 10**6 )-> int: SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 7 while prime_candidate < max_prime: primes_count += is_prime(lowerCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f"""{solution() = }""")
360
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Dict = { 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = [ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys _a : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
717
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed _a : List[Any] = { 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def UpperCamelCase__ ( _A: Any ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def UpperCamelCase__ ( _A: Optional[Any] , _A: Optional[Any] ): '''simple docstring''' if args.student_type == "roberta": __lowerCamelCase = False elif args.student_type == "gpt2": __lowerCamelCase = False def UpperCamelCase__ ( _A: Dict , _A: Any ): '''simple docstring''' if args.student_type == "roberta": __lowerCamelCase = False def UpperCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = argparse.ArgumentParser(description="""Training""" ) parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" ) parser.add_argument( """--dump_path""" , type=_A , required=_A , help="""The output directory (log, checkpoints, parameters, etc.)""" ) parser.add_argument( """--data_file""" , type=_A , required=_A , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , ) parser.add_argument( """--student_type""" , type=_A , choices=["""distilbert""", """roberta""", """gpt2"""] , required=_A , help="""The student type (DistilBERT, RoBERTa).""" , ) parser.add_argument("""--student_config""" , type=_A , required=_A , help="""Path to the student configuration.""" ) parser.add_argument( """--student_pretrained_weights""" , default=_A , type=_A , help="""Load student initialization checkpoint.""" ) parser.add_argument( """--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=_A , help="""Teacher type (BERT, RoBERTa).""" ) parser.add_argument("""--teacher_name""" , type=_A , required=_A , help="""The teacher model.""" ) parser.add_argument("""--temperature""" , default=2.0 , type=_A , help="""Temperature for the softmax temperature.""" ) parser.add_argument( """--alpha_ce""" , default=0.5 , type=_A , help="""Linear weight for the distillation loss. Must be >=0.""" ) parser.add_argument( """--alpha_mlm""" , default=0.0 , type=_A , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , ) parser.add_argument("""--alpha_clm""" , default=0.5 , type=_A , help="""Linear weight for the CLM loss. Must be >=0.""" ) parser.add_argument("""--alpha_mse""" , default=0.0 , type=_A , help="""Linear weight of the MSE loss. Must be >=0.""" ) parser.add_argument( """--alpha_cos""" , default=0.0 , type=_A , help="""Linear weight of the cosine embedding loss. Must be >=0.""" ) parser.add_argument( """--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" ) parser.add_argument( """--mlm_mask_prop""" , default=0.15 , type=_A , help="""Proportion of tokens for which we need to make a prediction.""" , ) parser.add_argument("""--word_mask""" , default=0.8 , type=_A , help="""Proportion of tokens to mask out.""" ) parser.add_argument("""--word_keep""" , default=0.1 , type=_A , help="""Proportion of tokens to keep.""" ) parser.add_argument("""--word_rand""" , default=0.1 , type=_A , help="""Proportion of tokens to randomly replace.""" ) parser.add_argument( """--mlm_smoothing""" , default=0.7 , type=_A , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , ) parser.add_argument("""--token_counts""" , type=_A , help="""The token counts in the data_file for MLM.""" ) parser.add_argument( """--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , ) parser.add_argument( """--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , ) parser.add_argument( """--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , ) parser.add_argument("""--n_epoch""" , type=_A , default=3 , help="""Number of pass on the whole dataset.""" ) parser.add_argument("""--batch_size""" , type=_A , default=5 , help="""Batch size (for each process).""" ) parser.add_argument( """--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , ) parser.add_argument( """--gradient_accumulation_steps""" , type=_A , default=50 , help="""Gradient accumulation for larger training batches.""" , ) parser.add_argument("""--warmup_prop""" , default=0.05 , type=_A , help="""Linear warmup proportion.""" ) parser.add_argument("""--weight_decay""" , default=0.0 , type=_A , help="""Weight decay if we apply some.""" ) parser.add_argument("""--learning_rate""" , default=5e-4 , type=_A , help="""The initial learning rate for Adam.""" ) parser.add_argument("""--adam_epsilon""" , default=1e-6 , type=_A , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , default=5.0 , type=_A , help="""Max gradient norm.""" ) parser.add_argument("""--initializer_range""" , default=0.02 , type=_A , help="""Random initialization range.""" ) parser.add_argument( """--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , ) parser.add_argument( """--fp16_opt_level""" , type=_A , default="""O1""" , help=( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""" """See details at https://nvidia.github.io/apex/amp.html""" ) , ) parser.add_argument("""--n_gpu""" , type=_A , default=1 , help="""Number of GPUs in the node.""" ) parser.add_argument("""--local_rank""" , type=_A , default=-1 , help="""Distributed training - Local rank""" ) parser.add_argument("""--seed""" , type=_A , default=56 , help="""Random seed""" ) parser.add_argument("""--log_interval""" , type=_A , default=500 , help="""Tensorboard logging interval.""" ) parser.add_argument("""--checkpoint_interval""" , type=_A , default=4000 , help="""Checkpoint interval.""" ) __lowerCamelCase = parser.parse_args() sanity_checks(_A ) # ARGS # init_gpu_params(_A ) set_seed(_A ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' """ itUse `--force` if you want to overwrite it""" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(f'''Param: {args}''' ) with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f: json.dump(vars(_A ) , _A , indent=4 ) git_log(args.dump_path ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = MODEL_CLASSES[args.student_type] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __lowerCamelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __lowerCamelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __lowerCamelCase = tokenizer.all_special_tokens.index(_A ) __lowerCamelCase = tokenizer.all_special_ids[idx] logger.info(f'''Special tokens {special_tok_ids}''' ) __lowerCamelCase = special_tok_ids __lowerCamelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'''Loading data from {args.data_file}''' ) with open(args.data_file , """rb""" ) as fp: __lowerCamelCase = pickle.load(_A ) if args.mlm: logger.info(f'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , """rb""" ) as fp: __lowerCamelCase = pickle.load(_A ) __lowerCamelCase = np.maximum(_A , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __lowerCamelCase = 0.0 # do not predict special tokens __lowerCamelCase = torch.from_numpy(_A ) else: __lowerCamelCase = None __lowerCamelCase = LmSeqsDataset(params=_A , data=_A ) logger.info("""Data loader created.""" ) # STUDENT # logger.info(f'''Loading student config from {args.student_config}''' ) __lowerCamelCase = student_config_class.from_pretrained(args.student_config ) __lowerCamelCase = True if args.student_pretrained_weights is not None: logger.info(f'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __lowerCamelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=_A ) else: __lowerCamelCase = student_model_class(_A ) if args.n_gpu > 0: student.to(f'''cuda:{args.local_rank}''' ) logger.info("""Student loaded.""" ) # TEACHER # __lowerCamelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_A ) if args.n_gpu > 0: teacher.to(f'''cuda:{args.local_rank}''' ) logger.info(f'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_A , _A ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_A , _A ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __lowerCamelCase = Distiller( params=_A , dataset=_A , token_probs=_A , student=_A , teacher=_A ) distiller.train() logger.info("""Let's go get some drinks.""" ) if __name__ == "__main__": main()
571
0
"""simple docstring""" import os def lowercase__ ( ) -> Optional[int]: lowerCAmelCase__ : List[Any] = os.path.join(os.path.dirname(lowerCamelCase ) , "num.txt" ) with open(lowerCamelCase ) as file_hand: return str(sum(int(lowerCamelCase ) for line in file_hand ) )[:1_0] if __name__ == "__main__": print(solution())
308
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class a : def __init__( self , A_ = None , A_ = None , A_=None , A_=None ): '''simple docstring''' if not conversation_id: _UpperCAmelCase : Any = uuid.uuida() if past_user_inputs is None: _UpperCAmelCase : Optional[int] = [] if generated_responses is None: _UpperCAmelCase : Dict = [] _UpperCAmelCase : uuid.UUID = conversation_id _UpperCAmelCase : List[str] = past_user_inputs _UpperCAmelCase : List[str] = generated_responses _UpperCAmelCase : Optional[str] = text def __eq__( self , A_ ): '''simple docstring''' if not isinstance(A_ , A_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _UpperCAmelCase ( self , A_ , A_ = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' f'with: "{text}".' ) _UpperCAmelCase : Tuple = text else: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: _UpperCAmelCase : int = text def _UpperCAmelCase ( self ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _UpperCAmelCase : Dict = None def _UpperCAmelCase ( self , A_ ): '''simple docstring''' self.generated_responses.append(A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): '''simple docstring''' _UpperCAmelCase : List[str] = f'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): _UpperCAmelCase : Any = "user" if is_user else "bot" output += f'{name} >> {text} \n' return output @add_end_docstrings( UpperCAmelCase , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class a ( UpperCAmelCase ): def __init__( self , *A_ , **A_ ): '''simple docstring''' super().__init__(*A_ , **A_ ) if self.tokenizer.pad_token_id is None: _UpperCAmelCase : Union[str, Any] = self.tokenizer.eos_token def _UpperCAmelCase ( self , A_=None , A_=None , A_=None , **A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = {} _UpperCAmelCase : Dict = {} _UpperCAmelCase : Optional[int] = {} if min_length_for_response is not None: _UpperCAmelCase : Optional[Any] = min_length_for_response if minimum_tokens is not None: _UpperCAmelCase : Any = minimum_tokens if "max_length" in generate_kwargs: _UpperCAmelCase : Dict = generate_kwargs["max_length"] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _UpperCAmelCase : int = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(A_ ) return preprocess_params, forward_params, postprocess_params def __call__( self , A_ , A_=0 , **A_ ): '''simple docstring''' _UpperCAmelCase : str = super().__call__(A_ , num_workers=A_ , **A_ ) if isinstance(A_ , A_ ) and len(A_ ) == 1: return outputs[0] return outputs def _UpperCAmelCase ( self , A_ , A_=32 ): '''simple docstring''' if not isinstance(A_ , A_ ): raise ValueError("ConversationalPipeline, expects Conversation as inputs" ) if conversation.new_user_input is None: raise ValueError( f'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' "Add user inputs with the conversation's `add_user_input` method" ) if hasattr(self.tokenizer , "_build_conversation_input_ids" ): _UpperCAmelCase : Optional[Any] = self.tokenizer._build_conversation_input_ids(A_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version _UpperCAmelCase : Optional[int] = self._legacy_parse_and_tokenize(A_ ) if self.framework == "pt": _UpperCAmelCase : List[str] = torch.LongTensor([input_ids] ) elif self.framework == "tf": _UpperCAmelCase : str = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _UpperCAmelCase ( self , A_ , A_=10 , **A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = generate_kwargs.get("max_length" , self.model.config.max_length ) _UpperCAmelCase : List[Any] = model_inputs["input_ids"].shape[1] if max_length - minimum_tokens < n: logger.warning(f'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) _UpperCAmelCase : int = max_length - minimum_tokens _UpperCAmelCase : Optional[int] = model_inputs["input_ids"][:, -trim:] if "attention_mask" in model_inputs: _UpperCAmelCase : Union[str, Any] = model_inputs["attention_mask"][:, -trim:] _UpperCAmelCase : Optional[int] = model_inputs.pop("conversation" ) _UpperCAmelCase : Union[str, Any] = max_length _UpperCAmelCase : Any = self.model.generate(**A_ , **A_ ) if self.model.config.is_encoder_decoder: _UpperCAmelCase : Union[str, Any] = 1 else: _UpperCAmelCase : List[str] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _UpperCAmelCase ( self , A_ , A_=True ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = model_outputs["output_ids"] _UpperCAmelCase : List[Any] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) _UpperCAmelCase : Any = model_outputs["conversation"] conversation.mark_processed() conversation.append_response(A_ ) return conversation def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : str = self.tokenizer.eos_token_id _UpperCAmelCase : Tuple = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(A_ , add_special_tokens=A_ ) ) if len(A_ ) > self.tokenizer.model_max_length: _UpperCAmelCase : str = input_ids[-self.tokenizer.model_max_length :] return input_ids
300
0
'''simple docstring''' from __future__ import annotations from typing import Generic, TypeVar SCREAMING_SNAKE_CASE__ : Any = TypeVar("""T""") class __lowerCAmelCase( Generic[T] ): def __init__( self : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[Any] = data SCREAMING_SNAKE_CASE_ :Union[str, Any] = self SCREAMING_SNAKE_CASE_ :Dict = 0 class __lowerCAmelCase( Generic[T] ): def __init__( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[int] = {} def _lowercase ( self : str , SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Tuple = DisjointSetTreeNode(__lowerCAmelCase ) def _lowercase ( self : str , SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Union[str, Any] = self.map[data] if elem_ref != elem_ref.parent: SCREAMING_SNAKE_CASE_ :Any = self.find_set(elem_ref.parent.data ) return elem_ref.parent def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" if nodea.rank > nodea.rank: SCREAMING_SNAKE_CASE_ :List[str] = nodea else: SCREAMING_SNAKE_CASE_ :Optional[Any] = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def _lowercase ( self : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" self.link(self.find_set(__lowerCAmelCase ) , self.find_set(__lowerCAmelCase ) ) class __lowerCAmelCase( Generic[T] ): def __init__( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[int] = {} def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" if node not in self.connections: SCREAMING_SNAKE_CASE_ :Optional[Any] = {} def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" self.add_node(__lowerCAmelCase ) self.add_node(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ :Optional[Any] = weight SCREAMING_SNAKE_CASE_ :int = weight def _lowercase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ :Optional[int] = [] SCREAMING_SNAKE_CASE_ :int = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda SCREAMING_SNAKE_CASE : x[2] ) # creating the disjoint set SCREAMING_SNAKE_CASE_ :List[Any] = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(__lowerCAmelCase ) # MST generation SCREAMING_SNAKE_CASE_ :int = 0 SCREAMING_SNAKE_CASE_ :Tuple = 0 SCREAMING_SNAKE_CASE_ :Union[str, Any] = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Tuple = edges[index] index += 1 SCREAMING_SNAKE_CASE_ :Optional[int] = disjoint_set.find_set(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ :List[Any] = disjoint_set.find_set(__lowerCAmelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) disjoint_set.union(__lowerCAmelCase , __lowerCAmelCase ) return graph
707
'''simple docstring''' from PIL import Image def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ :List[Any] = (259 * (level + 255)) / (255 * (259 - level)) def contrast(SCREAMING_SNAKE_CASE ) -> int: return int(128 + factor * (c - 128) ) return img.point(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change contrast to 170 SCREAMING_SNAKE_CASE__ : int = change_contrast(img, 1_70) cont_img.save("""image_data/lena_high_contrast.png""", format="""png""")
233
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class lowerCAmelCase ( __snake_case ): lowerCAmelCase_ = 42 lowerCAmelCase_ = None def __UpperCamelCase ( lowercase__ : str, lowercase__ : Any=0.999, lowercase__ : Any="cosine", ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ : Tuple ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ : Tuple ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __lowercase =[] for i in range(_lowerCAmelCase ): __lowercase =i / num_diffusion_timesteps __lowercase =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_lowerCAmelCase ) / alpha_bar_fn(_lowerCAmelCase ), _lowerCAmelCase ) ) return torch.tensor(_lowerCAmelCase, dtype=torch.floataa ) class lowerCAmelCase ( __snake_case , __snake_case ): @register_to_config def __init__( self : int , __lowercase : Optional[Any] = 1000 , __lowercase : Optional[int] = "fixed_small_log" , __lowercase : Any = True , __lowercase : Dict = 1.0 , __lowercase : Tuple = "epsilon" , __lowercase : int = "squaredcos_cap_v2" , ): """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'' ) __lowercase =betas_for_alpha_bar(A_ ) __lowercase =1.0 - self.betas __lowercase =torch.cumprod(self.alphas , dim=0 ) __lowercase =torch.tensor(1.0 ) # standard deviation of the initial noise distribution __lowercase =1.0 # setable values __lowercase =None __lowercase =torch.from_numpy(np.arange(0 , A_ )[::-1].copy() ) __lowercase =variance_type def snake_case ( self : List[str] , __lowercase : Any , __lowercase : int = None ): """simple docstring""" return sample def snake_case ( self : int , __lowercase : List[str] , __lowercase : Tuple = None ): """simple docstring""" __lowercase =num_inference_steps __lowercase =(self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) __lowercase =(np.arange(0 , A_ ) * step_ratio).round()[::-1].copy().astype(np.intaa ) __lowercase =torch.from_numpy(A_ ).to(A_ ) def snake_case ( self : Optional[int] , __lowercase : Optional[int] , __lowercase : List[str]=None , __lowercase : Optional[int]=None , __lowercase : Union[str, Any]=None ): """simple docstring""" if prev_timestep is None: __lowercase =t - 1 __lowercase =self.alphas_cumprod[t] __lowercase =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __lowercase =1 - alpha_prod_t __lowercase =1 - alpha_prod_t_prev if prev_timestep == t - 1: __lowercase =self.betas[t] else: __lowercase =1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __lowercase =beta_prod_t_prev / beta_prod_t * beta if variance_type is None: __lowercase =self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": __lowercase =torch.log(torch.clamp(A_ , min=1E-20 ) ) __lowercase =torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler __lowercase =variance.log() __lowercase =beta.log() __lowercase =(predicted_variance + 1) / 2 __lowercase =frac * max_log + (1 - frac) * min_log return variance def snake_case ( self : Tuple , __lowercase : Optional[Any] , __lowercase : Any , __lowercase : List[str] , __lowercase : int = None , __lowercase : Tuple=None , __lowercase : int = True , ): """simple docstring""" __lowercase =timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": __lowercase =torch.split(A_ , sample.shape[1] , dim=1 ) else: __lowercase =None # 1. compute alphas, betas if prev_timestep is None: __lowercase =t - 1 __lowercase =self.alphas_cumprod[t] __lowercase =self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one __lowercase =1 - alpha_prod_t __lowercase =1 - alpha_prod_t_prev if prev_timestep == t - 1: __lowercase =self.betas[t] __lowercase =self.alphas[t] else: __lowercase =1 - alpha_prod_t / alpha_prod_t_prev __lowercase =1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __lowercase =(sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __lowercase =model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' ' for the UnCLIPScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __lowercase =torch.clamp( A_ , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase =(alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t __lowercase =alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __lowercase =pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __lowercase =0 if t > 0: __lowercase =randn_tensor( model_output.shape , dtype=model_output.dtype , generator=A_ , device=model_output.device ) __lowercase =self._get_variance( A_ , predicted_variance=A_ , prev_timestep=A_ , ) if self.variance_type == "fixed_small_log": __lowercase =variance elif self.variance_type == "learned_range": __lowercase =(0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' ' for the UnCLIPScheduler.' ) __lowercase =variance * variance_noise __lowercase =pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=A_ , pred_original_sample=A_ ) def snake_case ( self : Dict , __lowercase : List[Any] , __lowercase : int , __lowercase : List[str] , ): """simple docstring""" __lowercase =self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) __lowercase =timesteps.to(original_samples.device ) __lowercase =alphas_cumprod[timesteps] ** 0.5 __lowercase =sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): __lowercase =sqrt_alpha_prod.unsqueeze(-1 ) __lowercase =(1 - alphas_cumprod[timesteps]) ** 0.5 __lowercase =sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): __lowercase =sqrt_one_minus_alpha_prod.unsqueeze(-1 ) __lowercase =sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
119
def A_ ( _lowerCAmelCase ) -> bool: UpperCamelCase : List[Any] = 0 for ch in input_str: UpperCamelCase : Optional[Any] = ord(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = pow(2 , _lowerCAmelCase ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
629
0
from collections.abc import Sequence from queue import Queue class __A : def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None ): lowerCamelCase__ : int = start lowerCamelCase__ : Union[str, Any] = end lowerCamelCase__ : List[Any] = val lowerCamelCase__ : int = (start + end) // 2 lowerCamelCase__ : List[str] = left lowerCamelCase__ : Optional[int] = right def __repr__(self ): return f"SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})" class __A : def __init__(self , __magic_name__ , __magic_name__ ): lowerCamelCase__ : List[Any] = collection lowerCamelCase__ : List[str] = function if self.collection: lowerCamelCase__ : Optional[Any] = self._build_tree(0 , len(__magic_name__ ) - 1 ) def _snake_case (self , __magic_name__ , __magic_name__ ): self._update_tree(self.root , __magic_name__ , __magic_name__ ) def _snake_case (self , __magic_name__ , __magic_name__ ): return self._query_range(self.root , __magic_name__ , __magic_name__ ) def _snake_case (self , __magic_name__ , __magic_name__ ): if start == end: return SegmentTreeNode(__magic_name__ , __magic_name__ , self.collection[start] ) lowerCamelCase__ : int = (start + end) // 2 lowerCamelCase__ : Optional[Any] = self._build_tree(__magic_name__ , __magic_name__ ) lowerCamelCase__ : Any = self._build_tree(mid + 1 , __magic_name__ ) return SegmentTreeNode(__magic_name__ , __magic_name__ , self.fn(left.val , right.val ) , __magic_name__ , __magic_name__ ) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ ): if node.start == i and node.end == i: lowerCamelCase__ : List[Any] = val return if i <= node.mid: self._update_tree(node.left , __magic_name__ , __magic_name__ ) else: self._update_tree(node.right , __magic_name__ , __magic_name__ ) lowerCamelCase__ : Dict = self.fn(node.left.val , node.right.val ) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ ): if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , __magic_name__ , __magic_name__ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , __magic_name__ , node.mid ) , self._query_range(node.right , node.mid + 1 , __magic_name__ ) , ) else: # range in right child tree return self._query_range(node.right , __magic_name__ , __magic_name__ ) def _snake_case (self ): if self.root is not None: lowerCamelCase__ : List[str] = Queue() queue.put(self.root ) while not queue.empty(): lowerCamelCase__ : Optional[Any] = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) _lowercase = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
96
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask _lowercase = logging.getLogger(__name__) class __A ( A_ ): UpperCamelCase :Optional[int] = '''token-classification''' def __init__(self , __magic_name__ ): if type(__magic_name__ ) == dict: lowerCamelCase__ : Any = Namespace(**__magic_name__ ) lowerCamelCase__ : str = import_module("""tasks""" ) try: lowerCamelCase__ : Optional[Any] = getattr(__magic_name__ , hparams.task_type ) lowerCamelCase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) lowerCamelCase__ : Any = self.token_classification_task.get_labels(hparams.labels ) lowerCamelCase__ : Tuple = CrossEntropyLoss().ignore_index super().__init__(__magic_name__ , len(self.labels ) , self.mode ) def _snake_case (self , **__magic_name__ ): return self.model(**__magic_name__ ) def _snake_case (self , __magic_name__ , __magic_name__ ): lowerCamelCase__ : Tuple = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": lowerCamelCase__ : Union[str, Any] = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCamelCase__ : List[str] = self(**__magic_name__ ) lowerCamelCase__ : Dict = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _snake_case (self ): lowerCamelCase__ : Dict = self.hparams for mode in ["train", "dev", "test"]: lowerCamelCase__ : List[str] = self._feature_file(__magic_name__ ) if os.path.exists(__magic_name__ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , __magic_name__ ) lowerCamelCase__ : Union[str, Any] = torch.load(__magic_name__ ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) lowerCamelCase__ : int = self.token_classification_task.read_examples_from_file(args.data_dir , __magic_name__ ) lowerCamelCase__ : Tuple = self.token_classification_task.convert_examples_to_features( __magic_name__ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__magic_name__ , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , __magic_name__ ) torch.save(__magic_name__ , __magic_name__ ) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ = False ): lowerCamelCase__ : Any = self._feature_file(__magic_name__ ) logger.info("""Loading features from cached file %s""" , __magic_name__ ) lowerCamelCase__ : Optional[Any] = torch.load(__magic_name__ ) lowerCamelCase__ : Tuple = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowerCamelCase__ : Optional[Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowerCamelCase__ : str = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowerCamelCase__ : int = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowerCamelCase__ : Any = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) , batch_size=__magic_name__ ) def _snake_case (self , __magic_name__ , __magic_name__ ): """Compute validation""" "" lowerCamelCase__ : Optional[int] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": lowerCamelCase__ : Tuple = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCamelCase__ : str = self(**__magic_name__ ) lowerCamelCase__ ,lowerCamelCase__ : List[Any] = outputs[:2] lowerCamelCase__ : List[Any] = logits.detach().cpu().numpy() lowerCamelCase__ : Dict = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case (self , __magic_name__ ): lowerCamelCase__ : List[str] = torch.stack([x["""val_loss"""] for x in outputs] ).mean() lowerCamelCase__ : Optional[int] = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) lowerCamelCase__ : List[str] = np.argmax(__magic_name__ , axis=2 ) lowerCamelCase__ : Optional[Any] = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) lowerCamelCase__ : Optional[int] = dict(enumerate(self.labels ) ) lowerCamelCase__ : List[str] = [[] for _ in range(out_label_ids.shape[0] )] lowerCamelCase__ : Any = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowerCamelCase__ : Tuple = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(__magic_name__ , __magic_name__ ), """precision""": precision_score(__magic_name__ , __magic_name__ ), """recall""": recall_score(__magic_name__ , __magic_name__ ), """f1""": fa_score(__magic_name__ , __magic_name__ ), } lowerCamelCase__ : Dict = dict(results.items() ) lowerCamelCase__ : str = results return ret, preds_list, out_label_list def _snake_case (self , __magic_name__ ): # when stable lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ : str = self._eval_end(__magic_name__ ) lowerCamelCase__ : Union[str, Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case (self , __magic_name__ ): # updating to test_epoch_end instead of deprecated test_end lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ : Union[str, Any] = self._eval_end(__magic_name__ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowerCamelCase__ : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case (__magic_name__ , __magic_name__ ): # Add NER specific options BaseTransformer.add_model_specific_args(__magic_name__ , __magic_name__ ) parser.add_argument( """--task_type""" , default="""NER""" , type=__magic_name__ , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=__magic_name__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=__magic_name__ , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=__magic_name__ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": _lowercase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) _lowercase = NERTransformer.add_model_specific_args(parser, os.getcwd()) _lowercase = parser.parse_args() _lowercase = NERTransformer(args) _lowercase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 _lowercase = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) _lowercase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
96
1
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=[] ): __a = size[0] - overlap_pixels * 2 __a = size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels __a = np.ones((size_y, size_x) , dtype=np.uinta ) * 255 __a = np.pad(__lowerCamelCase , mode='linear_ramp' , pad_width=__lowerCamelCase , end_values=0 ) if "l" in remove_borders: __a = mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: __a = mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: __a = mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: __a = mask[0 : mask.shape[0] - overlap_pixels, :] return mask def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): return max(__lowerCamelCase , min(__lowerCamelCase , __lowerCamelCase ) ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = list(__lowerCamelCase ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap __a = clamp_rect(__lowerCamelCase , [0, 0] , [image_size[0], image_size[1]] ) return rect def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __a = Image.new('RGB' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(__lowerCamelCase , (original_slice, 0) ) return result def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): __a = (original_image_slice * 4, 0, tile.size[0], tile.size[1]) __a = tile.crop(__lowerCamelCase ) return tile def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): __a = n % d return n - divisor class a__ ( __snake_case ): def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 3_5_0 , ) -> List[str]: super().__init__( vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , unet=UpperCAmelCase , low_res_scheduler=UpperCAmelCase , scheduler=UpperCAmelCase , max_noise_level=UpperCAmelCase , ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> int: torch.manual_seed(0 ) __a = ( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) __a = add_overlap_rect(UpperCAmelCase , UpperCAmelCase , image.size ) __a = image.crop(UpperCAmelCase ) __a = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] __a = translated_slice_x - (original_image_slice / 2) __a = max(0 , UpperCAmelCase ) __a = squeeze_tile(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __a = to_input.size __a = to_input.resize((tile_size, tile_size) , Image.BICUBIC ) __a = super(UpperCAmelCase , self ).__call__(image=UpperCAmelCase , **UpperCAmelCase ).images[0] __a = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) __a = unsqueeze_tile(UpperCAmelCase , UpperCAmelCase ) __a = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) __a = [] if x == 0: remove_borders.append('l' ) elif crop_rect[2] == image.size[0]: remove_borders.append('r' ) if y == 0: remove_borders.append('t' ) elif crop_rect[3] == image.size[1]: remove_borders.append('b' ) __a = Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=UpperCAmelCase ) , mode='L' , ) final_image.paste( UpperCAmelCase , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , UpperCAmelCase ) @torch.no_grad() def __call__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 7_5 , UpperCAmelCase = 9.0 , UpperCAmelCase = 5_0 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 1_2_8 , UpperCAmelCase = 3_2 , UpperCAmelCase = 3_2 , ) -> Optional[Any]: __a = Image.new('RGB' , (image.size[0] * 4, image.size[1] * 4) ) __a = math.ceil(image.size[0] / tile_size ) __a = math.ceil(image.size[1] / tile_size ) __a = tcx * tcy __a = 0 for y in range(UpperCAmelCase ): for x in range(UpperCAmelCase ): self._process_tile( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , prompt=UpperCAmelCase , num_inference_steps=UpperCAmelCase , guidance_scale=UpperCAmelCase , noise_level=UpperCAmelCase , negative_prompt=UpperCAmelCase , num_images_per_prompt=UpperCAmelCase , eta=UpperCAmelCase , generator=UpperCAmelCase , latents=UpperCAmelCase , ) current_count += 1 if callback is not None: callback({'progress': current_count / total_tile_count, 'image': final_image} ) return final_image def lowerCAmelCase( ): # Run a demo __a = 'stabilityai/stable-diffusion-x4-upscaler' __a = StableDiffusionTiledUpscalePipeline.from_pretrained(__lowerCamelCase , revision='fp16' , torch_dtype=torch.floataa ) __a = pipe.to('cuda' ) __a = Image.open('../../docs/source/imgs/diffusers_library.jpg' ) def callback(__lowerCamelCase ): print(f'''progress: {obj["progress"]:.4f}''' ) obj["image"].save('diffusers_library_progress.jpg' ) __a = pipe(image=__lowerCamelCase , prompt='Black font, white background, vector' , noise_level=40 , callback=__lowerCamelCase ) final_image.save('diffusers_library.jpg' ) if __name__ == "__main__": main()
559
# limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class a__ ( __snake_case ): def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> Tuple: super().__init__() self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) @torch.no_grad() def __call__( self , UpperCAmelCase = 1 , UpperCAmelCase = None , UpperCAmelCase = 5_0 , UpperCAmelCase = "pil" , UpperCAmelCase = True , **UpperCAmelCase , ) -> Union[ImagePipelineOutput, Tuple]: __a = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=UpperCAmelCase , ) __a = image.to(self.device ) # set step values self.scheduler.set_timesteps(UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __a = self.unet(UpperCAmelCase , UpperCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __a = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample __a = (image / 2 + 0.5).clamp(0 , 1 ) __a = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=UpperCAmelCase ), "This is a local test"
559
1
import argparse import os import torch from transformers.utils import WEIGHTS_NAME _lowerCAmelCase : Dict = ["small", "medium", "large"] _lowerCAmelCase : Dict = "lm_head.decoder.weight" _lowerCAmelCase : List[Any] = "lm_head.weight" def lowerCAmelCase ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str ): """simple docstring""" UpperCAmelCase__ = torch.load(__snake_case ) UpperCAmelCase__ = d.pop(__snake_case ) os.makedirs(__snake_case , exist_ok=__snake_case ) torch.save(__snake_case , os.path.join(__snake_case , __snake_case ) ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) _lowerCAmelCase : str = parser.parse_args() for MODEL in DIALOGPT_MODELS: _lowerCAmelCase : str = os.path.join(args.dialogpt_path, F'''{MODEL}_ft.pkl''') _lowerCAmelCase : List[str] = F'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
712
import torch from transformers import AutoModel class _UpperCamelCase ( torch.nn.Module ): def __init__( self :str , lowerCamelCase :Tuple="sayef/fsner-bert-base-uncased" ) -> int: super(lowerCamelCase , self ).__init__() UpperCAmelCase__ = AutoModel.from_pretrained(lowerCamelCase , return_dict=lowerCamelCase ) UpperCAmelCase__ = torch.nn.CosineSimilarity(3 , 1e-08 ) UpperCAmelCase__ = torch.nn.Softmax(dim=1 ) def UpperCAmelCase_ ( self :Union[str, Any] , **lowerCamelCase :Tuple ) -> Dict: return self.bert(**lowerCamelCase ).last_hidden_state def UpperCAmelCase_ ( self :Any , lowerCamelCase :Union[str, Any] ) -> Union[str, Any]: return token_embeddings.sum(2 , keepdim=lowerCamelCase ) def UpperCAmelCase_ ( self :Dict , lowerCamelCase :List[Any] , lowerCamelCase :int , lowerCamelCase :Union[str, Any]=1 ) -> Dict: return self.softmax(T * self.cos(lowerCamelCase , lowerCamelCase ) ) def UpperCAmelCase_ ( self :Union[str, Any] , lowerCamelCase :Any , lowerCamelCase :Any ) -> Union[str, Any]: UpperCAmelCase__ = W_supports["sizes"].tolist() UpperCAmelCase__ = W_supports["start_token_id"].item() UpperCAmelCase__ = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCAmelCase__ = self.BERT(**lowerCamelCase ) UpperCAmelCase__ = self.BERT(**lowerCamelCase ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = W_supports["input_ids"] == start_token_id UpperCAmelCase__ = W_supports["input_ids"] == end_token_id for i, size in enumerate(lowerCamelCase ): if i == 0: UpperCAmelCase__ = 0 else: UpperCAmelCase__ = support_sizes[i - 1] UpperCAmelCase__ = S[s : s + size][start_token_masks[s : s + size]] UpperCAmelCase__ = S[s : s + size][end_token_masks[s : s + size]] UpperCAmelCase__ = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCAmelCase__ = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCAmelCase__ = torch.vstack((p_starts, p_start) ) UpperCAmelCase__ = torch.vstack((p_ends, p_end) ) else: UpperCAmelCase__ = p_start UpperCAmelCase__ = p_end return p_starts, p_ends
364
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , ) -> float: __lowerCamelCase : List[Any] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('All input parameters must be positive' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('Relative densities cannot be greater than one' ) else: __lowerCamelCase : Any = 1 - (matter_density + radiation_density + dark_energy) __lowerCamelCase : List[Any] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) __lowerCamelCase : Any = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation A__ : Union[str, Any] = 0.3 print( hubble_parameter( hubble_constant=6_8.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
13
"""simple docstring""" def lowercase_ ( __UpperCAmelCase ) -> str: return " ".join( """""".join(word[::-1] ) if len(__UpperCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("""Hey wollef sroirraw"""))
299
0
class snake_case_ : '''simple docstring''' def __init__( self, A_ ) -> None: UpperCAmelCase__ =size UpperCAmelCase__ =[0] * size UpperCAmelCase__ =[0] * size @staticmethod def __UpperCAmelCase ( A_ ) -> int: return index | (index + 1) @staticmethod def __UpperCAmelCase ( A_ ) -> int: return (index & (index + 1)) - 1 def __UpperCAmelCase ( self, A_, A_ ) -> None: UpperCAmelCase__ =value while index < self.size: UpperCAmelCase__ =self.get_prev(A_ ) + 1 if current_left_border == index: UpperCAmelCase__ =value else: UpperCAmelCase__ =max(A_, A_, A_ ) UpperCAmelCase__ =self.get_next(A_ ) def __UpperCAmelCase ( self, A_, A_ ) -> int: right -= 1 # Because of right is exclusive UpperCAmelCase__ =0 while left <= right: UpperCAmelCase__ =self.get_prev(A_ ) if left <= current_left: UpperCAmelCase__ =max(A_, self.tree[right] ) UpperCAmelCase__ =current_left else: UpperCAmelCase__ =max(A_, self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
700
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = 'blip_text_model' def __init__( self, A_=3_0524, A_=768, A_=768, A_=3072, A_=768, A_=12, A_=8, A_=512, A_="gelu", A_=1E-12, A_=0.0, A_=0.0, A_=0.02, A_=3_0522, A_=2, A_=0, A_=102, A_=True, A_=True, **A_, ) -> Any: super().__init__( pad_token_id=A_, bos_token_id=A_, eos_token_id=A_, sep_token_id=A_, **A_, ) UpperCAmelCase__ =vocab_size UpperCAmelCase__ =hidden_size UpperCAmelCase__ =encoder_hidden_size UpperCAmelCase__ =intermediate_size UpperCAmelCase__ =projection_dim UpperCAmelCase__ =hidden_dropout_prob UpperCAmelCase__ =num_hidden_layers UpperCAmelCase__ =num_attention_heads UpperCAmelCase__ =max_position_embeddings UpperCAmelCase__ =layer_norm_eps UpperCAmelCase__ =hidden_act UpperCAmelCase__ =initializer_range UpperCAmelCase__ =attention_probs_dropout_prob UpperCAmelCase__ =is_decoder UpperCAmelCase__ =use_cache @classmethod def __UpperCAmelCase ( cls, A_, **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) UpperCAmelCase__ , UpperCAmelCase__ =cls.get_config_dict(A_, **A_ ) # get the text config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": UpperCAmelCase__ =config_dict["text_config"] if "model_type" in config_dict and hasattr(cls, "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(A_, **A_ ) class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = 'blip_vision_model' def __init__( self, A_=768, A_=3072, A_=512, A_=12, A_=12, A_=384, A_=16, A_="gelu", A_=1E-5, A_=0.0, A_=1E-10, **A_, ) -> Dict: super().__init__(**A_ ) UpperCAmelCase__ =hidden_size UpperCAmelCase__ =intermediate_size UpperCAmelCase__ =projection_dim UpperCAmelCase__ =num_hidden_layers UpperCAmelCase__ =num_attention_heads UpperCAmelCase__ =patch_size UpperCAmelCase__ =image_size UpperCAmelCase__ =initializer_range UpperCAmelCase__ =attention_dropout UpperCAmelCase__ =layer_norm_eps UpperCAmelCase__ =hidden_act @classmethod def __UpperCAmelCase ( cls, A_, **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) UpperCAmelCase__ , UpperCAmelCase__ =cls.get_config_dict(A_, **A_ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get("model_type" ) == "blip": UpperCAmelCase__ =config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls, "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(A_, **A_ ) class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = 'blip' __UpperCamelCase = True def __init__( self, A_=None, A_=None, A_=512, A_=2.65_92, A_=256, **A_, ) -> str: super().__init__(**A_ ) if text_config is None: UpperCAmelCase__ ={} logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values." ) if vision_config is None: UpperCAmelCase__ ={} logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values." ) UpperCAmelCase__ =BlipTextConfig(**A_ ) UpperCAmelCase__ =BlipVisionConfig(**A_ ) UpperCAmelCase__ =self.vision_config.hidden_size UpperCAmelCase__ =projection_dim UpperCAmelCase__ =logit_scale_init_value UpperCAmelCase__ =1.0 UpperCAmelCase__ =0.02 UpperCAmelCase__ =image_text_hidden_size @classmethod def __UpperCAmelCase ( cls, A_, A_, **A_ ) -> Tuple: return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **A_ ) def __UpperCAmelCase ( self ) -> int: UpperCAmelCase__ =copy.deepcopy(self.__dict__ ) UpperCAmelCase__ =self.text_config.to_dict() UpperCAmelCase__ =self.vision_config.to_dict() UpperCAmelCase__ =self.__class__.model_type return output
510
0
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __snake_case , unittest.TestCase ): """simple docstring""" lowerCAmelCase = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _UpperCAmelCase ( self , a__=0 ) -> Dict: A = floats_tensor((1, 3, 128, 128) , rng=random.Random(a__ ) ) A = np.random.RandomState(a__ ) A = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """strength""": 0.75, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _UpperCAmelCase ( self ) -> int: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=a__ ) A = self.get_dummy_inputs() A = pipe(**a__ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) A = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _UpperCAmelCase ( self ) -> List[Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a__ ) pipe.set_progress_bar_config(disable=a__ ) A = self.get_dummy_inputs() A = pipe(**a__ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCAmelCase ( self ) -> int: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) # warmup pass to apply optimizations A = pipe(**self.get_dummy_inputs() ) A = self.get_dummy_inputs() A = pipe(**a__ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCAmelCase ( self ) -> int: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) A = self.get_dummy_inputs() A = pipe(**a__ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCAmelCase ( self ) -> Union[str, Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) A = self.get_dummy_inputs() A = pipe(**a__ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _UpperCAmelCase ( self ) -> List[Any]: A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a__ ) A = self.get_dummy_inputs() A = pipe(**a__ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) A = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> List[str]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _UpperCAmelCase ( self ) -> Dict: A = ort.SessionOptions() A = False return options def _UpperCAmelCase ( self ) -> int: A = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) A = init_image.resize((768, 512) ) # using the PNDM scheduler by default A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) A = """A fantasy landscape, trending on artstation""" A = np.random.RandomState(0 ) A = pipe( prompt=a__ , image=a__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=a__ , output_type="""np""" , ) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _UpperCAmelCase ( self ) -> List[Any]: A = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) A = init_image.resize((768, 512) ) A = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=a__ , safety_checker=a__ , feature_extractor=a__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a__ ) A = """A fantasy landscape, trending on artstation""" A = np.random.RandomState(0 ) A = pipe( prompt=a__ , image=a__ , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=a__ , output_type="""np""" , ) A = output.images A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) A = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
641
_lowercase : Dict = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
641
1
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): A : int = IFInpaintingPipeline A : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} A : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS A : int = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case__ ( self : int ): return self._get_dummy_components() def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any]=0 ): if str(_lowerCAmelCase ).startswith("""mps""" ): __snake_case : Union[str, Any] = torch.manual_seed(_lowerCAmelCase ) else: __snake_case : int = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) __snake_case : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __snake_case : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) __snake_case : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def snake_case__ ( self : Any ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def snake_case__ ( self : str ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def snake_case__ ( self : int ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case__ ( self : Optional[Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case__ ( self : List[str] ): self._test_save_load_local() def snake_case__ ( self : int ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
390
lowercase_ = {str(digit): digit**5 for digit in range(10)} def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return sum(DIGITS_FIFTH_POWER[digit] for digit in str(__SCREAMING_SNAKE_CASE ) ) def __lowerCAmelCase ( ): '''simple docstring''' return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(__SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": print(solution())
390
1
"""simple docstring""" import math def A_ (__a ): '''simple docstring''' A_ = [True] * n A_ = False A_ = False A_ = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): A_ = i * 2 while index < n: A_ = False A_ = index + i A_ = [2] for i in range(3 , __a , 2 ): if is_prime[i]: primes.append(__a ) return primes def A_ (__a = 9999_6666_3333 ): '''simple docstring''' A_ = math.floor(math.sqrt(__a ) ) + 100 A_ = prime_sieve(__a ) A_ = 0 A_ = 0 A_ = primes[prime_index] while (last_prime**2) <= limit: A_ = primes[prime_index + 1] A_ = last_prime**2 A_ = next_prime**2 # Get numbers divisible by lps(current) A_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) A_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps A_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair A_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
115
"""simple docstring""" import argparse import os import re UpperCamelCase_ : Any = '''src/transformers/models/auto''' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict UpperCamelCase_ : Optional[int] = re.compile(R'''[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict''') # re pattern that matches identifiers in mappings UpperCamelCase_ : Tuple = re.compile(R'''\s*\(\s*"(\S[^"]+)"''') def A_ (__a , __a = False ): '''simple docstring''' with open(__a , "r" , encoding="utf-8" ) as f: A_ = f.read() A_ = content.split("\n" ) A_ = [] A_ = 0 while line_idx < len(__a ): if _re_intro_mapping.search(lines[line_idx] ) is not None: A_ = len(re.search(R"^(\s*)\S" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(" " * indent + "(" ): new_lines.append(lines[line_idx] ) line_idx += 1 A_ = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": A_ = line_idx while not lines[line_idx].startswith(" " * indent + ")" ): line_idx += 1 blocks.append("\n".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers A_ = sorted(__a , key=lambda __a : _re_identifier.search(__a ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(__a , "w" , encoding="utf-8" ) as f: f.write("\n".join(__a ) ) elif "\n".join(__a ) != content: return True def A_ (__a = False ): '''simple docstring''' A_ = [os.path.join(__a , __a ) for f in os.listdir(__a ) if f.endswith(".py" )] A_ = [sort_auto_mapping(__a , overwrite=__a ) for fname in fnames] if not overwrite and any(__a ): A_ = [f for f, d in zip(__a , __a ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(__a )}. Run `make style` to fix' " this." ) if __name__ == "__main__": UpperCamelCase_ : str = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') UpperCamelCase_ : List[Any] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
115
1
'''simple docstring''' from __future__ import annotations a__ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] a__ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __UpperCAmelCase ( __a : str ) -> list[float]: """simple docstring""" _a : List[Any] = [] _a : List[Any] = len(__a ) for i in range(__a ): _a : Dict = -1 for j in range(i + 1 ,__a ): if arr[i] < arr[j]: _a : List[str] = arr[j] break result.append(__a ) return result def __UpperCAmelCase ( __a : str ) -> list[float]: """simple docstring""" _a : str = [] for i, outer in enumerate(__a ): _a : int = -1 for inner in arr[i + 1 :]: if outer < inner: _a : List[str] = inner break result.append(__a ) return result def __UpperCAmelCase ( __a : int ) -> list[float]: """simple docstring""" _a : Optional[Any] = len(__a ) _a : List[str] = [] _a : List[str] = [-1] * arr_size for index in reversed(range(__a ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: _a : List[str] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) a__ = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
710
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py a__ = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' a__ = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' a__ = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): """simple docstring""" def __lowercase ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def __lowercase ( self , _a , _a , _a=4 , _a=False ) -> List[Any]: _a : Dict = compute_bleu( reference_corpus=_a , translation_corpus=_a , max_order=_a , smooth=_a ) ((_a) , (_a) , (_a) , (_a) , (_a) , (_a)) : Dict = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
578
0
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() def __UpperCamelCase ( self ): '''simple docstring''' __A , __A =FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''' , from_pt=lowercase__ , dtype=jnp.bfloataa ) __A , __A =FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=lowercase__ , from_pt=lowercase__ , dtype=jnp.bfloataa ) __A =controlnet_params __A ='''bird''' __A =jax.device_count() __A =pipe.prepare_text_inputs([prompts] * num_samples ) __A =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) __A =pipe.prepare_image_inputs([canny_image] * num_samples ) __A =jax.random.PRNGKey(0 ) __A =jax.random.split(lowercase__ , jax.device_count() ) __A =replicate(lowercase__ ) __A =shard(lowercase__ ) __A =shard(lowercase__ ) __A =pipe( prompt_ids=lowercase__ , image=lowercase__ , params=lowercase__ , prng_seed=lowercase__ , num_inference_steps=5_0 , jit=lowercase__ , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) __A =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __A =images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] __A =jnp.asarray(jax.device_get(image_slice.flatten() ) ) __A =jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def __UpperCamelCase ( self ): '''simple docstring''' __A , __A =FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''' , from_pt=lowercase__ , dtype=jnp.bfloataa ) __A , __A =FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=lowercase__ , from_pt=lowercase__ , dtype=jnp.bfloataa ) __A =controlnet_params __A ='''Chef in the kitchen''' __A =jax.device_count() __A =pipe.prepare_text_inputs([prompts] * num_samples ) __A =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) __A =pipe.prepare_image_inputs([pose_image] * num_samples ) __A =jax.random.PRNGKey(0 ) __A =jax.random.split(lowercase__ , jax.device_count() ) __A =replicate(lowercase__ ) __A =shard(lowercase__ ) __A =shard(lowercase__ ) __A =pipe( prompt_ids=lowercase__ , image=lowercase__ , params=lowercase__ , prng_seed=lowercase__ , num_inference_steps=5_0 , jit=lowercase__ , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) __A =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __A =images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] __A =jnp.asarray(jax.device_get(image_slice.flatten() ) ) __A =jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
184
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def A__ ( __A : List[str] , __A : Optional[Any] , __A : Union[str, Any] , __A : int="attention" ) ->str: __A =params[F'''{prefix}/layers_{i}/{layer_name}/key/kernel'''] __A =params[F'''{prefix}/layers_{i}/{layer_name}/out/kernel'''] __A =params[F'''{prefix}/layers_{i}/{layer_name}/query/kernel'''] __A =params[F'''{prefix}/layers_{i}/{layer_name}/value/kernel'''] return k, o, q, v def A__ ( __A : Optional[int] , __A : List[str] , __A : Any , __A : Tuple=False ) ->Any: if split_mlp_wi: __A =params[F'''{prefix}/layers_{i}/mlp/wi_0/kernel'''] __A =params[F'''{prefix}/layers_{i}/mlp/wi_1/kernel'''] __A =(wi_a, wi_a) else: __A =params[F'''{prefix}/layers_{i}/mlp/wi/kernel'''] __A =params[F'''{prefix}/layers_{i}/mlp/wo/kernel'''] return wi, wo def A__ ( __A : int , __A : Any , __A : Any , __A : Optional[Any] ) ->str: return params[F'''{prefix}/layers_{i}/{layer_name}/scale'''] def A__ ( __A : dict , *, __A : int , __A : bool ) ->Optional[Any]: __A =traverse_util.flatten_dict(variables['''target'''] ) __A ={'''/'''.join(__A ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __A ='''encoder/layers_0/mlp/wi_0/kernel''' in old print('''Split MLP:''' , __A ) __A =collections.OrderedDict() # Shared embeddings. __A =old['''token_embedder/embedding'''] # Encoder. for i in range(__A ): # Block i, layer 0 (Self Attention). __A =tax_layer_norm_lookup(__A , __A , '''encoder''' , '''pre_attention_layer_norm''' ) __A , __A , __A , __A =tax_attention_lookup(__A , __A , '''encoder''' , '''attention''' ) __A =layer_norm __A =k.T __A =o.T __A =q.T __A =v.T # Block i, layer 1 (MLP). __A =tax_layer_norm_lookup(__A , __A , '''encoder''' , '''pre_mlp_layer_norm''' ) __A , __A =tax_mlp_lookup(__A , __A , '''encoder''' , __A ) __A =layer_norm if split_mlp_wi: __A =wi[0].T __A =wi[1].T else: __A =wi.T __A =wo.T __A =old[ '''encoder/relpos_bias/rel_embedding''' ].T __A =old['''encoder/encoder_norm/scale'''] if not is_encoder_only: # Decoder. for i in range(__A ): # Block i, layer 0 (Self Attention). __A =tax_layer_norm_lookup(__A , __A , '''decoder''' , '''pre_self_attention_layer_norm''' ) __A , __A , __A , __A =tax_attention_lookup(__A , __A , '''decoder''' , '''self_attention''' ) __A =layer_norm __A =k.T __A =o.T __A =q.T __A =v.T # Block i, layer 1 (Cross Attention). __A =tax_layer_norm_lookup(__A , __A , '''decoder''' , '''pre_cross_attention_layer_norm''' ) __A , __A , __A , __A =tax_attention_lookup(__A , __A , '''decoder''' , '''encoder_decoder_attention''' ) __A =layer_norm __A =k.T __A =o.T __A =q.T __A =v.T # Block i, layer 2 (MLP). __A =tax_layer_norm_lookup(__A , __A , '''decoder''' , '''pre_mlp_layer_norm''' ) __A , __A =tax_mlp_lookup(__A , __A , '''decoder''' , __A ) __A =layer_norm if split_mlp_wi: __A =wi[0].T __A =wi[1].T else: __A =wi.T __A =wo.T __A =old['''decoder/decoder_norm/scale'''] __A =old[ '''decoder/relpos_bias/rel_embedding''' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __A =old['''decoder/logits_dense/kernel'''].T return new def A__ ( __A : Union[str, Any] , __A : bool ) ->Any: __A =collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __A =state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __A =state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) __A =state_dict['''shared.weight'''] return state_dict def A__ ( __A : str , __A : Optional[int] , __A : int , __A : Optional[Any] ) ->Tuple: __A =checkpoints.load_tax_checkpoint(__A ) __A =convert_tax_to_pytorch(__A , num_layers=config.num_layers , is_encoder_only=__A ) __A =make_state_dict(__A , __A ) model.load_state_dict(__A , strict=__A ) def A__ ( __A : List[str] , __A : str , __A : str , __A : bool = False ) ->List[str]: __A =TaConfig.from_json_file(__A ) print(F'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __A =TaEncoderModel(__A ) else: __A =TaForConditionalGeneration(__A ) # Load weights from tf checkpoint load_tax_weights_in_ta(__A , __A , __A , __A ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__A ) # Verify that we can load the checkpoint. model.from_pretrained(__A ) print('''Done''' ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) _lowerCamelCase : int = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
184
1
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = KandinskyVaaPriorPipeline __lowerCamelCase : List[str] = ['prompt'] __lowerCamelCase : str = ['prompt', 'negative_prompt'] __lowerCamelCase : Union[str, Any] = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase : Union[str, Any] = False @property def a__ (self ) -> Tuple: """simple docstring""" return 32 @property def a__ (self ) -> int: """simple docstring""" return 32 @property def a__ (self ) -> int: """simple docstring""" return self.time_input_dim @property def a__ (self ) -> Any: """simple docstring""" return self.time_input_dim * 4 @property def a__ (self ) -> Optional[Any]: """simple docstring""" return 100 @property def a__ (self ) -> str: """simple docstring""" _a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def a__ (self ) -> int: """simple docstring""" torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(A ) @property def a__ (self ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) _a = { '''num_attention_heads''': 2, '''attention_head_dim''': 12, '''embedding_dim''': self.text_embedder_hidden_size, '''num_layers''': 1, } _a = PriorTransformer(**A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _a = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def a__ (self ) -> str: """simple docstring""" torch.manual_seed(0 ) _a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) _a = CLIPVisionModelWithProjection(A ) return model @property def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = CLIPImageProcessor( crop_size=224 , do_center_crop=A , do_normalize=A , do_resize=A , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = self.dummy_prior _a = self.dummy_image_encoder _a = self.dummy_text_encoder _a = self.dummy_tokenizer _a = self.dummy_image_processor _a = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1_000 , clip_sample=A , clip_sample_range=10.0 , ) _a = { '''prior''': prior, '''image_encoder''': image_encoder, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''scheduler''': scheduler, '''image_processor''': image_processor, } return components def a__ (self , A , A=0 ) -> Optional[int]: """simple docstring""" if str(A ).startswith('''mps''' ): _a = torch.manual_seed(A ) else: _a = torch.Generator(device=A ).manual_seed(A ) _a = { '''prompt''': '''horse''', '''generator''': generator, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = '''cpu''' _a = self.get_dummy_components() _a = self.pipeline_class(**A ) _a = pipe.to(A ) pipe.set_progress_bar_config(disable=A ) _a = pipe(**self.get_dummy_inputs(A ) ) _a = output.image_embeds _a = pipe( **self.get_dummy_inputs(A ) , return_dict=A , )[0] _a = image[0, -10:] _a = image_from_tuple[0, -10:] assert image.shape == (1, 32) _a = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def a__ (self ) -> Optional[int]: """simple docstring""" _a = torch_device == '''cpu''' _a = True _a = False self._test_inference_batch_single_identical( test_max_difference=A , relax_max_difference=A , test_mean_pixel_difference=A , ) @skip_mps def a__ (self ) -> List[str]: """simple docstring""" _a = torch_device == '''cpu''' _a = False self._test_attention_slicing_forward_pass( test_max_difference=A , test_mean_pixel_difference=A , )
715
'''simple docstring''' def lowerCAmelCase (__A): """simple docstring""" _a = set() # To detect a back edge, keep track of vertices currently in the recursion stack _a = set() return any( node not in visited and depth_first_search(__A , __A , __A , __A) for node in graph) def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" visited.add(__A) rec_stk.add(__A) for node in graph[vertex]: if node not in visited: if depth_first_search(__A , __A , __A , __A): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__A) return False if __name__ == "__main__": from doctest import testmod testmod()
352
0
import math def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' if ( not isinstance(__UpperCamelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * power_factor def UpperCAmelCase_ ( _A , _A ): '''simple docstring''' if ( not isinstance(__UpperCamelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('''power_factor must be a valid float value between -1 and 1.''' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
493
def UpperCamelCase( __UpperCamelCase : Any ): if not head: return True # split the list to two parts lowerCAmelCase_ , lowerCAmelCase_ : Any = head.next, head while fast and fast.next: lowerCAmelCase_ : List[Any] = fast.next.next lowerCAmelCase_ : Union[str, Any] = slow.next lowerCAmelCase_ : Union[str, Any] = slow.next lowerCAmelCase_ : List[Any] = None # Don't forget here! But forget still works! # reverse the second part lowerCAmelCase_ : str = None while second: lowerCAmelCase_ : List[str] = second.next lowerCAmelCase_ : List[Any] = node lowerCAmelCase_ : Tuple = second lowerCAmelCase_ : Optional[int] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False lowerCAmelCase_ : Union[str, Any] = node.next lowerCAmelCase_ : str = head.next return True def UpperCamelCase( __UpperCamelCase : str ): if not head or not head.next: return True # 1. Get the midpoint (slow) lowerCAmelCase_ : Any = head while fast and fast.next: lowerCAmelCase_ , lowerCAmelCase_ : List[str] = fast.next.next, slow.next # 2. Push the second half into the stack lowerCAmelCase_ : List[str] = [slow.val] while slow.next: lowerCAmelCase_ : List[str] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False lowerCAmelCase_ : Optional[int] = cur.next return True def UpperCamelCase( __UpperCamelCase : Any ): if not head or not head.next: return True lowerCAmelCase_ : Optional[int] = {} lowerCAmelCase_ : List[Any] = 0 while head: if head.val in d: d[head.val].append(__UpperCamelCase ) else: lowerCAmelCase_ : Tuple = [pos] lowerCAmelCase_ : Tuple = head.next pos += 1 lowerCAmelCase_ : int = pos - 1 lowerCAmelCase_ : int = 0 for v in d.values(): if len(__UpperCamelCase ) % 2 != 0: middle += 1 else: lowerCAmelCase_ : Any = 0 for i in range(0 ,len(__UpperCamelCase ) ): if v[i] + v[len(__UpperCamelCase ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
171
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
702
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ ( A ): """simple docstring""" def __magic_name__ ( self : List[str] ): '''simple docstring''' _lowerCAmelCase : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A_ , "embed_dim" ) ) self.parent.assertTrue(hasattr(A_ , "num_heads" ) ) class A__ : """simple docstring""" def __init__( self : Tuple , A_ : int , A_ : Dict=1_3 , A_ : int=6_4 , A_ : str=3 , A_ : Optional[int]=[1_6, 4_8, 9_6] , A_ : int=[1, 3, 6] , A_ : Optional[int]=[1, 2, 1_0] , A_ : Any=[7, 3, 3] , A_ : Tuple=[4, 2, 2] , A_ : str=[2, 1, 1] , A_ : Optional[Any]=[2, 2, 2] , A_ : Union[str, Any]=[False, False, True] , A_ : Union[str, Any]=[0.0, 0.0, 0.0] , A_ : Any=0.02 , A_ : Optional[int]=1E-12 , A_ : str=True , A_ : List[Any]=True , A_ : Union[str, Any]=2 , ): '''simple docstring''' _lowerCAmelCase : Dict = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : Union[str, Any] = image_size _lowerCAmelCase : Optional[Any] = patch_sizes _lowerCAmelCase : Optional[int] = patch_stride _lowerCAmelCase : List[str] = patch_padding _lowerCAmelCase : str = is_training _lowerCAmelCase : Any = use_labels _lowerCAmelCase : Dict = num_labels _lowerCAmelCase : Tuple = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : List[Any] = num_heads _lowerCAmelCase : Union[str, Any] = stride_kv _lowerCAmelCase : Tuple = depth _lowerCAmelCase : List[str] = cls_token _lowerCAmelCase : Tuple = attention_drop_rate _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : Optional[int] = layer_norm_eps def __magic_name__ ( self : Dict ): '''simple docstring''' _lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : int = None if self.use_labels: # create a random int32 tensor of given shape _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __magic_name__ ( self : Union[str, Any] , A_ : str , A_ : Optional[int] , A_ : str ): '''simple docstring''' _lowerCAmelCase : str = TFCvtModel(config=A_ ) _lowerCAmelCase : str = model(A_ , training=A_ ) _lowerCAmelCase : List[Any] = (self.image_size, self.image_size) _lowerCAmelCase , _lowerCAmelCase : Any = image_size[0], image_size[1] for i in range(len(self.depth ) ): _lowerCAmelCase : Union[str, Any] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _lowerCAmelCase : List[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __magic_name__ ( self : Any , A_ : Tuple , A_ : int , A_ : Any ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.num_labels _lowerCAmelCase : Optional[Any] = TFCvtForImageClassification(A_ ) _lowerCAmelCase : Optional[Any] = model(A_ , labels=A_ , training=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : List[str] ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = config_and_inputs _lowerCAmelCase : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class A__ ( A , A , unittest.TestCase ): """simple docstring""" _lowercase : Any = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () _lowercase : Tuple = ( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) _lowercase : Optional[int] = False _lowercase : Any = False _lowercase : int = False _lowercase : int = False _lowercase : Tuple = False def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' _lowerCAmelCase : List[Any] = TFCvtModelTester(self ) _lowerCAmelCase : Optional[Any] = TFCvtConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=3_7 ) def __magic_name__ ( self : List[Any] ): '''simple docstring''' self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="Cvt does not output attentions" ) def __magic_name__ ( self : str ): '''simple docstring''' pass @unittest.skip(reason="Cvt does not use inputs_embeds" ) def __magic_name__ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="Cvt does not support input and output embeddings" ) def __magic_name__ ( self : int ): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) def __magic_name__ ( self : Dict ): '''simple docstring''' super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("GPU" ) ) == 0 , reason="TF does not support backprop for grouped convolutions on CPU." , ) @slow def __magic_name__ ( self : Dict ): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason="Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8" ) def __magic_name__ ( self : Dict ): '''simple docstring''' _lowerCAmelCase : Optional[int] = tf.keras.mixed_precision.Policy("mixed_float16" ) tf.keras.mixed_precision.set_global_policy(A_ ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("float32" ) def __magic_name__ ( self : str ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Dict = model_class(A_ ) _lowerCAmelCase : Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : List[Any] = [*signature.parameters.keys()] _lowerCAmelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , A_ ) def __magic_name__ ( self : int ): '''simple docstring''' def check_hidden_states_output(A_ : Any , A_ : Any , A_ : Dict ): _lowerCAmelCase : Tuple = model_class(A_ ) _lowerCAmelCase : List[Any] = model(**self._prepare_for_class(A_ , A_ ) ) _lowerCAmelCase : Tuple = outputs.hidden_states _lowerCAmelCase : Optional[Any] = len(self.model_tester.depth ) self.assertEqual(len(A_ ) , A_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Union[str, Any] = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : List[str] = True check_hidden_states_output(A_ , A_ , A_ ) def __magic_name__ ( self : Tuple ): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __magic_name__ ( self : List[str] ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def __magic_name__ ( self : Dict ): '''simple docstring''' for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = TFCvtModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _snake_case ( ) -> Dict: """simple docstring""" _lowerCAmelCase : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def __magic_name__ ( self : str ): '''simple docstring''' return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __magic_name__ ( self : int ): '''simple docstring''' _lowerCAmelCase : Optional[int] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase : int = self.default_image_processor _lowerCAmelCase : Optional[Any] = prepare_img() _lowerCAmelCase : Optional[Any] = image_processor(images=A_ , return_tensors="tf" ) # forward pass _lowerCAmelCase : str = model(**A_ ) # verify the logits _lowerCAmelCase : List[str] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , A_ ) _lowerCAmelCase : Any = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , A_ , atol=1E-4 ) )
503
0
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __snake_case ( ctypes.Structure ): __lowerCAmelCase = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def __lowerCamelCase ( ) ->Optional[Any]: if os.name == "nt": snake_case__ = CursorInfo() snake_case__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) snake_case__ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def __lowerCamelCase ( ) ->Optional[Any]: if os.name == "nt": snake_case__ = CursorInfo() snake_case__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) snake_case__ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def __lowerCamelCase ( ) ->Union[str, Any]: try: hide_cursor() yield finally: show_cursor()
368
"""simple docstring""" import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): A : List[Any] = True from torch.cuda.amp import autocast A : Any = logging.getLogger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : str =field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __UpperCAmelCase : Optional[str] =field( default=lowerCAmelCase__ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) __UpperCAmelCase : Optional[bool] =field( default=lowerCAmelCase__ ,metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) __UpperCAmelCase : Optional[bool] =field( default=lowerCAmelCase__ ,metadata={"""help""": """Whether to log verbose messages or not."""} ,) __UpperCAmelCase : Optional[float] =field( default=2.0 ,metadata={"""help""": """Maximum temperature for gumbel softmax."""} ) __UpperCAmelCase : Optional[float] =field( default=0.5 ,metadata={"""help""": """Minimum temperature for gumbel softmax."""} ) __UpperCAmelCase : Optional[float] =field( default=0.999_995 ,metadata={"""help""": """Decay of gumbel temperature during training."""} ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) __lowerCAmelCase = logging.WARNING if model_args.verbose_logging: __lowerCAmelCase = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): __lowerCAmelCase = logging.INFO logger.setLevel(_UpperCamelCase ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : str =field( default=lowerCAmelCase__ ,metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) __UpperCAmelCase : Optional[str] =field( default=lowerCAmelCase__ ,metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __UpperCAmelCase : Optional[str] =field( default="""train""" ,metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } ,) __UpperCAmelCase : Optional[str] =field( default="""validation""" ,metadata={ """help""": ( """The name of the validation data set split to use (via the datasets library). Defaults to 'validation'""" ) } ,) __UpperCAmelCase : Optional[str] =field( default="""file""" ,metadata={"""help""": """Column in the dataset that contains speech file path. Defaults to 'file'"""} ,) __UpperCAmelCase : bool =field( default=lowerCAmelCase__ ,metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) __UpperCAmelCase : Optional[int] =field( default=1 ,metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } ,) __UpperCAmelCase : Optional[int] =field( default=lowerCAmelCase__ ,metadata={"""help""": """The number of processes to use for the preprocessing."""} ,) __UpperCAmelCase : Optional[float] =field( default=20.0 ,metadata={"""help""": """Filter audio files that are longer than `max_duration_in_seconds` seconds"""} ) @dataclass class _UpperCamelCase : '''simple docstring''' __UpperCAmelCase : WavaVecaForPreTraining __UpperCAmelCase : WavaVecaFeatureExtractor __UpperCAmelCase : Union[bool, str] ="longest" __UpperCAmelCase : Optional[int] =None __UpperCAmelCase : Optional[int] =None def __call__( self , __a ): # reformat list to dict and set to pytorch format __lowerCAmelCase = self.feature_extractor.pad( __a , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) __lowerCAmelCase = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) __lowerCAmelCase = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula __lowerCAmelCase = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) __lowerCAmelCase = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to __lowerCAmelCase = 1 __lowerCAmelCase = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices __lowerCAmelCase = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=__a , min_masks=2 , ) return batch class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , *__a , __a=1 , __a=0 , __a=1.0 , **__a ): super().__init__(*__a , **__a ) __lowerCAmelCase = 0 __lowerCAmelCase = max_gumbel_temp __lowerCAmelCase = min_gumbel_temp __lowerCAmelCase = gumbel_temp_decay def snake_case ( self , __a , __a ): model.train() __lowerCAmelCase = self._prepare_inputs(__a ) if self.use_amp: with autocast(): __lowerCAmelCase = self.compute_loss(__a , __a ) else: __lowerCAmelCase = self.compute_loss(__a , __a ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": __lowerCAmelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __lowerCAmelCase = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']" ) if self.args.gradient_accumulation_steps > 1: __lowerCAmelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__a ).backward() elif self.use_apex: with amp.scale_loss(__a , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__a ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses() configure_logger(_UpperCamelCase , _UpperCamelCase ) # Downloading and loading a dataset from the hub. __lowerCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" __lowerCAmelCase = DatasetDict() __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" __lowerCAmelCase = DatasetDict() __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) __lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported __lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=_UpperCamelCase ) def prepare_dataset(_UpperCamelCase ): # check that all files have the correct sampling rate __lowerCAmelCase , __lowerCAmelCase = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays __lowerCAmelCase = datasets.map( _UpperCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long __lowerCAmelCase = vectorized_datasets.filter( lambda _UpperCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(_UpperCamelCase ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` __lowerCAmelCase = vectorized_datasets.map( _UpperCamelCase , batched=_UpperCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 __lowerCAmelCase = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) __lowerCAmelCase = WavaVecaForPreTraining(_UpperCamelCase ) __lowerCAmelCase = DataCollatorForWavaVecaPretraining(model=_UpperCamelCase , feature_extractor=_UpperCamelCase ) __lowerCAmelCase = WavaVecaPreTrainer( model=_UpperCamelCase , data_collator=_UpperCamelCase , args=_UpperCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=_UpperCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
636
0
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase__ = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } UpperCamelCase__ = { 'Salesforce/codegen-350M-mono': 2048, } class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase: Any = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase: List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase: Tuple = ['input_ids', 'attention_mask'] __lowerCamelCase: Tuple = CodeGenTokenizer def __init__( self : Dict , a : Optional[Any]=None , a : Any=None , a : List[Any]=None , a : int="<|endoftext|>" , a : Optional[Any]="<|endoftext|>" , a : Union[str, Any]="<|endoftext|>" , a : Any=False , **a : Union[str, Any] , ): '''simple docstring''' super().__init__( a , a , tokenizer_file=a , unk_token=a , bos_token=a , eos_token=a , add_prefix_space=a , **a , ) if kwargs.pop("add_bos_token" , a ): lowercase_ : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) lowercase_ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , a ) != add_prefix_space: lowercase_ : List[Any] = getattr(a , pre_tok_state.pop("type" ) ) lowercase_ : Any = add_prefix_space lowercase_ : List[Any] = pre_tok_class(**a ) lowercase_ : int = add_prefix_space def lowerCAmelCase__ ( self : Tuple , *a : List[str] , **a : List[Any] ): '''simple docstring''' lowercase_ : Union[str, Any] = kwargs.get("is_split_into_words" , a ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a , **a ) def lowerCAmelCase__ ( self : Dict , *a : Optional[Any] , **a : Union[str, Any] ): '''simple docstring''' lowercase_ : Dict = kwargs.get("is_split_into_words" , a ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*a , **a ) def lowerCAmelCase__ ( self : Optional[Any] , a : str , a : Optional[str] = None ): '''simple docstring''' lowercase_ : Optional[Any] = self._tokenizer.model.save(a , name=a ) return tuple(a ) def lowerCAmelCase__ ( self : Optional[int] , a : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , a : bool = False , a : bool = None , a : Optional[List[str]] = None , **a : Optional[Any] , ): '''simple docstring''' lowercase_ : Optional[Any] = super().decode( token_ids=a , skip_special_tokens=a , clean_up_tokenization_spaces=a , **a , ) if truncate_before_pattern is not None and len(a ) > 0: lowercase_ : Optional[Any] = self.truncate(a , a ) return decoded_text def lowerCAmelCase__ ( self : Optional[int] , a : str , a : List[Any] ): '''simple docstring''' def find_re(a : Tuple , a : List[str] , a : Optional[int] ): lowercase_ : List[Any] = pattern.search(a , a ) return m.start() if m else -1 lowercase_ : Tuple = [re.compile(a , re.MULTILINE ) for pattern in truncate_before_pattern] lowercase_ : int = list(re.finditer("^print" , a , re.MULTILINE ) ) if len(a ) > 1: lowercase_ : Dict = completion[: prints[1].start()] lowercase_ : Union[str, Any] = list(re.finditer("^def" , a , re.MULTILINE ) ) if len(a ) > 1: lowercase_ : Optional[Any] = completion[: defs[1].start()] lowercase_ : Optional[int] = 0 lowercase_ : Union[str, Any] = [ pos for pos in [find_re(a , a , a ) for terminal in terminals] if pos != -1 ] if len(a ) > 0: return completion[: min(a )] else: return completion
721
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
640
0
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def lowerCAmelCase_ ( lowercase_ : str , lowercase_ : str ): '''simple docstring''' __SCREAMING_SNAKE_CASE : Tuple = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 1024, '''hidden_size''': 768, '''max_length''': 512, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 1024, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1E-5, '''token_type_vocab_size''': 2, } __SCREAMING_SNAKE_CASE : Optional[int] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __SCREAMING_SNAKE_CASE : Dict = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=lowercase_ , output_all_encodings=lowercase_ , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , lowercase_ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __SCREAMING_SNAKE_CASE : Tuple = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab __SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(get_home_dir() , '''models''' ) __SCREAMING_SNAKE_CASE : Dict = _load_vocab(lowercase_ , lowercase_ , lowercase_ , cls=lowercase_ ) __SCREAMING_SNAKE_CASE : List[Any] = nlp.model.BERTModel( lowercase_ , len(lowercase_ ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=lowercase_ , use_token_type_embed=lowercase_ , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=lowercase_ , use_decoder=lowercase_ , ) original_bort.load_parameters(lowercase_ , cast_dtype=lowercase_ , ignore_extra=lowercase_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = original_bort._collect_params_with_prefix() # Build our config 🤗 __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(lowercase_ ), } __SCREAMING_SNAKE_CASE : Optional[Any] = BertConfig.from_dict(lowercase_ ) __SCREAMING_SNAKE_CASE : Optional[int] = BertForMaskedLM(lowercase_ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowercase_ : Union[str, Any] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ): __SCREAMING_SNAKE_CASE : Optional[int] = hf_param.shape __SCREAMING_SNAKE_CASE : List[Any] = to_torch(params[gluon_param] ) __SCREAMING_SNAKE_CASE : Tuple = gluon_param.shape assert ( shape_hf == shape_gluon ), F'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param __SCREAMING_SNAKE_CASE : Optional[int] = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) __SCREAMING_SNAKE_CASE : List[Any] = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) __SCREAMING_SNAKE_CASE : Any = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __SCREAMING_SNAKE_CASE : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention __SCREAMING_SNAKE_CASE : BertSelfAttention = layer.attention.self __SCREAMING_SNAKE_CASE : str = check_and_map_params( self_attn.key.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) __SCREAMING_SNAKE_CASE : Optional[int] = check_and_map_params( self_attn.key.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) __SCREAMING_SNAKE_CASE : int = check_and_map_params( self_attn.query.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) __SCREAMING_SNAKE_CASE : Optional[int] = check_and_map_params( self_attn.query.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) __SCREAMING_SNAKE_CASE : int = check_and_map_params( self_attn.value.bias.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) __SCREAMING_SNAKE_CASE : List[Any] = check_and_map_params( self_attn.value.weight.data , F'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output __SCREAMING_SNAKE_CASE : BertSelfOutput = layer.attention.output __SCREAMING_SNAKE_CASE : Any = check_and_map_params( self_output.dense.bias , F'''encoder.transformer_cells.{i}.proj.bias''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = check_and_map_params( self_output.dense.weight , F'''encoder.transformer_cells.{i}.proj.weight''' ) __SCREAMING_SNAKE_CASE : Any = check_and_map_params( self_output.LayerNorm.bias , F'''encoder.transformer_cells.{i}.layer_norm.beta''' ) __SCREAMING_SNAKE_CASE : Tuple = check_and_map_params( self_output.LayerNorm.weight , F'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate __SCREAMING_SNAKE_CASE : BertIntermediate = layer.intermediate __SCREAMING_SNAKE_CASE : Optional[Any] = check_and_map_params( intermediate.dense.bias , F'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = check_and_map_params( intermediate.dense.weight , F'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output __SCREAMING_SNAKE_CASE : BertOutput = layer.output __SCREAMING_SNAKE_CASE : str = check_and_map_params( bert_output.dense.bias , F'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) __SCREAMING_SNAKE_CASE : Optional[int] = check_and_map_params( bert_output.dense.weight , F'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) __SCREAMING_SNAKE_CASE : Dict = check_and_map_params( bert_output.LayerNorm.bias , F'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) __SCREAMING_SNAKE_CASE : List[str] = check_and_map_params( bert_output.LayerNorm.weight , F'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __SCREAMING_SNAKE_CASE : Optional[int] = RobertaTokenizer.from_pretrained('''roberta-base''' ) __SCREAMING_SNAKE_CASE : int = tokenizer.encode_plus(lowercase_ )['''input_ids'''] # Get gluon output __SCREAMING_SNAKE_CASE : Any = mx.nd.array([input_ids] ) __SCREAMING_SNAKE_CASE : Optional[Any] = original_bort(inputs=lowercase_ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowercase_ ) __SCREAMING_SNAKE_CASE : str = BertModel.from_pretrained(lowercase_ ) hf_bort_model.eval() __SCREAMING_SNAKE_CASE : Dict = tokenizer.encode_plus(lowercase_ , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : List[Any] = hf_bort_model(**lowercase_ )[0] __SCREAMING_SNAKE_CASE : str = output_gluon[0].asnumpy() __SCREAMING_SNAKE_CASE : int = output_hf[0].detach().numpy() __SCREAMING_SNAKE_CASE : Union[str, Any] = np.max(np.abs(hf_layer - gluon_layer ) ).item() __SCREAMING_SNAKE_CASE : Tuple = np.allclose(lowercase_ , lowercase_ , atol=1E-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , lowercase_ ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCamelCase = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
674
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class snake_case ( __UpperCAmelCase ): lowerCamelCase__ = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) lowerCamelCase__ = '''CIDAS/clipseg-rd64-refined''' lowerCamelCase__ = '''image_segmenter''' lowerCamelCase__ = CLIPSegForImageSegmentation lowerCamelCase__ = ['''image''', '''text'''] lowerCamelCase__ = ['''image'''] def __init__( self :Dict , *_lowerCamelCase :Union[str, Any] , **_lowerCamelCase :Tuple ): requires_backends(self , ['''vision'''] ) super().__init__(*_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Tuple , _lowerCamelCase :"Image" , _lowerCamelCase :str ): return self.pre_processor(text=[label] , images=[image] , padding=_lowerCamelCase , return_tensors='''pt''' ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] , _lowerCamelCase :Optional[int] ): with torch.no_grad(): __SCREAMING_SNAKE_CASE : List[Any] = self.model(**_lowerCamelCase ).logits return logits def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , _lowerCamelCase :Tuple ): __SCREAMING_SNAKE_CASE : Optional[int] = outputs.cpu().detach().numpy() __SCREAMING_SNAKE_CASE : str = 0 __SCREAMING_SNAKE_CASE : str = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta ) )
674
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging _snake_case : Any = logging.get_logger(__name__) _snake_case : int = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class lowerCAmelCase ( __UpperCAmelCase ): a : Tuple = """trajectory_transformer""" a : Dict = ["""past_key_values"""] a : Any = { """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , UpperCamelCase=100 , UpperCamelCase=5 , UpperCamelCase=1 , UpperCamelCase=1 , UpperCamelCase=249 , UpperCamelCase=6 , UpperCamelCase=17 , UpperCamelCase=25 , UpperCamelCase=4 , UpperCamelCase=4 , UpperCamelCase=128 , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.00_06 , UpperCamelCase=512 , UpperCamelCase=0.02 , UpperCamelCase=1e-12 , UpperCamelCase=1 , UpperCamelCase=True , UpperCamelCase=1 , UpperCamelCase=50_256 , UpperCamelCase=50_256 , **UpperCamelCase , ): _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = action_weight _SCREAMING_SNAKE_CASE = reward_weight _SCREAMING_SNAKE_CASE = value_weight _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = block_size _SCREAMING_SNAKE_CASE = action_dim _SCREAMING_SNAKE_CASE = observation_dim _SCREAMING_SNAKE_CASE = transition_dim _SCREAMING_SNAKE_CASE = learning_rate _SCREAMING_SNAKE_CASE = n_layer _SCREAMING_SNAKE_CASE = n_head _SCREAMING_SNAKE_CASE = n_embd _SCREAMING_SNAKE_CASE = embd_pdrop _SCREAMING_SNAKE_CASE = attn_pdrop _SCREAMING_SNAKE_CASE = resid_pdrop _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = layer_norm_eps _SCREAMING_SNAKE_CASE = kaiming_initializer_range _SCREAMING_SNAKE_CASE = use_cache super().__init__(pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase )
493
'''simple docstring''' import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging _snake_case : Optional[int] = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) _snake_case : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def _a ( ): _SCREAMING_SNAKE_CASE = "https://pypi.org/pypi/diffusers/json" _SCREAMING_SNAKE_CASE = json.loads(request.urlopen(_SCREAMING_SNAKE_CASE ).read() )["releases"].keys() return sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : version.Version(_SCREAMING_SNAKE_CASE ) ) def _a ( ): # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(_SCREAMING_SNAKE_CASE ) os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = Path(_SCREAMING_SNAKE_CASE ) / "__init__.py" if not init_path.exists(): init_path.touch() def _a ( _SCREAMING_SNAKE_CASE : Union[str, os.PathLike] ): init_hf_modules() _SCREAMING_SNAKE_CASE = Path(_SCREAMING_SNAKE_CASE ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def _a ( _SCREAMING_SNAKE_CASE : Optional[Any] ): with open(_SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" ) as f: _SCREAMING_SNAKE_CASE = f.read() # Imports of the form `import .xxx` _SCREAMING_SNAKE_CASE = re.findall("^\s*import\s+\.(\S+)\s*$" , _SCREAMING_SNAKE_CASE , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("^\s*from\s+\.(\S+)\s+import" , _SCREAMING_SNAKE_CASE , flags=re.MULTILINE ) # Unique-ify return list(set(_SCREAMING_SNAKE_CASE ) ) def _a ( _SCREAMING_SNAKE_CASE : List[str] ): _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = [module_file] _SCREAMING_SNAKE_CASE = [] # Let's recurse through all relative imports while not no_change: _SCREAMING_SNAKE_CASE = [] for f in files_to_check: new_imports.extend(get_relative_imports(_SCREAMING_SNAKE_CASE ) ) _SCREAMING_SNAKE_CASE = Path(_SCREAMING_SNAKE_CASE ).parent _SCREAMING_SNAKE_CASE = [str(module_path / m ) for m in new_imports] _SCREAMING_SNAKE_CASE = [f for f in new_import_files if f not in all_relative_imports] _SCREAMING_SNAKE_CASE = [F'{f}.py' for f in new_import_files] _SCREAMING_SNAKE_CASE = len(_SCREAMING_SNAKE_CASE ) == 0 all_relative_imports.extend(_SCREAMING_SNAKE_CASE ) return all_relative_imports def _a ( _SCREAMING_SNAKE_CASE : str ): with open(_SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" ) as f: _SCREAMING_SNAKE_CASE = f.read() # Imports of the form `import xxx` _SCREAMING_SNAKE_CASE = re.findall("^\s*import\s+(\S+)\s*$" , _SCREAMING_SNAKE_CASE , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("^\s*from\s+(\S+)\s+import" , _SCREAMING_SNAKE_CASE , flags=re.MULTILINE ) # Only keep the top-level module _SCREAMING_SNAKE_CASE = [imp.split("." )[0] for imp in imports if not imp.startswith("." )] # Unique-ify and test we got them all _SCREAMING_SNAKE_CASE = list(set(_SCREAMING_SNAKE_CASE ) ) _SCREAMING_SNAKE_CASE = [] for imp in imports: try: importlib.import_module(_SCREAMING_SNAKE_CASE ) except ImportError: missing_packages.append(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: raise ImportError( "This modeling file requires the following packages that were not found in your environment: " F'{", ".join(_SCREAMING_SNAKE_CASE )}. Run `pip install {" ".join(_SCREAMING_SNAKE_CASE )}`' ) return get_relative_imports(_SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : int ): _SCREAMING_SNAKE_CASE = module_path.replace(os.path.sep , "." ) _SCREAMING_SNAKE_CASE = importlib.import_module(_SCREAMING_SNAKE_CASE ) if class_name is None: return find_pipeline_class(_SCREAMING_SNAKE_CASE ) return getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE : List[Any] ): from ..pipelines import DiffusionPipeline _SCREAMING_SNAKE_CASE = dict(inspect.getmembers(_SCREAMING_SNAKE_CASE , inspect.isclass ) ) _SCREAMING_SNAKE_CASE = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , _SCREAMING_SNAKE_CASE ) and cls.__module__.split("." )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) _SCREAMING_SNAKE_CASE = cls return pipeline_class def _a ( _SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] = None , _SCREAMING_SNAKE_CASE : bool = False , _SCREAMING_SNAKE_CASE : bool = False , _SCREAMING_SNAKE_CASE : Optional[Dict[str, str]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[bool, str]] = None , _SCREAMING_SNAKE_CASE : Optional[str] = None , _SCREAMING_SNAKE_CASE : bool = False , ): _SCREAMING_SNAKE_CASE = str(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if os.path.isfile(_SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE = module_file_or_url _SCREAMING_SNAKE_CASE = "local" elif pretrained_model_name_or_path.count("/" ) == 0: _SCREAMING_SNAKE_CASE = get_diffusers_versions() # cut ".dev0" _SCREAMING_SNAKE_CASE = "v" + ".".join(__version__.split("." )[:3] ) # retrieve github version that matches if revision is None: _SCREAMING_SNAKE_CASE = latest_version if latest_version[1:] in available_versions else "main" logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: _SCREAMING_SNAKE_CASE = F'v{revision}' elif revision == "main": _SCREAMING_SNAKE_CASE = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub _SCREAMING_SNAKE_CASE = COMMUNITY_PIPELINES_URL.format(revision=_SCREAMING_SNAKE_CASE , pipeline=_SCREAMING_SNAKE_CASE ) try: _SCREAMING_SNAKE_CASE = cached_download( _SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , proxies=_SCREAMING_SNAKE_CASE , resume_download=_SCREAMING_SNAKE_CASE , local_files_only=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , ) _SCREAMING_SNAKE_CASE = "git" _SCREAMING_SNAKE_CASE = pretrained_model_name_or_path + ".py" except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached _SCREAMING_SNAKE_CASE = hf_hub_download( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , proxies=_SCREAMING_SNAKE_CASE , resume_download=_SCREAMING_SNAKE_CASE , local_files_only=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , ) _SCREAMING_SNAKE_CASE = os.path.join("local" , "--".join(pretrained_model_name_or_path.split("/" ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment _SCREAMING_SNAKE_CASE = check_imports(_SCREAMING_SNAKE_CASE ) # Now we move the module inside our cached dynamic modules. _SCREAMING_SNAKE_CASE = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = Path(_SCREAMING_SNAKE_CASE ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(_SCREAMING_SNAKE_CASE , submodule_path / module_file ) for module_needed in modules_needed: _SCREAMING_SNAKE_CASE = F'{module_needed}.py' shutil.copy(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE = use_auth_token elif use_auth_token is True: _SCREAMING_SNAKE_CASE = HfFolder.get_token() else: _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = model_info(_SCREAMING_SNAKE_CASE , revision=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. _SCREAMING_SNAKE_CASE = submodule_path / commit_hash _SCREAMING_SNAKE_CASE = full_submodule + os.path.sep + commit_hash create_dynamic_module(_SCREAMING_SNAKE_CASE ) if not (submodule_path / module_file).exists(): shutil.copy(_SCREAMING_SNAKE_CASE , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( _SCREAMING_SNAKE_CASE , F'{module_needed}.py' , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , resume_download=_SCREAMING_SNAKE_CASE , proxies=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , revision=_SCREAMING_SNAKE_CASE , local_files_only=_SCREAMING_SNAKE_CASE , ) return os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[str] = None , _SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] = None , _SCREAMING_SNAKE_CASE : bool = False , _SCREAMING_SNAKE_CASE : bool = False , _SCREAMING_SNAKE_CASE : Optional[Dict[str, str]] = None , _SCREAMING_SNAKE_CASE : Optional[Union[bool, str]] = None , _SCREAMING_SNAKE_CASE : Optional[str] = None , _SCREAMING_SNAKE_CASE : bool = False , **_SCREAMING_SNAKE_CASE : Tuple , ): _SCREAMING_SNAKE_CASE = get_cached_module_file( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , force_download=_SCREAMING_SNAKE_CASE , resume_download=_SCREAMING_SNAKE_CASE , proxies=_SCREAMING_SNAKE_CASE , use_auth_token=_SCREAMING_SNAKE_CASE , revision=_SCREAMING_SNAKE_CASE , local_files_only=_SCREAMING_SNAKE_CASE , ) return get_class_in_module(_SCREAMING_SNAKE_CASE , final_module.replace(".py" , "" ) )
493
1
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 3 , __lowerCAmelCase = 7 , __lowerCAmelCase = 100_0000 ) -> Optional[Any]: snake_case__ = 0 snake_case__ = 1 for current_denominator in range(1 , limit + 1 ): snake_case__ = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: snake_case__ = current_numerator snake_case__ = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1_0_0_0_0_0_0))
33
from math import sqrt def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(UpperCamelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __lowerCamelCase ( UpperCamelCase__ = 10001 ): '''simple docstring''' snake_case_ = 0 snake_case_ = 1 while count != nth and number < 3: number += 1 if is_prime(UpperCamelCase__ ): count += 1 while count != nth: number += 2 if is_prime(UpperCamelCase__ ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
362
0
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right UpperCAmelCase_ : Union[str, Any] = 50003 UpperCAmelCase_ : str = 50002 @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = PLBartTokenizer __UpperCamelCase = None __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE_ : Tuple = PLBartTokenizer(lowercase_ , language_codes='''base''' , keep_accents=lowercase_) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = PLBartTokenizer(lowercase_ , language_codes='''base''' , keep_accents=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.tokenize('''This is a test''') self.assertListEqual(lowercase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.convert_tokens_to_ids(lowercase_) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.convert_ids_to_tokens(lowercase_) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = [tokenizer.convert_ids_to_tokens(lowercase_) for x in range(end - 4 , lowercase_)] self.assertListEqual(lowercase_ , ['''__java__''', '''__python__''', '''__en_XX__''', '''<mask>''']) SCREAMING_SNAKE_CASE_ : Optional[Any] = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' SCREAMING_SNAKE_CASE_ : List[str] = tokenizer(lowercase_).input_ids self.assertEqual( tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_) , lowercase_ , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = PLBartTokenizer(lowercase_ , language_codes='''multi''' , keep_accents=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.tokenize('''This is a test''') self.assertListEqual(lowercase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase_) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.convert_tokens_to_ids(lowercase_) self.assertListEqual( lowercase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.convert_ids_to_tokens(lowercase_) self.assertListEqual( lowercase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.vocab_size SCREAMING_SNAKE_CASE_ : List[Any] = [tokenizer.convert_ids_to_tokens(lowercase_) for x in range(end - 7 , lowercase_)] self.assertListEqual( lowercase_ , ['''__java__''', '''__python__''', '''__en_XX__''', '''__javascript__''', '''__php__''', '''__ruby__''', '''__go__''']) SCREAMING_SNAKE_CASE_ : Dict = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer(lowercase_).input_ids self.assertEqual( tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_) , lowercase_ , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = "uclanlp/plbart-python-en_XX" __UpperCamelCase = [ "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])", "def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])", ] __UpperCamelCase = [ "Returns the maximum value of a b c.", "Sums the values of a b c.", ] __UpperCamelCase = [ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='''base''' , src_lang='''python''' , tgt_lang='''en_XX''') SCREAMING_SNAKE_CASE_ : int = 1 return cls def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__java__'''] , 50001) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__python__'''] , 50002) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__en_XX__'''] , 50003) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' self.assertIn(lowercase_ , self.tokenizer.all_special_ids) SCREAMING_SNAKE_CASE_ : str = [EN_CODE, 9037, 33442, 57, 752, 153, 14, 56, 18, 9, 2] SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer.decode(lowercase_ , skip_special_tokens=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase_) self.assertEqual(lowercase_ , lowercase_) self.assertNotIn(self.tokenizer.eos_token , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = ['''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''' * 20] self.assertIsInstance(src_text[0] , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 10 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tokenizer(lowercase_ , max_length=lowercase_ , truncation=lowercase_).input_ids[0] self.assertEqual(ids[-2] , 2) self.assertEqual(ids[-1] , lowercase_) self.assertEqual(len(lowercase_) , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''__java__''']) , [50004, 50001]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : List[str] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : int = PLBartTokenizer.from_pretrained(lowercase_) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase_) @require_torch def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase_ , return_tensors='''pt''') SCREAMING_SNAKE_CASE_ : List[str] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE]) self.assertEqual(batch.decoder_input_ids[1][0] , lowercase_) self.assertEqual(batch.decoder_input_ids[1][-1] , 2) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE]) @require_torch def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=len(self.expected_src_tokens) , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE_ : str = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id) self.assertIsInstance(lowercase_ , lowercase_) self.assertEqual((2, 26) , batch.input_ids.shape) self.assertEqual((2, 26) , batch.attention_mask.shape) SCREAMING_SNAKE_CASE_ : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase_) self.assertEqual(2 , batch.decoder_input_ids[0, -1]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , []) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE]) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self.tokenizer(self.src_text , padding=lowercase_ , truncation=lowercase_ , max_length=3 , return_tensors='''pt''') SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer( text_target=self.tgt_text , padding=lowercase_ , truncation=lowercase_ , max_length=10 , return_tensors='''pt''') SCREAMING_SNAKE_CASE_ : int = targets['''input_ids'''] SCREAMING_SNAKE_CASE_ : List[Any] = shift_tokens_right(lowercase_ , self.tokenizer.pad_token_id) self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.decoder_input_ids.shape[1] , 10) @require_torch def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''java''') self.assertEqual( nested_simplify(lowercase_) , { # A, test, EOS, en_XX '''input_ids''': [[150, 242, 2, 50003]], '''attention_mask''': [[1, 1, 1, 1]], # java '''forced_bos_token_id''': 50001, } , )
176
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def _A (__a ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = {} SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer(example['''content'''] , truncation=__a )['''input_ids'''] SCREAMING_SNAKE_CASE_ : List[Any] = len(example['''content'''] ) / len(output['''input_ids'''] ) return output UpperCAmelCase_ : Tuple = HfArgumentParser(PretokenizationArguments) UpperCAmelCase_ : Tuple = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : Tuple = multiprocessing.cpu_count() UpperCAmelCase_ : str = AutoTokenizer.from_pretrained(args.tokenizer_dir) UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : List[Any] = load_dataset(args.dataset_name, split="""train""") print(f'''Dataset loaded in {time.time()-t_start:.2f}s''') UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : Dict = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ """repo_name""", """path""", """copies""", """size""", """content""", """license""", """hash""", """line_mean""", """line_max""", """alpha_frac""", """autogenerated""", ], ) print(f'''Dataset tokenized in {time.time()-t_start:.2f}s''') UpperCAmelCase_ : str = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
176
1
import os def __magic_name__ ( ): '''simple docstring''' with open(os.path.dirname(__a ) + """/p022_names.txt""" ) as file: UpperCamelCase__ = str(file.readlines()[0] ) UpperCamelCase__ = names.replace("""\"""" , """""" ).split(""",""" ) names.sort() UpperCamelCase__ = 0 UpperCamelCase__ = 0 for i, name in enumerate(__a ): for letter in name: name_score += ord(__a ) - 64 total_score += (i + 1) * name_score UpperCamelCase__ = 0 return total_score if __name__ == "__main__": print(solution())
513
def __magic_name__ ( __a : list[int] ): '''simple docstring''' UpperCamelCase__ = len(__a ) for i in range(__a ): for j in range(i + 1 , __a ): if numbers[j] < numbers[i]: UpperCamelCase__ , UpperCamelCase__ = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowerCamelCase_ = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase_ = [int(item) for item in user_input.split(''',''')] print(exchange_sort(unsorted))
513
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin __A = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class _lowerCAmelCase ( unittest.TestCase , a ): """simple docstring""" def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = load_tool('text-question-answering' ) self.tool.setup() lowerCAmelCase__ :Tuple = load_tool('text-question-answering' , remote=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = self.tool(__UpperCAmelCase , 'What did Hugging Face do in April 2021?' ) self.assertEqual(__UpperCAmelCase , 'launched the BigScience Research Workshop' ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.remote_tool(__UpperCAmelCase , 'What did Hugging Face do in April 2021?' ) self.assertEqual(__UpperCAmelCase , 'launched the BigScience Research Workshop' ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.tool(text=__UpperCAmelCase , question='What did Hugging Face do in April 2021?' ) self.assertEqual(__UpperCAmelCase , 'launched the BigScience Research Workshop' ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = self.remote_tool(text=__UpperCAmelCase , question='What did Hugging Face do in April 2021?' ) self.assertEqual(__UpperCAmelCase , 'launched the BigScience Research Workshop' )
560
"""simple docstring""" class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = None lowerCAmelCase__ :List[str] = None lowerCAmelCase__ :Optional[int] = graph self._normalize_graph(__UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ :Dict = len(__UpperCAmelCase ) lowerCAmelCase__ :str = None def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if sources is int: lowerCAmelCase__ :List[str] = [sources] if sinks is int: lowerCAmelCase__ :Optional[Any] = [sinks] if len(__UpperCAmelCase ) == 0 or len(__UpperCAmelCase ) == 0: return lowerCAmelCase__ :List[str] = sources[0] lowerCAmelCase__ :List[str] = sinks[0] # make fake vertex if there are more # than one source or sink if len(__UpperCAmelCase ) > 1 or len(__UpperCAmelCase ) > 1: lowerCAmelCase__ :Tuple = 0 for i in sources: max_input_flow += sum(self.graph[i] ) lowerCAmelCase__ :List[str] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: lowerCAmelCase__ :Any = max_input_flow lowerCAmelCase__ :Optional[Any] = 0 lowerCAmelCase__ :Optional[int] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: lowerCAmelCase__ :Optional[int] = max_input_flow lowerCAmelCase__ :Tuple = size - 1 def snake_case ( self ): '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :str = algorithm(self ) class _lowerCAmelCase : """simple docstring""" def __init__( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :List[str] = flow_network lowerCAmelCase__ :List[Any] = flow_network.verticesCount lowerCAmelCase__ :Optional[Any] = flow_network.sourceIndex lowerCAmelCase__ :Tuple = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that lowerCAmelCase__ :Optional[int] = flow_network.graph lowerCAmelCase__ :List[str] = False def snake_case ( self ): '''simple docstring''' if not self.executed: self._algorithm() lowerCAmelCase__ :List[Any] = True def snake_case ( self ): '''simple docstring''' pass class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase ) # use this to save your result lowerCAmelCase__ :Dict = -1 def snake_case ( self ): '''simple docstring''' if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , __UpperCAmelCase ): '''simple docstring''' super().__init__(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = [[0] * self.verticies_count for i in range(self.verticies_count )] lowerCAmelCase__ :int = [0] * self.verticies_count lowerCAmelCase__ :str = [0] * self.verticies_count def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule lowerCAmelCase__ :str = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list lowerCAmelCase__ :int = 0 while i < len(__UpperCAmelCase ): lowerCAmelCase__ :Tuple = vertices_list[i] lowerCAmelCase__ :List[Any] = self.heights[vertex_index] self.process_vertex(__UpperCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(__UpperCAmelCase ) ) lowerCAmelCase__ :int = 0 else: i += 1 lowerCAmelCase__ :Tuple = sum(self.preflow[self.source_index] ) def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(__UpperCAmelCase , __UpperCAmelCase ) self.relabel(__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Dict = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): lowerCAmelCase__ :Any = self.heights[to_index] if min_height is not None: lowerCAmelCase__ :Any = min_height + 1 if __name__ == "__main__": __A = [0] __A = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __A = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __A = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __A = flow_network.find_maximum_flow() print(F'''maximum flow is {maximum_flow}''')
560
1
import re import string import numpy as np import datasets __lowerCAmelCase : Dict ='\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __lowerCAmelCase : str ='\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __lowerCAmelCase : Optional[Any] ='\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Dict ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def __magic_name__( self :Tuple , lowerCAmelCase__ :int , lowerCAmelCase__ :str , lowerCAmelCase__ :str=None , lowerCAmelCase__ :List[Any]=False , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :Optional[int]=False , ) -> Optional[int]: if regexes_to_ignore is not None: for s in regexes_to_ignore: __SCREAMING_SNAKE_CASE : Tuple = np.array([re.sub(lowerCAmelCase__ , '''''' , lowerCAmelCase__ ) for x in predictions] ) __SCREAMING_SNAKE_CASE : Dict = np.array([re.sub(lowerCAmelCase__ , '''''' , lowerCAmelCase__ ) for x in references] ) else: __SCREAMING_SNAKE_CASE : Any = np.asarray(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = np.asarray(lowerCAmelCase__ ) if ignore_case: __SCREAMING_SNAKE_CASE : Any = np.char.lower(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.char.lower(lowerCAmelCase__ ) if ignore_punctuation: __SCREAMING_SNAKE_CASE : str = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) __SCREAMING_SNAKE_CASE : List[str] = np.char.translate(lowerCAmelCase__ , table=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = np.char.translate(lowerCAmelCase__ , table=lowerCAmelCase__ ) if ignore_numbers: __SCREAMING_SNAKE_CASE : Union[str, Any] = string.digits.maketrans('''''' , '''''' , string.digits ) __SCREAMING_SNAKE_CASE : str = np.char.translate(lowerCAmelCase__ , table=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = np.char.translate(lowerCAmelCase__ , table=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = predictions == references return {"exact_match": np.mean(lowerCAmelCase__ ) * 100}
696
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ={ 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = '''switch_transformers''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''past_key_values'''] SCREAMING_SNAKE_CASE__ : str = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self :Optional[int] , lowerCAmelCase__ :Union[str, Any]=32_128 , lowerCAmelCase__ :int=768 , lowerCAmelCase__ :Optional[Any]=64 , lowerCAmelCase__ :List[str]=2_048 , lowerCAmelCase__ :Optional[int]=64 , lowerCAmelCase__ :Union[str, Any]=12 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :Tuple=12 , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Optional[int]=12 , lowerCAmelCase__ :Optional[Any]=8 , lowerCAmelCase__ :Tuple=False , lowerCAmelCase__ :List[Any]=0.01 , lowerCAmelCase__ :Any="float32" , lowerCAmelCase__ :int=False , lowerCAmelCase__ :int=32 , lowerCAmelCase__ :Optional[Any]=128 , lowerCAmelCase__ :Optional[Any]=0.1 , lowerCAmelCase__ :str=1E-6 , lowerCAmelCase__ :Tuple=0.001 , lowerCAmelCase__ :List[Any]=0.001 , lowerCAmelCase__ :Union[str, Any]=1.0 , lowerCAmelCase__ :Tuple="relu" , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[Any]=0 , lowerCAmelCase__ :Union[str, Any]=1 , **lowerCAmelCase__ :List[str] , ) -> Tuple: __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Optional[int] = d_kv __SCREAMING_SNAKE_CASE : Tuple = d_ff __SCREAMING_SNAKE_CASE : Tuple = num_sparse_encoder_layers __SCREAMING_SNAKE_CASE : List[Any] = num_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __SCREAMING_SNAKE_CASE : Optional[Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __SCREAMING_SNAKE_CASE : List[Any] = self.num_layers // self.num_sparse_encoder_layers else: __SCREAMING_SNAKE_CASE : Tuple = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: __SCREAMING_SNAKE_CASE : Dict = self.num_decoder_layers # HACK: this will create 0 sparse layers __SCREAMING_SNAKE_CASE : List[Any] = num_heads __SCREAMING_SNAKE_CASE : List[Any] = num_experts __SCREAMING_SNAKE_CASE : Tuple = expert_capacity __SCREAMING_SNAKE_CASE : List[Any] = router_bias __SCREAMING_SNAKE_CASE : Optional[Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) __SCREAMING_SNAKE_CASE : List[Any] = router_dtype __SCREAMING_SNAKE_CASE : Optional[Any] = router_ignore_padding_tokens __SCREAMING_SNAKE_CASE : int = relative_attention_num_buckets __SCREAMING_SNAKE_CASE : Any = relative_attention_max_distance __SCREAMING_SNAKE_CASE : Union[str, Any] = dropout_rate __SCREAMING_SNAKE_CASE : Dict = layer_norm_epsilon __SCREAMING_SNAKE_CASE : int = initializer_factor __SCREAMING_SNAKE_CASE : List[str] = feed_forward_proj __SCREAMING_SNAKE_CASE : Any = use_cache __SCREAMING_SNAKE_CASE : Union[str, Any] = add_router_probs __SCREAMING_SNAKE_CASE : int = router_z_loss_coef __SCREAMING_SNAKE_CASE : List[str] = router_aux_loss_coef __SCREAMING_SNAKE_CASE : Dict = self.feed_forward_proj.split('''-''' ) __SCREAMING_SNAKE_CASE : Optional[int] = act_info[-1] __SCREAMING_SNAKE_CASE : Optional[Any] = act_info[0] == '''gated''' if len(lowerCAmelCase__ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase__ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __SCREAMING_SNAKE_CASE : List[Any] = '''gelu_new''' super().__init__( pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ , )
696
1
"""simple docstring""" import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) a_ = parser.parse_args() a_ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) a_ = CLIPImageProcessor() a_ = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') a_ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
48
"""simple docstring""" from manim import * class __lowercase ( _UpperCAmelCase): """simple docstring""" def __UpperCamelCase (self ): snake_case_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) snake_case_ : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : str = [mem.copy() for i in range(6 )] snake_case_ : str = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Any = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = VGroup(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[Any] = Text("""CPU""" , font_size=24 ) snake_case_ : Tuple = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowercase__ ) snake_case_ : List[Any] = [mem.copy() for i in range(4 )] snake_case_ : Tuple = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : List[str] = Text("""GPU""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) gpu.move_to([-1, -1, 0] ) self.add(lowercase__ ) snake_case_ : Optional[Any] = [mem.copy() for i in range(6 )] snake_case_ : List[Any] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : Dict = Text("""Model""" , font_size=24 ) snake_case_ : int = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , buff=0.5 , aligned_edge=lowercase__ ) model.move_to([3, -1.0, 0] ) self.add(lowercase__ ) snake_case_ : Dict = [] for i, rect in enumerate(lowercase__ ): rect.set_stroke(lowercase__ ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) snake_case_ : List[str] = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(lowercase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=lowercase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=lowercase__ , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=lowercase__ , buff=0.0 ) self.add(lowercase__ ) cpu_targs.append(lowercase__ ) snake_case_ : List[str] = [mem.copy() for i in range(6 )] snake_case_ : List[str] = VGroup(*lowercase__ ).arrange(lowercase__ , buff=0 ) snake_case_ : str = Text("""Loaded Checkpoint""" , font_size=24 ) snake_case_ : Any = Group(lowercase__ , lowercase__ ).arrange(lowercase__ , aligned_edge=lowercase__ , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) snake_case_ : Optional[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case_ : Union[str, Any] = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowercase__ , lowercase__ ) snake_case_ : List[Any] = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) snake_case_ : List[Any] = MarkupText( f'Next, a <i><span fgcolor="{BLUE}">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor="{BLUE}">single shard</span>.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowercase__ ) , Write(lowercase__ ) ) self.play(Write(lowercase__ , run_time=1 ) , Create(lowercase__ , run_time=1 ) ) snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] for i, rect in enumerate(lowercase__ ): snake_case_ : Optional[Any] = fill.copy().set_fill(lowercase__ , opacity=0.7 ) target.move_to(lowercase__ ) first_animations.append(GrowFromCenter(lowercase__ , run_time=1 ) ) snake_case_ : List[Any] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(lowercase__ , run_time=1.5 ) ) self.play(*lowercase__ ) self.play(*lowercase__ ) self.wait()
48
1
from typing import Any def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not input_list: return [] UpperCAmelCase_ : Any = [input_list.count(_lowercase ) for value in input_list] UpperCAmelCase_ : Dict = max(_lowercase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(_lowercase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
30
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor snake_case__ = logging.get_logger(__name__) class UpperCAmelCase ( __lowerCamelCase ): def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any] ): warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase )
583
0
from math import pow, sqrt def _SCREAMING_SNAKE_CASE ( *_lowerCamelCase : float) -> bool: '''simple docstring''' __UpperCamelCase : Tuple = len(_lowerCamelCase) > 0 and all(value > 0.0 for value in values) return result def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : float , _lowerCamelCase : float) -> float | ValueError: '''simple docstring''' return ( round(sqrt(molar_mass_a / molar_mass_a) , 6) if validate(_lowerCamelCase , _lowerCamelCase) else ValueError("Input Error: Molar mass values must greater than 0.") ) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float) -> float | ValueError: '''simple docstring''' return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a) , 6) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0.") ) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float) -> float | ValueError: '''simple docstring''' return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a) , 6) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0.") ) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float) -> float | ValueError: '''simple docstring''' return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2) , 6) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0.") ) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float) -> float | ValueError: '''simple docstring''' return ( round(pow(effusion_rate_a / effusion_rate_a , 2) / molar_mass , 6) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0.") )
94
import re import string import numpy as np import datasets lowercase : List[str] = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' lowercase : List[str] = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' lowercase : List[str] = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__ ( datasets.Metric): '''simple docstring''' def _lowerCamelCase ( self :Dict ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , reference_urls=[] , ) def _lowerCamelCase ( self :int , a :Optional[Any] , a :Dict , a :Optional[int]=None , a :int=False , a :Tuple=False , a :Optional[int]=False , ) -> Any: if regexes_to_ignore is not None: for s in regexes_to_ignore: __UpperCamelCase : List[Any] = np.array([re.sub(a , "" , a ) for x in predictions] ) __UpperCamelCase : Optional[Any] = np.array([re.sub(a , "" , a ) for x in references] ) else: __UpperCamelCase : Optional[int] = np.asarray(a ) __UpperCamelCase : List[str] = np.asarray(a ) if ignore_case: __UpperCamelCase : Optional[int] = np.char.lower(a ) __UpperCamelCase : str = np.char.lower(a ) if ignore_punctuation: __UpperCamelCase : Tuple = string.punctuation.maketrans("" , "" , string.punctuation ) __UpperCamelCase : int = np.char.translate(a , table=a ) __UpperCamelCase : str = np.char.translate(a , table=a ) if ignore_numbers: __UpperCamelCase : List[str] = string.digits.maketrans("" , "" , string.digits ) __UpperCamelCase : Tuple = np.char.translate(a , table=a ) __UpperCamelCase : Union[str, Any] = np.char.translate(a , table=a ) __UpperCamelCase : List[Any] = predictions == references return {"exact_match": np.mean(a ) * 1_0_0}
94
1
'''simple docstring''' from __future__ import annotations def _snake_case ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple ) -> Any: """simple docstring""" if len(_a ) == 0: return False lowerCAmelCase = len(_a ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , _a ) else: return binary_search(a_list[midpoint + 1 :] , _a ) if __name__ == "__main__": UpperCAmelCase = input('Enter numbers separated by comma:\n').strip() UpperCAmelCase = [int(item.strip()) for item in user_input.split(',')] UpperCAmelCase = int(input('Enter the number to be found in the list:\n').strip()) UpperCAmelCase = '' if binary_search(sequence, target) else 'not ' print(F'''{target} was {not_str}found in {sequence}''')
433
a_ = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset([]) a_ = frozenset(['image']) a_ = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image']) a_ = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'negative_prompt']) a_ = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) a_ = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) a_ = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['image', 'mask_image']) a_ = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) a_ = frozenset(['example_image', 'image', 'mask_image']) a_ = frozenset(['class_labels']) a_ = frozenset(['class_labels']) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset(['batch_size']) a_ = frozenset([]) a_ = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) a_ = frozenset(['prompt', 'negative_prompt']) a_ = frozenset(['input_tokens']) a_ = frozenset(['input_tokens'])
25
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig A: Optional[Any] = { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = 'albert' def __init__( self , _lowercase=3_0000 , _lowercase=128 , _lowercase=4096 , _lowercase=12 , _lowercase=1 , _lowercase=64 , _lowercase=1_6384 , _lowercase=1 , _lowercase="gelu_new" , _lowercase=0 , _lowercase=0 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1E-1_2 , _lowercase=0.1 , _lowercase="absolute" , _lowercase=0 , _lowercase=2 , _lowercase=3 , **_lowercase , ) -> Any: super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) lowercase_ : Dict = vocab_size lowercase_ : List[str] = embedding_size lowercase_ : Any = hidden_size lowercase_ : Dict = num_hidden_layers lowercase_ : Tuple = num_hidden_groups lowercase_ : Union[str, Any] = num_attention_heads lowercase_ : int = inner_group_num lowercase_ : Any = hidden_act lowercase_ : Optional[Any] = intermediate_size lowercase_ : Tuple = hidden_dropout_prob lowercase_ : Optional[int] = attention_probs_dropout_prob lowercase_ : Dict = max_position_embeddings lowercase_ : List[Any] = type_vocab_size lowercase_ : Optional[Any] = initializer_range lowercase_ : Union[str, Any] = layer_norm_eps lowercase_ : List[str] = classifier_dropout_prob lowercase_ : Optional[int] = position_embedding_type class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" @property def lowerCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowercase_ : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowercase_ : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
7
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A: int = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Union[str, Any] = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys A: int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase_ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ): lowerCamelCase_ = 'maskformer-swin' lowerCamelCase_ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : int , UpperCAmelCase__ : Tuple=224 , UpperCAmelCase__ : Optional[int]=4 , UpperCAmelCase__ : List[Any]=3 , UpperCAmelCase__ : Union[str, Any]=96 , UpperCAmelCase__ : int=[2, 2, 6, 2] , UpperCAmelCase__ : str=[3, 6, 12, 24] , UpperCAmelCase__ : Optional[Any]=7 , UpperCAmelCase__ : List[str]=4.0 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : int=0.0 , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : int=0.02 , UpperCAmelCase__ : int=1E-5 , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : Union[str, Any]=None , **UpperCAmelCase__ : Optional[int] , ): '''simple docstring''' super().__init__(**UpperCAmelCase__ ) lowercase : Any =image_size lowercase : Tuple =patch_size lowercase : Any =num_channels lowercase : Optional[int] =embed_dim lowercase : str =depths lowercase : Any =len(UpperCAmelCase__ ) lowercase : str =num_heads lowercase : Dict =window_size lowercase : List[str] =mlp_ratio lowercase : Union[str, Any] =qkv_bias lowercase : Optional[Any] =hidden_dropout_prob lowercase : int =attention_probs_dropout_prob lowercase : Optional[Any] =drop_path_rate lowercase : Tuple =hidden_act lowercase : List[Any] =use_absolute_embeddings lowercase : Any =layer_norm_eps lowercase : List[Any] =initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase : Any =int(embed_dim * 2 ** (len(UpperCAmelCase__ ) - 1) ) lowercase : Union[str, Any] =['''stem'''] + [F'''stage{idx}''' for idx in range(1 , len(UpperCAmelCase__ ) + 1 )] lowercase , lowercase : Optional[int] =get_aligned_output_features_output_indices( out_features=UpperCAmelCase__ , out_indices=UpperCAmelCase__ , stage_names=self.stage_names )
92
'''simple docstring''' import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __A ( lowerCAmelCase_ ): if string == "True": return True elif string == "False": return False else: raise ValueError(f"could not parse string as bool {string}" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) lowerCAmelCase_ : Tuple = parser.parse_args() lowerCAmelCase_ : Union[str, Any] = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
414
0
"""simple docstring""" import json import sys def snake_case ( UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ) -> Tuple: with open(UpperCamelCase__ , encoding="""utf-8""" ) as f: lowerCamelCase : str = json.load(UpperCamelCase__ ) lowerCamelCase : str = ["""<details>""", """<summary>Show updated benchmarks!</summary>""", """ """] for benchmark_name in sorted(UpperCamelCase__ ): lowerCamelCase : List[str] = results[benchmark_name] lowerCamelCase : Union[str, Any] = benchmark_name.split("""/""" )[-1] output_md.append(F'### Benchmark: {benchmark_file_name}' ) lowerCamelCase : Any = """| metric |""" lowerCamelCase : Tuple = """|--------|""" lowerCamelCase : Any = """| new / old (diff) |""" for metric_name in sorted(UpperCamelCase__ ): lowerCamelCase : Tuple = benchmark_res[metric_name] lowerCamelCase : Optional[int] = metric_vals["""new"""] lowerCamelCase : Dict = metric_vals.get("""old""" , UpperCamelCase__ ) lowerCamelCase : Optional[Any] = metric_vals.get("""diff""" , UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = F' {new_val:f}' if isinstance(UpperCamelCase__ , (int, float) ) else """None""" if old_val is not None: val_str += F' / {old_val:f}' if isinstance(UpperCamelCase__ , (int, float) ) else "None" if dif_val is not None: val_str += F' ({dif_val:f})' if isinstance(UpperCamelCase__ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append("""</details>""" ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.writelines("""\n""".join(UpperCamelCase__ ) ) if __name__ == "__main__": __lowerCamelCase :Dict = sys.argv[1] __lowerCamelCase :List[str] = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
42
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase :Optional[int] = logging.get_logger(__name__) __lowerCamelCase :List[str] = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class A__ ( __lowercase): """simple docstring""" snake_case__ : Optional[Any] ='''realm''' def __init__( self: Union[str, Any] , __a: List[Any]=30_522 , __a: List[Any]=768 , __a: List[Any]=128 , __a: Union[str, Any]=12 , __a: Union[str, Any]=12 , __a: Optional[Any]=8 , __a: Dict=3_072 , __a: List[Any]="gelu_new" , __a: List[Any]=0.1 , __a: Tuple=0.1 , __a: Optional[Any]=512 , __a: Optional[int]=2 , __a: str=0.02 , __a: int=1e-1_2 , __a: Optional[Any]=256 , __a: Any=10 , __a: Dict=1e-3 , __a: Optional[Any]=5 , __a: Dict=320 , __a: Tuple=13_353_718 , __a: List[Any]=5_000 , __a: Dict=1 , __a: int=0 , __a: Dict=2 , **__a: List[str] , )-> Any: super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) # Common config lowerCamelCase : Optional[Any] = vocab_size lowerCamelCase : str = max_position_embeddings lowerCamelCase : Dict = hidden_size lowerCamelCase : Dict = retriever_proj_size lowerCamelCase : Optional[Any] = num_hidden_layers lowerCamelCase : List[str] = num_attention_heads lowerCamelCase : Tuple = num_candidates lowerCamelCase : int = intermediate_size lowerCamelCase : Dict = hidden_act lowerCamelCase : List[str] = hidden_dropout_prob lowerCamelCase : Dict = attention_probs_dropout_prob lowerCamelCase : Optional[int] = initializer_range lowerCamelCase : Dict = type_vocab_size lowerCamelCase : Optional[Any] = layer_norm_eps # Reader config lowerCamelCase : List[str] = span_hidden_size lowerCamelCase : Dict = max_span_width lowerCamelCase : Optional[Any] = reader_layer_norm_eps lowerCamelCase : Optional[int] = reader_beam_size lowerCamelCase : List[Any] = reader_seq_len # Retrieval config lowerCamelCase : int = num_block_records lowerCamelCase : Dict = searcher_beam_size
42
1
'''simple docstring''' A__ : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.6_0_9_3_4_4, "knot": 1.8_5_2, } A__ : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_7_7_7_7_7_7_7_8, "mph": 0.6_2_1_3_7_1_1_9_2, "knot": 0.5_3_9_9_5_6_8_0_3, } def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : str , UpperCAmelCase_ : str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __lowerCamelCase : Union[str, Any] = ( F'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' F'Valid values are: {", ".join(UpperCAmelCase_ )}' ) raise ValueError(UpperCAmelCase_ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCamelCase : List[Any] = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class A__ ( unittest.TestCase ): A__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING A__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: A__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: A__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def A ( self : Optional[int] , _a : int , _a : Dict , _a : Union[str, Any] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =ZeroShotClassificationPipeline( model=_a , tokenizer=_a , candidate_labels=['polics', 'health'] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def A ( self : str , _a : str , _a : Optional[int] ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =classifier('Who are you voting for in 2020?' , candidate_labels='politics' ) self.assertEqual(_a , {'sequence': ANY(_a ), 'labels': [ANY(_a )], 'scores': [ANY(_a )]} ) # No kwarg _SCREAMING_SNAKE_CASE =classifier('Who are you voting for in 2020?' , ['politics'] ) self.assertEqual(_a , {'sequence': ANY(_a ), 'labels': [ANY(_a )], 'scores': [ANY(_a )]} ) _SCREAMING_SNAKE_CASE =classifier('Who are you voting for in 2020?' , candidate_labels=['politics'] ) self.assertEqual(_a , {'sequence': ANY(_a ), 'labels': [ANY(_a )], 'scores': [ANY(_a )]} ) _SCREAMING_SNAKE_CASE =classifier('Who are you voting for in 2020?' , candidate_labels='politics, public health' ) self.assertEqual( _a , {'sequence': ANY(_a ), 'labels': [ANY(_a ), ANY(_a )], 'scores': [ANY(_a ), ANY(_a )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _SCREAMING_SNAKE_CASE =classifier('Who are you voting for in 2020?' , candidate_labels=['politics', 'public health'] ) self.assertEqual( _a , {'sequence': ANY(_a ), 'labels': [ANY(_a ), ANY(_a )], 'scores': [ANY(_a ), ANY(_a )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['scores'] ) ) , 1.0 ) _SCREAMING_SNAKE_CASE =classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='This text is about {}' ) self.assertEqual(_a , {'sequence': ANY(_a ), 'labels': [ANY(_a )], 'scores': [ANY(_a )]} ) # https://github.com/huggingface/transformers/issues/13846 _SCREAMING_SNAKE_CASE =classifier(['I am happy'] , ['positive', 'negative'] ) self.assertEqual( _a , [ {'sequence': ANY(_a ), 'labels': [ANY(_a ), ANY(_a )], 'scores': [ANY(_a ), ANY(_a )]} for i in range(1 ) ] , ) _SCREAMING_SNAKE_CASE =classifier(['I am happy', 'I am sad'] , ['positive', 'negative'] ) self.assertEqual( _a , [ {'sequence': ANY(_a ), 'labels': [ANY(_a ), ANY(_a )], 'scores': [ANY(_a ), ANY(_a )]} for i in range(2 ) ] , ) with self.assertRaises(_a ): classifier('' , candidate_labels='politics' ) with self.assertRaises(_a ): classifier(_a , candidate_labels='politics' ) with self.assertRaises(_a ): classifier('Who are you voting for in 2020?' , candidate_labels='' ) with self.assertRaises(_a ): classifier('Who are you voting for in 2020?' , candidate_labels=_a ) with self.assertRaises(_a ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template='Not formatting template' , ) with self.assertRaises(_a ): classifier( 'Who are you voting for in 2020?' , candidate_labels='politics' , hypothesis_template=_a , ) self.run_entailment_id(_a ) def A ( self : List[str] , _a : Pipeline ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =zero_shot_classifier.model.config _SCREAMING_SNAKE_CASE =config.labelaid _SCREAMING_SNAKE_CASE =zero_shot_classifier.entailment_id _SCREAMING_SNAKE_CASE ={'LABEL_0': 0, 'LABEL_1': 1, 'LABEL_2': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _SCREAMING_SNAKE_CASE ={'entailment': 0, 'neutral': 1, 'contradiction': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _SCREAMING_SNAKE_CASE ={'ENTAIL': 0, 'NON-ENTAIL': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _SCREAMING_SNAKE_CASE ={'ENTAIL': 2, 'NEUTRAL': 1, 'CONTR': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _SCREAMING_SNAKE_CASE =original_labelaid self.assertEqual(_a , zero_shot_classifier.entailment_id ) @require_torch def A ( self : Union[str, Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( 'Who are you voting for in 2020?' * 100 , candidate_labels=['politics', 'public health', 'science'] ) @require_torch def A ( self : int ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='pt' , ) _SCREAMING_SNAKE_CASE =zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_a ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @require_tf def A ( self : Dict ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =pipeline( 'zero-shot-classification' , model='sshleifer/tiny-distilbert-base-cased-distilled-squad' , framework='tf' , ) _SCREAMING_SNAKE_CASE =zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_a ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['science', 'public health', 'politics'], 'scores': [0.3_33, 0.3_33, 0.3_33], } , ) @slow @require_torch def A ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='pt' ) _SCREAMING_SNAKE_CASE =zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_a ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _SCREAMING_SNAKE_CASE =zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=_a , ) self.assertEqual( nested_simplify(_a ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , ) @slow @require_tf def A ( self : List[str] ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =pipeline('zero-shot-classification' , model='roberta-large-mnli' , framework='tf' ) _SCREAMING_SNAKE_CASE =zero_shot_classifier( 'Who are you voting for in 2020?' , candidate_labels=['politics', 'public health', 'science'] ) self.assertEqual( nested_simplify(_a ) , { 'sequence': 'Who are you voting for in 2020?', 'labels': ['politics', 'public health', 'science'], 'scores': [0.9_76, 0.0_15, 0.0_09], } , ) _SCREAMING_SNAKE_CASE =zero_shot_classifier( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural networks' ' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder' ' through an attention mechanism. We propose a new simple network architecture, the Transformer, based' ' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two' ' machine translation tasks show these models to be superior in quality while being more parallelizable' ' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014' ' English-to-German translation task, improving over the existing best results, including ensembles by' ' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new' ' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small' ' fraction of the training costs of the best models from the literature. We show that the Transformer' ' generalizes well to other tasks by applying it successfully to English constituency parsing both with' ' large and limited training data.' , candidate_labels=['machine learning', 'statistics', 'translation', 'vision'] , multi_label=_a , ) self.assertEqual( nested_simplify(_a ) , { 'sequence': ( 'The dominant sequence transduction models are based on complex recurrent or convolutional neural' ' networks in an encoder-decoder configuration. The best performing models also connect the' ' encoder and decoder through an attention mechanism. We propose a new simple network' ' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence' ' and convolutions entirely. Experiments on two machine translation tasks show these models to be' ' superior in quality while being more parallelizable and requiring significantly less time to' ' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,' ' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014' ' English-to-French translation task, our model establishes a new single-model state-of-the-art' ' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training' ' costs of the best models from the literature. We show that the Transformer generalizes well to' ' other tasks by applying it successfully to English constituency parsing both with large and' ' limited training data.' ), 'labels': ['translation', 'machine learning', 'vision', 'statistics'], 'scores': [0.8_17, 0.7_13, 0.0_18, 0.0_18], } , )
405
0
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _UpperCamelCase = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main __lowerCamelCase : int =terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(SCREAMING_SNAKE_CASE , id=SCREAMING_SNAKE_CASE )
363
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
363
1
"""simple docstring""" import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase ( a ): """simple docstring""" __lowercase :Optional[Any] = (EulerDiscreteScheduler,) __lowercase :Optional[int] = 10 def _lowerCAmelCase ( self , **UpperCamelCase__ ) -> Dict: '''simple docstring''' lowerCamelCase_ = { '''num_train_timesteps''': 1_100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**UpperCamelCase__ ) return config def _lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=UpperCamelCase__ , beta_end=UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> str: '''simple docstring''' lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_ = sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ = model(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) lowerCamelCase_ = output.prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def _lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCamelCase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_ = sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ = model(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) lowerCamelCase_ = output.prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 0.0_002 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def _lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase__ ) lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCamelCase_ = sample.to(UpperCamelCase__ ) for t in scheduler.timesteps: lowerCamelCase_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ = model(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) lowerCamelCase_ = output.prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def _lowerCAmelCase ( self ) -> str: '''simple docstring''' lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**UpperCamelCase__ , use_karras_sigmas=UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase__ ) lowerCamelCase_ = torch.manual_seed(0 ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowerCamelCase_ = sample.to(UpperCamelCase__ ) for t in scheduler.timesteps: lowerCamelCase_ = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ = model(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , generator=UpperCamelCase__ ) lowerCamelCase_ = output.prev_sample lowerCamelCase_ = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase_ = torch.mean(torch.abs(UpperCamelCase__ ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
142
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase ( a ): """simple docstring""" __lowercase :Optional[int] = ["image_processor", "tokenizer"] __lowercase :int = "ChineseCLIPImageProcessor" __lowercase :Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Dict: '''simple docstring''' lowerCamelCase_ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCamelCase__ , ) lowerCamelCase_ = kwargs.pop('''feature_extractor''' ) lowerCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ = self.image_processor def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowerCamelCase_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if images is not None: lowerCamelCase_ = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and images is not None: lowerCamelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def _lowerCAmelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def _lowerCAmelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.tokenizer.model_input_names lowerCamelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCamelCase__ , ) return self.image_processor_class
142
1
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging a = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , ): super().__init__() if hasattr(scheduler.config , 'steps_offset' ) and scheduler.config.steps_offset != 1: _A = ( F'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' F''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' 'to update the config accordingly as leaving `steps_offset` might led to incorrect results' ' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,' ' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`' ' file' ) deprecate('steps_offset!=1' , '1.0.0' , UpperCamelCase__ , standard_warn=UpperCamelCase__ ) _A = dict(scheduler.config ) _A = 1 _A = FrozenDict(UpperCamelCase__ ) if hasattr(scheduler.config , 'skip_prk_steps' ) and scheduler.config.skip_prk_steps is False: _A = ( F'''The configuration file of this scheduler: {scheduler} has not set the configuration''' ' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make' ' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to' ' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face' ' Hub, it would be very nice if you could open a Pull request for the' ' `scheduler/scheduler_config.json` file' ) deprecate('skip_prk_steps not set' , '1.0.0' , UpperCamelCase__ , standard_warn=UpperCamelCase__ ) _A = dict(scheduler.config ) _A = True _A = FrozenDict(UpperCamelCase__ ) if safety_checker is None: logger.warning( F'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( segmentation_model=UpperCamelCase__ , segmentation_processor=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _A = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase__ ) def lowerCAmelCase_ ( self : int ): self.enable_attention_slicing(UpperCamelCase__ ) def lowerCAmelCase_ ( self : Union[str, Any] ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) _A = torch.device('cuda' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase__ , UpperCamelCase__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase_ ( self : str ): if self.device != torch.device('meta' ) or not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str = 512 , _UpperCAmelCase : Any = 512 , _UpperCAmelCase : Optional[int] = 50 , _UpperCAmelCase : int = 7.5 , _UpperCAmelCase : Union[str, Any] = None , _UpperCAmelCase : Optional[int] = 1 , _UpperCAmelCase : Dict = 0.0 , _UpperCAmelCase : str = None , _UpperCAmelCase : Any = None , _UpperCAmelCase : List[Any] = "pil" , _UpperCAmelCase : Tuple = True , _UpperCAmelCase : Union[str, Any] = None , _UpperCAmelCase : Union[str, Any] = 1 , **_UpperCAmelCase : int , ): _A = self.segmentation_processor( text=[text] , images=[image] , padding='max_length' , return_tensors='pt' ).to(self.device ) _A = self.segmentation_model(**UpperCamelCase__ ) _A = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() _A = self.numpy_to_pil(UpperCamelCase__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask _A = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=UpperCamelCase__ , image=UpperCamelCase__ , mask_image=UpperCamelCase__ , height=UpperCamelCase__ , width=UpperCamelCase__ , num_inference_steps=UpperCamelCase__ , guidance_scale=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ , eta=UpperCamelCase__ , generator=UpperCamelCase__ , latents=UpperCamelCase__ , output_type=UpperCamelCase__ , return_dict=UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=UpperCamelCase__ , )
700
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/deit-base-distilled-patch16-224''': ( '''https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json''' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Dict = '''deit''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[Any]=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : int=3_072 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=224 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : int=16 , **_UpperCAmelCase : Union[str, Any] , ): super().__init__(**_UpperCAmelCase ) _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = layer_norm_eps _A = image_size _A = patch_size _A = num_channels _A = qkv_bias _A = encoder_stride class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = version.parse('''1.11''' ) @property def lowerCAmelCase_ ( self : Optional[int] ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCAmelCase_ ( self : Any ): return 1E-4
505
0
from __future__ import annotations def __UpperCAmelCase ( __A , __A = None , __A = None ) -> None: '''simple docstring''' if start is None: UpperCAmelCase__ = 0 if end is None: UpperCAmelCase__ = len(__A ) - 1 if start >= end: return UpperCAmelCase__ = (start + end) // 2 slowsort(__A , __A , __A ) slowsort(__A , mid + 1 , __A ) if sequence[end] < sequence[mid]: UpperCAmelCase__ , UpperCAmelCase__ = sequence[mid], sequence[end] slowsort(__A , __A , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
475
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { "facebook/deit-base-distilled-patch16-224": ( "https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= 'deit' def __init__( self : Union[str, Any] , _lowercase : List[str]=7_68 , _lowercase : Optional[Any]=12 , _lowercase : Optional[int]=12 , _lowercase : Dict=30_72 , _lowercase : Optional[Any]="gelu" , _lowercase : Optional[Any]=0.0 , _lowercase : List[str]=0.0 , _lowercase : Union[str, Any]=0.0_2 , _lowercase : Optional[int]=1E-12 , _lowercase : Dict=2_24 , _lowercase : List[str]=16 , _lowercase : str=3 , _lowercase : Optional[Any]=True , _lowercase : Optional[Any]=16 , **_lowercase : Union[str, Any] , ): """simple docstring""" super().__init__(**_lowercase ) UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = image_size UpperCAmelCase__ = patch_size UpperCAmelCase__ = num_channels UpperCAmelCase__ = qkv_bias UpperCAmelCase__ = encoder_stride class lowercase__ ( __SCREAMING_SNAKE_CASE ): A__= version.parse('1.11' ) @property def _UpperCAmelCase ( self : List[Any] ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _UpperCAmelCase ( self : int ): """simple docstring""" return 1E-4
475
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {'configuration_mbart': ['MBART_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MBartConfig', 'MBartOnnxConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['MBartTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['MBartTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'MBART_PRETRAINED_MODEL_ARCHIVE_LIST', 'MBartForCausalLM', 'MBartForConditionalGeneration', 'MBartForQuestionAnswering', 'MBartForSequenceClassification', 'MBartModel', 'MBartPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'TFMBartForConditionalGeneration', 'TFMBartModel', 'TFMBartPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'FlaxMBartForConditionalGeneration', 'FlaxMBartForQuestionAnswering', 'FlaxMBartForSequenceClassification', 'FlaxMBartModel', 'FlaxMBartPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
712
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED SCREAMING_SNAKE_CASE = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ) -> Any: """simple docstring""" lowercase : int =( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) lowercase : Union[str, Any] =bs[:] lowercase : Tuple =0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 lowercase : Optional[Any] =[chr(__A ) for n in cs] return dict(zip(__A , __A ) ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] =set() lowercase : Tuple =word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase : List[str] =char return pairs class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : str="replace" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : Optional[int]="</s>" , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : str="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : Union[str, Any]="<mask>" , UpperCAmelCase : str=False , **UpperCAmelCase : int , ) -> Dict: '''simple docstring''' lowercase : int =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else bos_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else eos_token lowercase : str =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else sep_token lowercase : Optional[int] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else cls_token lowercase : Union[str, Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else unk_token lowercase : List[Any] =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase : Any =AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( errors=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) with open(UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: lowercase : str =json.load(UpperCAmelCase ) lowercase : Optional[int] ={v: k for k, v in self.encoder.items()} lowercase : Optional[int] =errors # how to handle errors in decoding lowercase : Tuple =bytes_to_unicode() lowercase : int ={v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: lowercase : Union[str, Any] =merges_handle.read().split('''\n''' )[1:-1] lowercase : Optional[Any] =[tuple(merge.split() ) for merge in bpe_merges] lowercase : Optional[int] =dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) lowercase : Optional[int] ={} lowercase : Any =add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase : str =re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def A__ ( self : int , UpperCAmelCase : str ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : List[str] =get_pairs(UpperCAmelCase ) if not pairs: return token while True: lowercase : Tuple =min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase , lowercase : Optional[int] =bigram lowercase : Union[str, Any] =[] lowercase : Optional[Any] =0 while i < len(UpperCAmelCase ): try: lowercase : Dict =word.index(UpperCAmelCase , UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase : Optional[int] =j if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase : List[str] =tuple(UpperCAmelCase ) lowercase : str =new_word if len(UpperCAmelCase ) == 1: break else: lowercase : Optional[Any] =get_pairs(UpperCAmelCase ) lowercase : Optional[Any] =''' '''.join(UpperCAmelCase ) lowercase : Union[str, Any] =word return word def A__ ( self : int , UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Dict =[] for token in re.findall(self.pat , UpperCAmelCase ): lowercase : Optional[int] =''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def A__ ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def A__ ( self : Dict , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' return self.decoder.get(UpperCAmelCase ) def A__ ( self : List[str] , UpperCAmelCase : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : str =''''''.join(UpperCAmelCase ) lowercase : Dict =bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def A__ ( self : Any , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowercase : Optional[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : List[Any] =os.path.join( UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + '''\n''' ) lowercase : List[str] =0 with open(UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) lowercase : Any =token_index writer.write(''' '''.join(UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def A__ ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] lowercase : List[Any] =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase )) + [1] return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1] def A__ ( self : Any , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' lowercase : Dict =[self.sep_token_id] lowercase : Optional[int] =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase : Tuple =kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase ) > 0 and not text[0].isspace()): lowercase : Union[str, Any] =''' ''' + text return (text, kwargs) def A__ ( self : Any , UpperCAmelCase : Union[Dict[str, EncodedInput], BatchEncoding] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , ) -> dict: '''simple docstring''' lowercase : Optional[int] =super()._pad( encoded_inputs=UpperCAmelCase , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: lowercase : Tuple ='''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowercase : Optional[Any] =encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowercase : str =len(encoded_inputs['''global_attention_mask'''] ) != len(UpperCAmelCase ) if needs_to_be_padded: lowercase : Tuple =len(UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowercase : List[str] =( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowercase : Any =[-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
8
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer A : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name A : Union[str, Any] = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class A (_lowerCAmelCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = 42 class A (_lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , __lowerCAmelCase : PriorTransformer , __lowerCAmelCase : CLIPVisionModel , __lowerCAmelCase : CLIPImageProcessor , __lowerCAmelCase : HeunDiscreteScheduler , __lowerCAmelCase : ShapERenderer , ) -> str: """simple docstring""" super().__init__() self.register_modules( prior=UpperCamelCase_ , image_encoder=UpperCamelCase_ , image_processor=UpperCamelCase_ , scheduler=UpperCamelCase_ , renderer=UpperCamelCase_ , ) def a_ ( self : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : int ) -> Dict: """simple docstring""" if latents is None: A__ = randn_tensor(UpperCamelCase_ , generator=UpperCamelCase_ , device=UpperCamelCase_ , dtype=UpperCamelCase_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) A__ = latents.to(UpperCamelCase_ ) A__ = latents * scheduler.init_noise_sigma return latents def a_ ( self : Optional[Any] , __lowerCAmelCase : List[str]=0 ) -> Optional[int]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) A__ = torch.device(f'cuda:{gpu_id}' ) A__ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) @property def a_ ( self : List[Any] ) -> List[str]: """simple docstring""" if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCamelCase_ , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def a_ ( self : int , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , torch.Tensor ): A__ = torch.cat(UpperCamelCase_ , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCamelCase_ , axis=0 ) if not isinstance(UpperCamelCase_ , torch.Tensor ): A__ = self.image_processor(UpperCamelCase_ , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) A__ = image.to(dtype=self.image_encoder.dtype , device=UpperCamelCase_ ) A__ = self.image_encoder(UpperCamelCase_ )['''last_hidden_state'''] A__ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 A__ = image_embeds.repeat_interleave(UpperCamelCase_ , dim=0 ) if do_classifier_free_guidance: A__ = torch.zeros_like(UpperCamelCase_ ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A__ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCamelCase_ ) def __call__( self : Union[str, Any] , __lowerCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , __lowerCAmelCase : int = 1 , __lowerCAmelCase : int = 25 , __lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCAmelCase : Optional[torch.FloatTensor] = None , __lowerCAmelCase : float = 4.0 , __lowerCAmelCase : int = 64 , __lowerCAmelCase : Optional[str] = "pil" , __lowerCAmelCase : bool = True , ) -> Optional[Any]: """simple docstring""" if isinstance(UpperCamelCase_ , PIL.Image.Image ): A__ = 1 elif isinstance(UpperCamelCase_ , torch.Tensor ): A__ = image.shape[0] elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): A__ = len(UpperCamelCase_ ) else: raise ValueError( f'`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCamelCase_ )}' ) A__ = self._execution_device A__ = batch_size * num_images_per_prompt A__ = guidance_scale > 1.0 A__ = self._encode_image(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # prior self.scheduler.set_timesteps(UpperCamelCase_ , device=UpperCamelCase_ ) A__ = self.scheduler.timesteps A__ = self.prior.config.num_embeddings A__ = self.prior.config.embedding_dim A__ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim A__ = latents.reshape(latents.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) for i, t in enumerate(self.progress_bar(UpperCamelCase_ ) ): # expand the latents if we are doing classifier free guidance A__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ = self.scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) A__ = self.prior( UpperCamelCase_ , timestep=UpperCamelCase_ , proj_embedding=UpperCamelCase_ , ).predicted_image_embedding # remove the variance A__ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: A__ = noise_pred.chunk(2 ) A__ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) A__ = self.scheduler.step( UpperCamelCase_ , timestep=UpperCamelCase_ , sample=UpperCamelCase_ , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCamelCase_ ) A__ = [] for i, latent in enumerate(UpperCamelCase_ ): print() A__ = self.renderer.decode( latent[None, :] , UpperCamelCase_ , size=UpperCamelCase_ , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , ) images.append(UpperCamelCase_ ) A__ = torch.stack(UpperCamelCase_ ) if output_type not in ["np", "pil"]: raise ValueError(f'Only the output types `pil` and `np` are supported not output_type={output_type}' ) A__ = images.cpu().numpy() if output_type == "pil": A__ = [self.numpy_to_pil(UpperCamelCase_ ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCamelCase_ )
176
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __lowerCamelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__ ( _lowerCAmelCase ): def __init__( self : int , UpperCamelCase_ : CLIPSegForImageSegmentation , UpperCamelCase_ : CLIPSegProcessor , UpperCamelCase_ : AutoencoderKL , UpperCamelCase_ : CLIPTextModel , UpperCamelCase_ : CLIPTokenizer , UpperCamelCase_ : UNetaDConditionModel , UpperCamelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCamelCase_ : StableDiffusionSafetyChecker , UpperCamelCase_ : CLIPImageProcessor , ) -> Optional[int]: """simple docstring""" super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: lowerCamelCase_ : int = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , UpperCamelCase_ , standard_warn=UpperCamelCase_ ) lowerCamelCase_ : Union[str, Any] = dict(scheduler.config ) lowerCamelCase_ : Optional[Any] = 1 lowerCamelCase_ : List[Any] = FrozenDict(UpperCamelCase_ ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: lowerCamelCase_ : Any = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , UpperCamelCase_ , standard_warn=UpperCamelCase_ ) lowerCamelCase_ : Dict = dict(scheduler.config ) lowerCamelCase_ : Union[str, Any] = True lowerCamelCase_ : Any = FrozenDict(UpperCamelCase_ ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=UpperCamelCase_ , segmentation_processor=UpperCamelCase_ , vae=UpperCamelCase_ , text_encoder=UpperCamelCase_ , tokenizer=UpperCamelCase_ , unet=UpperCamelCase_ , scheduler=UpperCamelCase_ , safety_checker=UpperCamelCase_ , feature_extractor=UpperCamelCase_ , ) def __UpperCamelCase ( self : str , UpperCamelCase_ : Optional[Union[str, int]] = "auto" ) -> int: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase_ : str = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase_ ) def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" self.enable_attention_slicing(UpperCamelCase_ ) def __UpperCamelCase ( self : List[Any] ) -> Any: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowerCamelCase_ : List[str] = torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase_ , UpperCamelCase_ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[str, List[str]] , UpperCamelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , UpperCamelCase_ : str , UpperCamelCase_ : int = 512 , UpperCamelCase_ : int = 512 , UpperCamelCase_ : int = 50 , UpperCamelCase_ : float = 7.5 , UpperCamelCase_ : Optional[Union[str, List[str]]] = None , UpperCamelCase_ : Optional[int] = 1 , UpperCamelCase_ : float = 0.0 , UpperCamelCase_ : Optional[torch.Generator] = None , UpperCamelCase_ : Optional[torch.FloatTensor] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase_ : int = 1 , **UpperCamelCase_ : Dict , ) -> List[Any]: """simple docstring""" lowerCamelCase_ : Optional[Any] = self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) lowerCamelCase_ : Union[str, Any] = self.segmentation_model(**UpperCamelCase_ ) lowerCamelCase_ : Dict = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowerCamelCase_ : int = self.numpy_to_pil(UpperCamelCase_ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowerCamelCase_ : List[str] = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=UpperCamelCase_ , image=UpperCamelCase_ , mask_image=UpperCamelCase_ , height=UpperCamelCase_ , width=UpperCamelCase_ , num_inference_steps=UpperCamelCase_ , guidance_scale=UpperCamelCase_ , negative_prompt=UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ , eta=UpperCamelCase_ , generator=UpperCamelCase_ , latents=UpperCamelCase_ , output_type=UpperCamelCase_ , return_dict=UpperCamelCase_ , callback=UpperCamelCase_ , callback_steps=UpperCamelCase_ , )
501
0
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch __SCREAMING_SNAKE_CASE =True except ImportError: __SCREAMING_SNAKE_CASE =False try: from torch.hub import _get_torch_home __SCREAMING_SNAKE_CASE =_get_torch_home() except ImportError: __SCREAMING_SNAKE_CASE =os.path.expanduser( os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch")) ) __SCREAMING_SNAKE_CASE =os.path.join(torch_cache_home, "transformers") __SCREAMING_SNAKE_CASE ="https://cdn.huggingface.co" __SCREAMING_SNAKE_CASE ="https://s3.amazonaws.com/models.huggingface.co/bert" __SCREAMING_SNAKE_CASE ="/".join(str(Path(__file__).resolve()).split("/")[:-1]) __SCREAMING_SNAKE_CASE =os.path.join(PATH, "config.yaml") __SCREAMING_SNAKE_CASE =os.path.join(PATH, "attributes.txt") __SCREAMING_SNAKE_CASE =os.path.join(PATH, "objects.txt") __SCREAMING_SNAKE_CASE =os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path) __SCREAMING_SNAKE_CASE =os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE) __SCREAMING_SNAKE_CASE =os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE) __SCREAMING_SNAKE_CASE ="pytorch_model.bin" __SCREAMING_SNAKE_CASE ="config.yaml" def lowercase__( __SCREAMING_SNAKE_CASE : Any=OBJECTS , __SCREAMING_SNAKE_CASE : Any=ATTRIBUTES ): lowercase_ : List[Any] = [] with open(__SCREAMING_SNAKE_CASE ) as f: for object in f.readlines(): vg_classes.append(object.split(',' )[0].lower().strip() ) lowercase_ : Any = [] with open(__SCREAMING_SNAKE_CASE ) as f: for object in f.readlines(): vg_attrs.append(object.split(',' )[0].lower().strip() ) return vg_classes, vg_attrs def lowercase__( __SCREAMING_SNAKE_CASE : Dict ): lowercase_ : Dict = OrderedDict() with open(__SCREAMING_SNAKE_CASE , 'rb' ) as f: lowercase_ : str = pkl.load(__SCREAMING_SNAKE_CASE )['model'] for k in copy.deepcopy(list(ckp.keys() ) ): lowercase_ : Union[str, Any] = ckp.pop(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): lowercase_ : int = torch.tensor(__SCREAMING_SNAKE_CASE ) else: assert isinstance(__SCREAMING_SNAKE_CASE , torch.tensor ), type(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = v return r class UpperCamelCase : lowercase = {} def __init__( self ,__UpperCamelCase ,__UpperCamelCase = "root" ,__UpperCamelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase_ : List[str] = name lowercase_ : Union[str, Any] = level lowercase_ : List[Any] = {} for k, v in dictionary.items(): if v is None: raise ValueError() lowercase_ : Optional[int] = copy.deepcopy(__UpperCamelCase ) lowercase_ : int = copy.deepcopy(__UpperCamelCase ) if isinstance(__UpperCamelCase ,__UpperCamelCase ): lowercase_ : Union[str, Any] = Config(__UpperCamelCase ,name=__UpperCamelCase ,level=level + 1 ) lowercase_ : Dict = v setattr(self ,__UpperCamelCase ,__UpperCamelCase ) lowercase_ : Dict = d def __repr__( self ) -> List[Any]: '''simple docstring''' return str(list((self._pointer.keys()) ) ) def __setattr__( self ,__UpperCamelCase ,__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Any = val lowercase_ : Optional[Any] = val lowercase_ : Optional[int] = key.split('.' ) lowercase_ : Dict = len(__UpperCamelCase ) - 1 lowercase_ : List[Any] = self._pointer if len(__UpperCamelCase ) > 1: for i, l in enumerate(__UpperCamelCase ): if hasattr(self ,__UpperCamelCase ) and isinstance(getattr(self ,__UpperCamelCase ) ,__UpperCamelCase ): setattr(getattr(self ,__UpperCamelCase ) ,'.'.join(levels[i:] ) ,__UpperCamelCase ) if l == last_level: lowercase_ : Any = val else: lowercase_ : Any = pointer[l] def _UpperCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' return self._pointer def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Any: '''simple docstring''' with open(f'''{file_name}''' ,'w' ) as stream: dump(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' with open(f'''{file_name}''' ,'w' ) as stream: json.dump(__UpperCamelCase ,__UpperCamelCase ) @staticmethod def _UpperCAmelCase ( __UpperCamelCase ) -> Tuple: '''simple docstring''' with open(__UpperCamelCase ) as stream: lowercase_ : Union[str, Any] = load(__UpperCamelCase ,Loader=__UpperCamelCase ) return data def __str__( self ) -> Optional[int]: '''simple docstring''' lowercase_ : List[str] = ' ' if self._name != "root": lowercase_ : List[Any] = f'''{t * (self._level-1)}{self._name}:\n''' else: lowercase_ : List[str] = '' lowercase_ : Tuple = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(__UpperCamelCase ,__UpperCamelCase ): r += f'''{t * (self._level)}{v}\n''' self._level += 1 else: r += f'''{t * (self._level)}{k}: {v} ({type(__UpperCamelCase ).__name__})\n''' lowercase_ : Any = level return r[:-1] @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ,**__UpperCamelCase ) -> List[Any]: '''simple docstring''' lowercase_ : str = cls.get_config_dict(__UpperCamelCase ,**__UpperCamelCase ) return cls(__UpperCamelCase ) @classmethod def _UpperCAmelCase ( cls ,__UpperCamelCase ,**__UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Union[str, Any] = kwargs.pop('cache_dir' ,__UpperCamelCase ) lowercase_ : Optional[Any] = kwargs.pop('force_download' ,__UpperCamelCase ) lowercase_ : Tuple = kwargs.pop('resume_download' ,__UpperCamelCase ) lowercase_ : Tuple = kwargs.pop('proxies' ,__UpperCamelCase ) lowercase_ : Dict = kwargs.pop('local_files_only' ,__UpperCamelCase ) if os.path.isdir(__UpperCamelCase ): lowercase_ : List[str] = os.path.join(__UpperCamelCase ,__UpperCamelCase ) elif os.path.isfile(__UpperCamelCase ) or is_remote_url(__UpperCamelCase ): lowercase_ : int = pretrained_model_name_or_path else: lowercase_ : Tuple = hf_bucket_url(__UpperCamelCase ,filename=__UpperCamelCase ,use_cdn=__UpperCamelCase ) try: # Load from URL or cache if already cached lowercase_ : Optional[int] = cached_path( __UpperCamelCase ,cache_dir=__UpperCamelCase ,force_download=__UpperCamelCase ,proxies=__UpperCamelCase ,resume_download=__UpperCamelCase ,local_files_only=__UpperCamelCase ,) # Load config dict if resolved_config_file is None: raise EnvironmentError lowercase_ : str = Config.load_yaml(__UpperCamelCase ) except EnvironmentError: lowercase_ : Optional[int] = 'Can\'t load config for' raise EnvironmentError(__UpperCamelCase ) if resolved_config_file == config_file: print('loading configuration file from path' ) else: print('loading configuration file cache' ) return Config.load_yaml(__UpperCamelCase ), kwargs def lowercase__( __SCREAMING_SNAKE_CASE : List[str] ): lowercase_ : Any = torch.load('dump.pt' , map_location=in_tensor.device ) lowercase_ : Any = in_tensor.numpy() lowercase_ : Tuple = out_tensor.numpy()[0] print(na.shape , na[0, 0, :5] ) print(na.shape , na[0, 0, :5] ) assert np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rtol=0.01 , atol=0.1 ), ( F'''{sum([1 for x in np.isclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rtol=0.01 , atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*1_00:.4f} %''' " element-wise mismatch" ) raise Exception('tensors are all good' ) # Hugging face functions below def lowercase__( __SCREAMING_SNAKE_CASE : Dict ): lowercase_ : Dict = urlparse(__SCREAMING_SNAKE_CASE ) return parsed.scheme in ("http", "https") def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any=True ): lowercase_ : int = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX lowercase_ : Optional[int] = '/' not in model_id if legacy_format: return F'''{endpoint}/{model_id}-{filename}''' else: return F'''{endpoint}/{model_id}/{filename}''' def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=0 , __SCREAMING_SNAKE_CASE : List[Any]=None , ): lowercase_ : int = 'python/{}'.format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): ua += "; " + "; ".join('{}/{}'.format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for k, v in user_agent.items() ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): ua += "; " + user_agent lowercase_ : Optional[int] = {'user-agent': ua} if resume_size > 0: lowercase_ : Dict = 'bytes=%d-' % (resume_size,) lowercase_ : Optional[int] = requests.get(__SCREAMING_SNAKE_CASE , stream=__SCREAMING_SNAKE_CASE , proxies=__SCREAMING_SNAKE_CASE , headers=__SCREAMING_SNAKE_CASE ) if response.status_code == 4_16: # Range not satisfiable return lowercase_ : Union[str, Any] = response.headers.get('Content-Length' ) lowercase_ : Optional[int] = resume_size + int(__SCREAMING_SNAKE_CASE ) if content_length is not None else None lowercase_ : List[str] = tqdm( unit='B' , unit_scale=__SCREAMING_SNAKE_CASE , total=__SCREAMING_SNAKE_CASE , initial=__SCREAMING_SNAKE_CASE , desc='Downloading' , ) for chunk in response.iter_content(chunk_size=10_24 ): if chunk: # filter out keep-alive new chunks progress.update(len(__SCREAMING_SNAKE_CASE ) ) temp_file.write(__SCREAMING_SNAKE_CASE ) progress.close() def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : int=10 , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : Any=None , __SCREAMING_SNAKE_CASE : Any=False , ): if cache_dir is None: lowercase_ : Optional[Any] = TRANSFORMERS_CACHE if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Dict = str(__SCREAMING_SNAKE_CASE ) os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = None if not local_files_only: try: lowercase_ : Union[str, Any] = requests.head(__SCREAMING_SNAKE_CASE , allow_redirects=__SCREAMING_SNAKE_CASE , proxies=__SCREAMING_SNAKE_CASE , timeout=__SCREAMING_SNAKE_CASE ) if response.status_code == 2_00: lowercase_ : int = response.headers.get('ETag' ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass lowercase_ : int = url_to_filename(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # get cache path to put the file lowercase_ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(__SCREAMING_SNAKE_CASE ): return cache_path else: lowercase_ : str = [ file for file in fnmatch.filter(os.listdir(__SCREAMING_SNAKE_CASE ) , filename + '.*' ) if not file.endswith('.json' ) and not file.endswith('.lock' ) ] if len(__SCREAMING_SNAKE_CASE ) > 0: return os.path.join(__SCREAMING_SNAKE_CASE , matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( 'Cannot find the requested files in the cached path and outgoing traffic has been' ' disabled. To enable model look-ups and downloads online, set \'local_files_only\'' ' to False.' ) return None # From now on, etag is not None. if os.path.exists(__SCREAMING_SNAKE_CASE ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. lowercase_ : Tuple = cache_path + '.lock' with FileLock(__SCREAMING_SNAKE_CASE ): # If the download just completed while the lock was activated. if os.path.exists(__SCREAMING_SNAKE_CASE ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: lowercase_ : Dict = cache_path + '.incomplete' @contextmanager def _resumable_file_manager(): with open(__SCREAMING_SNAKE_CASE , 'a+b' ) as f: yield f lowercase_ : str = _resumable_file_manager if os.path.exists(__SCREAMING_SNAKE_CASE ): lowercase_ : str = os.stat(__SCREAMING_SNAKE_CASE ).st_size else: lowercase_ : Dict = 0 else: lowercase_ : Tuple = partial(tempfile.NamedTemporaryFile , dir=__SCREAMING_SNAKE_CASE , delete=__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( '%s not found in cache or force_download set to True, downloading to %s' , __SCREAMING_SNAKE_CASE , temp_file.name , ) http_get( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , proxies=__SCREAMING_SNAKE_CASE , resume_size=__SCREAMING_SNAKE_CASE , user_agent=__SCREAMING_SNAKE_CASE , ) os.replace(temp_file.name , __SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = {'url': url, 'etag': etag} lowercase_ : str = cache_path + '.json' with open(__SCREAMING_SNAKE_CASE , 'w' ) as meta_file: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return cache_path def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple=None ): lowercase_ : Dict = url.encode('utf-8' ) lowercase_ : Optional[Any] = shaaaa(__SCREAMING_SNAKE_CASE ) lowercase_ : int = url_hash.hexdigest() if etag: lowercase_ : Any = etag.encode('utf-8' ) lowercase_ : Tuple = shaaaa(__SCREAMING_SNAKE_CASE ) filename += "." + etag_hash.hexdigest() if url.endswith('.h5' ): filename += ".h5" return filename def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Optional[int]=None , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : List[str]=None , __SCREAMING_SNAKE_CASE : Optional[int]=False , __SCREAMING_SNAKE_CASE : List[Any]=False , __SCREAMING_SNAKE_CASE : Optional[Any]=False , ): if cache_dir is None: lowercase_ : int = TRANSFORMERS_CACHE if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Any = str(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Dict = str(__SCREAMING_SNAKE_CASE ) if is_remote_url(__SCREAMING_SNAKE_CASE ): # URL, so get it from the cache (downloading if necessary) lowercase_ : int = get_from_cache( __SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE , force_download=__SCREAMING_SNAKE_CASE , proxies=__SCREAMING_SNAKE_CASE , resume_download=__SCREAMING_SNAKE_CASE , user_agent=__SCREAMING_SNAKE_CASE , local_files_only=__SCREAMING_SNAKE_CASE , ) elif os.path.exists(__SCREAMING_SNAKE_CASE ): # File, and it exists. lowercase_ : Optional[Any] = url_or_filename elif urlparse(__SCREAMING_SNAKE_CASE ).scheme == "": # File, but it doesn't exist. raise EnvironmentError('file {} not found'.format(__SCREAMING_SNAKE_CASE ) ) else: # Something unknown raise ValueError('unable to parse {} as a URL or as a local path'.format(__SCREAMING_SNAKE_CASE ) ) if extract_compressed_file: if not is_zipfile(__SCREAMING_SNAKE_CASE ) and not tarfile.is_tarfile(__SCREAMING_SNAKE_CASE ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" lowercase_ : Tuple = os.path.split(__SCREAMING_SNAKE_CASE ) lowercase_ : str = output_file.replace('.' , '-' ) + '-extracted' lowercase_ : Union[str, Any] = os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if os.path.isdir(__SCREAMING_SNAKE_CASE ) and os.listdir(__SCREAMING_SNAKE_CASE ) and not force_extract: return output_path_extracted # Prevent parallel extractions lowercase_ : Any = output_path + '.lock' with FileLock(__SCREAMING_SNAKE_CASE ): shutil.rmtree(__SCREAMING_SNAKE_CASE , ignore_errors=__SCREAMING_SNAKE_CASE ) os.makedirs(__SCREAMING_SNAKE_CASE ) if is_zipfile(__SCREAMING_SNAKE_CASE ): with ZipFile(__SCREAMING_SNAKE_CASE , 'r' ) as zip_file: zip_file.extractall(__SCREAMING_SNAKE_CASE ) zip_file.close() elif tarfile.is_tarfile(__SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = tarfile.open(__SCREAMING_SNAKE_CASE ) tar_file.extractall(__SCREAMING_SNAKE_CASE ) tar_file.close() else: raise EnvironmentError('Archive format of {} could not be identified'.format(__SCREAMING_SNAKE_CASE ) ) return output_path_extracted return output_path def lowercase__( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any]="," ): assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if os.path.isfile(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE ) as f: lowercase_ : int = eval(f.read() ) else: lowercase_ : Dict = requests.get(__SCREAMING_SNAKE_CASE ) try: lowercase_ : Dict = requests.json() except Exception: lowercase_ : str = req.content.decode() assert data is not None, "could not connect" try: lowercase_ : List[Any] = eval(__SCREAMING_SNAKE_CASE ) except Exception: lowercase_ : str = data.split('\n' ) req.close() return data def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] ): lowercase_ : List[str] = requests.get(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = np.array(Image.open(BytesIO(response.content ) ) ) return img def lowercase__( __SCREAMING_SNAKE_CASE : Union[str, Any] ): lowercase_ : List[Any] = url.split('/' )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(__SCREAMING_SNAKE_CASE ) with open(__SCREAMING_SNAKE_CASE , 'rb' ) as stream: lowercase_ : Dict = pkl.load(__SCREAMING_SNAKE_CASE ) lowercase_ : int = weights.pop('model' ) lowercase_ : Tuple = {} for k, v in model.items(): lowercase_ : str = torch.from_numpy(__SCREAMING_SNAKE_CASE ) if "running_var" in k: lowercase_ : Union[str, Any] = torch.tensor([0] ) lowercase_ : Optional[int] = k.replace('running_var' , 'num_batches_tracked' ) lowercase_ : List[Any] = zero return new def lowercase__( ): print(F'''{os.path.abspath(os.path.join(__SCREAMING_SNAKE_CASE , os.pardir ) )}/demo.ipynb''' ) def lowercase__( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any="RGB" ): assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if os.path.isfile(__SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = cva.imread(__SCREAMING_SNAKE_CASE ) else: lowercase_ : Tuple = get_image_from_url(__SCREAMING_SNAKE_CASE ) assert img is not None, F'''could not connect to: {im}''' lowercase_ : Optional[Any] = cva.cvtColor(__SCREAMING_SNAKE_CASE , cva.COLOR_BGR2RGB ) if input_format == "RGB": lowercase_ : Any = img[:, :, ::-1] return img def lowercase__( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int]=1 ): return (images[i : i + batch] for i in range(0 , len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ))
701
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCamelCase ( lowercase_ ): lowercase = 'wav2vec2' def __init__( self ,__UpperCamelCase=32 ,__UpperCamelCase=768 ,__UpperCamelCase=12 ,__UpperCamelCase=12 ,__UpperCamelCase=3072 ,__UpperCamelCase="gelu" ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.0 ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.1 ,__UpperCamelCase=0.02 ,__UpperCamelCase=1e-5 ,__UpperCamelCase="group" ,__UpperCamelCase="gelu" ,__UpperCamelCase=(512, 512, 512, 512, 512, 512, 512) ,__UpperCamelCase=(5, 2, 2, 2, 2, 2, 2) ,__UpperCamelCase=(10, 3, 3, 3, 3, 2, 2) ,__UpperCamelCase=False ,__UpperCamelCase=128 ,__UpperCamelCase=16 ,__UpperCamelCase=False ,__UpperCamelCase=True ,__UpperCamelCase=0.05 ,__UpperCamelCase=10 ,__UpperCamelCase=2 ,__UpperCamelCase=0.0 ,__UpperCamelCase=10 ,__UpperCamelCase=0 ,__UpperCamelCase=320 ,__UpperCamelCase=2 ,__UpperCamelCase=0.1 ,__UpperCamelCase=100 ,__UpperCamelCase=256 ,__UpperCamelCase=256 ,__UpperCamelCase=0.1 ,__UpperCamelCase="sum" ,__UpperCamelCase=False ,__UpperCamelCase=False ,__UpperCamelCase=256 ,__UpperCamelCase=(512, 512, 512, 512, 1500) ,__UpperCamelCase=(5, 3, 3, 1, 1) ,__UpperCamelCase=(1, 2, 3, 1, 1) ,__UpperCamelCase=512 ,__UpperCamelCase=0 ,__UpperCamelCase=1 ,__UpperCamelCase=2 ,__UpperCamelCase=False ,__UpperCamelCase=3 ,__UpperCamelCase=2 ,__UpperCamelCase=3 ,__UpperCamelCase=None ,__UpperCamelCase=None ,**__UpperCamelCase ,) -> Optional[Any]: '''simple docstring''' super().__init__(**__UpperCamelCase ,pad_token_id=__UpperCamelCase ,bos_token_id=__UpperCamelCase ,eos_token_id=__UpperCamelCase ) lowercase_ : Optional[Any] = hidden_size lowercase_ : Tuple = feat_extract_norm lowercase_ : Dict = feat_extract_activation lowercase_ : List[str] = list(__UpperCamelCase ) lowercase_ : str = list(__UpperCamelCase ) lowercase_ : Dict = list(__UpperCamelCase ) lowercase_ : Optional[Any] = conv_bias lowercase_ : Dict = num_conv_pos_embeddings lowercase_ : List[str] = num_conv_pos_embedding_groups lowercase_ : Optional[Any] = len(self.conv_dim ) lowercase_ : Any = num_hidden_layers lowercase_ : List[Any] = intermediate_size lowercase_ : List[Any] = hidden_act lowercase_ : Optional[int] = num_attention_heads lowercase_ : int = hidden_dropout lowercase_ : Dict = attention_dropout lowercase_ : Union[str, Any] = activation_dropout lowercase_ : Tuple = feat_proj_dropout lowercase_ : List[str] = final_dropout lowercase_ : Union[str, Any] = layerdrop lowercase_ : List[str] = layer_norm_eps lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = vocab_size lowercase_ : Optional[int] = do_stable_layer_norm lowercase_ : Union[str, Any] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowercase_ : Dict = apply_spec_augment lowercase_ : Optional[int] = mask_time_prob lowercase_ : Union[str, Any] = mask_time_length lowercase_ : List[str] = mask_time_min_masks lowercase_ : List[str] = mask_feature_prob lowercase_ : Any = mask_feature_length lowercase_ : List[Any] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowercase_ : List[Any] = num_codevectors_per_group lowercase_ : Optional[int] = num_codevector_groups lowercase_ : Dict = contrastive_logits_temperature lowercase_ : int = feat_quantizer_dropout lowercase_ : Optional[int] = num_negatives lowercase_ : str = codevector_dim lowercase_ : str = proj_codevector_dim lowercase_ : Optional[Any] = diversity_loss_weight # ctc loss lowercase_ : Tuple = ctc_loss_reduction lowercase_ : int = ctc_zero_infinity # adapter lowercase_ : int = add_adapter lowercase_ : Dict = adapter_kernel_size lowercase_ : List[str] = adapter_stride lowercase_ : Dict = num_adapter_layers lowercase_ : Dict = output_hidden_size or hidden_size lowercase_ : Optional[Any] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowercase_ : Dict = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowercase_ : Any = list(__UpperCamelCase ) lowercase_ : str = list(__UpperCamelCase ) lowercase_ : Any = list(__UpperCamelCase ) lowercase_ : Tuple = xvector_output_dim @property def _UpperCAmelCase ( self ) -> str: '''simple docstring''' return functools.reduce(operator.mul ,self.conv_stride ,1 )
477
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def a__ ( lowercase : Dict=None ) -> Tuple: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser(add_help=lowercase, allow_abbrev=lowercase ) # The main config parser _UpperCamelCase = config_command_parser(lowercase ) # The subparser to add commands to _UpperCamelCase = config_parser.add_subparsers(title='''subcommands''', dest='''subcommand''' ) # Then add other parsers with the parent parser default_command_parser(lowercase, parents=[parent_parser] ) update_command_parser(lowercase, parents=[parent_parser] ) return config_parser def a__ ( ) -> str: """simple docstring""" _UpperCamelCase = get_config_parser() _UpperCamelCase = config_parser.parse_args() if not hasattr(lowercase, '''func''' ): config_parser.print_help() exit(1 ) # Run args.func(lowercase ) if __name__ == "__main__": main()
98
"""simple docstring""" from scipy.stats import pearsonr import datasets SCREAMING_SNAKE_CASE_ = ''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' SCREAMING_SNAKE_CASE_ = ''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' SCREAMING_SNAKE_CASE_ = ''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def A__ ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def A__ ( self , snake_case_ , snake_case_ , snake_case_=False ) -> Dict: if return_pvalue: __lowerCAmelCase = pearsonr(snake_case_ , snake_case_ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(snake_case_ , snake_case_ )[0] )}
465
0
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : int = '''''' A : Any = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) A : Any = None # compression type in fsspec. ex: "gzip" A : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self, A = "", A = None, A = None, **A ): '''simple docstring''' super().__init__(self, **__UpperCamelCase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode SCREAMING_SNAKE_CASE : int = fsspec.open( __UpperCamelCase, mode='rb', protocol=__UpperCamelCase, compression=self.compression, client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs', {} ), # To avoid issues if it was already passed. }, **(target_options or {}), ) SCREAMING_SNAKE_CASE : List[str] = os.path.basename(self.file.path.split('::' )[0] ) SCREAMING_SNAKE_CASE : str = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) SCREAMING_SNAKE_CASE : Optional[Any] = None @classmethod def UpperCamelCase_ ( cls, A ): '''simple docstring''' return super()._strip_protocol(__UpperCamelCase ).lstrip('/' ) def UpperCamelCase_ ( self ): '''simple docstring''' if self.dir_cache is None: SCREAMING_SNAKE_CASE : Any = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} SCREAMING_SNAKE_CASE : List[str] = {f['name']: f} def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.file.open().read() def UpperCamelCase_ ( self, A, A = "rb", A=None, A=True, A=None, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self._strip_protocol(__UpperCamelCase ) if mode != "rb": raise ValueError(F"Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'" ) return self.file.open() class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Any = '''bz2''' A : Tuple = '''bz2''' A : Optional[Any] = '''.bz2''' class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = '''gzip''' A : Tuple = '''gzip''' A : List[Any] = '''.gz''' class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Tuple = '''lz4''' A : Tuple = '''lz4''' A : Any = '''.lz4''' class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Optional[int] = '''xz''' A : List[str] = '''xz''' A : List[str] = '''.xz''' class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Any = '''zstd''' A : Optional[Any] = '''zstd''' A : int = '''.zst''' def __init__( self, A, A = "rb", A = None, A = None, A = DEFAULT_BLOCK_SIZE, **A, ): '''simple docstring''' super().__init__( fo=__UpperCamelCase, mode=__UpperCamelCase, target_protocol=__UpperCamelCase, target_options=__UpperCamelCase, block_size=__UpperCamelCase, **__UpperCamelCase, ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 SCREAMING_SNAKE_CASE : Optional[Any] = self.file.__enter__ class _a : '''simple docstring''' def __init__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = file_ def __enter__( self ): '''simple docstring''' self._file.__enter__() return self def __exit__( self, *A, **A ): '''simple docstring''' self._file.__exit__(*__UpperCamelCase, **__UpperCamelCase ) def __iter__( self ): '''simple docstring''' return iter(self._file ) def UpperCamelCase_ ( self ): '''simple docstring''' return next(self._file ) def __getattr__( self, A ): '''simple docstring''' return getattr(self._file, __UpperCamelCase ) def fixed_enter(*A, **A ): return WrappedFile(_enter(*__UpperCamelCase, **__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Optional[int] = fixed_enter
707
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def lowercase__( __UpperCamelCase: bytes ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : int = f"{sampling_rate}" SCREAMING_SNAKE_CASE : str = '1' SCREAMING_SNAKE_CASE : Optional[Any] = 'f32le' SCREAMING_SNAKE_CASE : Any = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(__UpperCamelCase ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: SCREAMING_SNAKE_CASE : Tuple = ffmpeg_process.communicate(__UpperCamelCase ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error SCREAMING_SNAKE_CASE : Union[str, Any] = output_stream[0] SCREAMING_SNAKE_CASE : Dict = np.frombuffer(__UpperCamelCase ,np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: float ,__UpperCamelCase: str = "f32le" ,): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = f"{sampling_rate}" SCREAMING_SNAKE_CASE : str = '1' if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : Optional[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Optional[int] = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) SCREAMING_SNAKE_CASE : Optional[Any] = platform.system() if system == "Linux": SCREAMING_SNAKE_CASE : List[str] = 'alsa' SCREAMING_SNAKE_CASE : str = 'default' elif system == "Darwin": SCREAMING_SNAKE_CASE : Dict = 'avfoundation' SCREAMING_SNAKE_CASE : int = ':0' elif system == "Windows": SCREAMING_SNAKE_CASE : str = 'dshow' SCREAMING_SNAKE_CASE : Any = 'default' SCREAMING_SNAKE_CASE : Any = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] SCREAMING_SNAKE_CASE : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample SCREAMING_SNAKE_CASE : Union[str, Any] = _ffmpeg_stream(__UpperCamelCase ,__UpperCamelCase ) for item in iterator: yield item def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: float ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[Union[Tuple[float, float], float]] = None ,__UpperCamelCase: str = "f32le" ,): """simple docstring""" if stream_chunk_s is not None: SCREAMING_SNAKE_CASE : Any = stream_chunk_s else: SCREAMING_SNAKE_CASE : Dict = chunk_length_s SCREAMING_SNAKE_CASE : Tuple = ffmpeg_microphone(__UpperCamelCase ,__UpperCamelCase ,format_for_conversion=__UpperCamelCase ) if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : Optional[int] = np.intaa SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Optional[int] = np.floataa SCREAMING_SNAKE_CASE : List[Any] = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) if stride_length_s is None: SCREAMING_SNAKE_CASE : List[str] = chunk_length_s / 6 SCREAMING_SNAKE_CASE : Optional[Any] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__UpperCamelCase ,(int, float) ): SCREAMING_SNAKE_CASE : str = [stride_length_s, stride_length_s] SCREAMING_SNAKE_CASE : List[str] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample SCREAMING_SNAKE_CASE : List[str] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample SCREAMING_SNAKE_CASE : Union[str, Any] = datetime.datetime.now() SCREAMING_SNAKE_CASE : Dict = datetime.timedelta(seconds=__UpperCamelCase ) for item in chunk_bytes_iter(__UpperCamelCase ,__UpperCamelCase ,stride=(stride_left, stride_right) ,stream=__UpperCamelCase ): # Put everything back in numpy scale SCREAMING_SNAKE_CASE : List[Any] = np.frombuffer(item['raw'] ,dtype=__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[str] = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) SCREAMING_SNAKE_CASE : Any = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: Tuple[int, int] ,__UpperCamelCase: bool = False ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = B'' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for raw in iterator: acc += raw if stream and len(__UpperCamelCase ) < chunk_len: SCREAMING_SNAKE_CASE : Tuple = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__UpperCamelCase ) >= chunk_len: # We are flushing the accumulator SCREAMING_SNAKE_CASE : Optional[int] = (_stride_left, stride_right) SCREAMING_SNAKE_CASE : List[str] = {'raw': acc[:chunk_len], 'stride': stride} if stream: SCREAMING_SNAKE_CASE : Optional[int] = False yield item SCREAMING_SNAKE_CASE : List[Any] = stride_left SCREAMING_SNAKE_CASE : Union[str, Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__UpperCamelCase ) > stride_left: SCREAMING_SNAKE_CASE : Tuple = {'raw': acc, 'stride': (_stride_left, 0)} if stream: SCREAMING_SNAKE_CASE : List[Any] = False yield item def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 2**24 # 16Mo try: with subprocess.Popen(__UpperCamelCase ,stdout=subprocess.PIPE ,bufsize=__UpperCamelCase ) as ffmpeg_process: while True: SCREAMING_SNAKE_CASE : Any = ffmpeg_process.stdout.read(__UpperCamelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
508
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = 'rwkv' SCREAMING_SNAKE_CASE_ = {'max_position_embeddings': 'context_length'} def __init__( self , SCREAMING_SNAKE_CASE_=50277 , SCREAMING_SNAKE_CASE_=1024 , SCREAMING_SNAKE_CASE_=4096 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=6 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , **SCREAMING_SNAKE_CASE_ , ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = vocab_size lowerCamelCase_ = context_length lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = attention_hidden_size if attention_hidden_size is not None else hidden_size lowerCamelCase_ = intermediate_size if intermediate_size is not None else 4 * hidden_size lowerCamelCase_ = layer_norm_epsilon lowerCamelCase_ = rescale_every lowerCamelCase_ = use_cache lowerCamelCase_ = bos_token_id lowerCamelCase_ = eos_token_id super().__init__( tie_word_embeddings=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
42
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class __lowercase (_UpperCAmelCase ): def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Optional[int] = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(A_ ) def UpperCamelCase__ ( self ) ->Any: '''simple docstring''' __lowerCAmelCase : int = self._create_example_records() __lowerCAmelCase : Dict = Dataset.from_list(A_ ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(A_ ): self.assertDictEqual(A_ , example_records[i] ) def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' __lowerCAmelCase : int = self._create_example_records() __lowerCAmelCase : Optional[Any] = Dataset.from_list(A_ ) __lowerCAmelCase : int = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def UpperCamelCase__ ( self ) ->Union[str, Any]: # checks what happens with missing columns '''simple docstring''' __lowerCAmelCase : List[Any] = [{'''col_1''': 1}, {'''col_2''': '''x'''}] __lowerCAmelCase : Union[str, Any] = Dataset.from_list(A_ ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def UpperCamelCase__ ( self ) ->Tuple: # checks if the type can be inferred from the second record '''simple docstring''' __lowerCAmelCase : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] __lowerCAmelCase : Union[str, Any] = Dataset.from_list(A_ ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : Any = Dataset.from_list([] ) self.assertEqual(len(A_ ) , 0 ) self.assertListEqual(dset.column_names , [] )
492
0
"""simple docstring""" __SCREAMING_SNAKE_CASE ="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def lowercase__( __SCREAMING_SNAKE_CASE : bytes ): # Make sure the supplied data is a bytes-like object if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Dict = F'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(__SCREAMING_SNAKE_CASE ) lowercase_ : List[Any] = ''.join(bin(__SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data ) lowercase_ : List[Any] = len(__SCREAMING_SNAKE_CASE ) % 6 != 0 if padding_needed: # The padding that will be added later lowercase_ : Optional[int] = b'=' * ((6 - len(__SCREAMING_SNAKE_CASE ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(__SCREAMING_SNAKE_CASE ) % 6) else: lowercase_ : List[Any] = b'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(__SCREAMING_SNAKE_CASE ) , 6 ) ).encode() + padding ) def lowercase__( __SCREAMING_SNAKE_CASE : str ): # Make sure encoded_data is either a string or a bytes-like object if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Tuple = ( 'argument should be a bytes-like object or ASCII string, ' F'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(__SCREAMING_SNAKE_CASE ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): try: lowercase_ : List[str] = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) lowercase_ : List[str] = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(__SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowercase_ : Union[str, Any] = encoded_data[:-padding] lowercase_ : List[Any] = ''.join( bin(B64_CHARSET.index(__SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowercase_ : int = ''.join( bin(B64_CHARSET.index(__SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data ) lowercase_ : str = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(__SCREAMING_SNAKE_CASE ) , 8 ) ] return bytes(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
477
"""simple docstring""" import numpy as np def lowercase__( __SCREAMING_SNAKE_CASE : np.array ): return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
477
1
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCamelCase ( UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case = OpenAIGPTTokenizer snake_case = OpenAIGPTTokenizerFast snake_case = True snake_case = False def _snake_case ( self )->str: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A_ : Optional[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] A_ : Tuple = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) A_ : Any = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] A_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(_SCREAMING_SNAKE_CASE ) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' return "lower newer", "lower newer" def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : List[str] = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) A_ : Optional[int] = '''lower''' A_ : Dict = ['''low''', '''er</w>'''] A_ : Any = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Optional[int] = tokens + ['''<unk>'''] A_ : Union[str, Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE=15 )->Optional[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ : Optional[int] = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # Simple input A_ : Optional[Any] = '''This is a simple input''' A_ : Any = ['''This is a simple input 1''', '''This is a simple input 2'''] A_ : Dict = ('''This is a simple input''', '''This is a pair''') A_ : Optional[int] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Simple input self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Simple input self.assertRaises( _SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='''max_length''' , ) # Pair input self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Pair input self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Pair input self.assertRaises( _SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='''max_length''' , ) def _snake_case ( self )->List[Any]: '''simple docstring''' pass @require_ftfy @require_spacy @require_tokenizers class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" pass
590
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Dict = [0 for i in range(r + 1 )] # nc0 = 1 A_ : Tuple = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. A_ : str = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
590
1
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class snake_case_ ( unittest.TestCase ): def __A ( self ): SCREAMING_SNAKE_CASE_ : List[str] = 'ylacombe/bark-small' SCREAMING_SNAKE_CASE_ : Dict = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : int = 'en_speaker_1' SCREAMING_SNAKE_CASE_ : Tuple = 'This is a test string' SCREAMING_SNAKE_CASE_ : Optional[Any] = 'speaker_embeddings_path.json' SCREAMING_SNAKE_CASE_ : Optional[Any] = 'speaker_embeddings' def __A ( self , **__lowerCAmelCase ): return AutoTokenizer.from_pretrained(self.checkpoint , **__lowerCAmelCase ) def __A ( self ): shutil.rmtree(self.tmpdirname ) def __A ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Any = BarkProcessor(tokenizer=__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ : List[str] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __A ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __A ( self ): SCREAMING_SNAKE_CASE_ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 35 SCREAMING_SNAKE_CASE_ : Optional[int] = 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 8 SCREAMING_SNAKE_CASE_ : str = { 'semantic_prompt': np.ones(__lowerCAmelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset SCREAMING_SNAKE_CASE_ : Any = processor(text=self.input_string , voice_preset=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowerCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file SCREAMING_SNAKE_CASE_ : int = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(__lowerCAmelCase , **__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = processor(text=self.input_string , voice_preset=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(__lowerCAmelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub SCREAMING_SNAKE_CASE_ : int = processor(text=self.input_string , voice_preset=self.voice_preset ) def __A ( self ): SCREAMING_SNAKE_CASE_ : List[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE_ : Optional[int] = BarkProcessor(tokenizer=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = processor(text=self.input_string ) SCREAMING_SNAKE_CASE_ : Any = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
712
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase__: Optional[int] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__: Dict = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowerCAmelCase__: Any = spec.loader.load_module() lowerCAmelCase__: Union[str, Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase__: Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") lowerCAmelCase__: Dict = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def __SCREAMING_SNAKE_CASE ( ) -> int: SCREAMING_SNAKE_CASE_ : List[str] = [] for config_class in list(CONFIG_MAPPING.values() ): SCREAMING_SNAKE_CASE_ : Any = False # source code of `config_class` SCREAMING_SNAKE_CASE_ : Optional[Any] = inspect.getsource(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = _re_checkpoint.findall(SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = checkpoint # verify the checkpoint name corresponds to the checkpoint link SCREAMING_SNAKE_CASE_ : Optional[Any] = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: SCREAMING_SNAKE_CASE_ : Tuple = True break SCREAMING_SNAKE_CASE_ : Any = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: SCREAMING_SNAKE_CASE_ : str = '\n'.join(sorted(SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
311
0
def __UpperCamelCase ( lowercase__ : str , lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = len(lowercase__ ) lowerCAmelCase_ : int = len(lowercase__ ) lowerCAmelCase_ : List[str] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] lowerCAmelCase_ : List[Any] = True for i in range(lowercase__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: lowerCAmelCase_ : Dict = True if a[i].islower(): lowerCAmelCase_ : List[Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
600
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __a ( ctypes.Structure ): # _fields is a specific attr expected by ctypes __snake_case : Optional[Any] = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def __UpperCamelCase ( ) -> Optional[Any]: '''simple docstring''' if os.name == "nt": lowerCAmelCase_ : str = CursorInfo() lowerCAmelCase_ : Dict = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowercase__ , ctypes.byref(lowercase__ ) ) lowerCAmelCase_ : str = False ctypes.windll.kernelaa.SetConsoleCursorInfo(lowercase__ , ctypes.byref(lowercase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def __UpperCamelCase ( ) -> int: '''simple docstring''' if os.name == "nt": lowerCAmelCase_ : int = CursorInfo() lowerCAmelCase_ : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(lowercase__ , ctypes.byref(lowercase__ ) ) lowerCAmelCase_ : Tuple = True ctypes.windll.kernelaa.SetConsoleCursorInfo(lowercase__ , ctypes.byref(lowercase__ ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' try: hide_cursor() yield finally: show_cursor()
600
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def _lowerCamelCase( UpperCamelCase__ : Any ) -> Union[str, Any]: A : Optional[int] = botoa.client('''iam''' ) A : Union[str, Any] = { '''Version''': '''2012-10-17''', '''Statement''': [ {'''Effect''': '''Allow''', '''Principal''': {'''Service''': '''sagemaker.amazonaws.com'''}, '''Action''': '''sts:AssumeRole'''} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=A_ , AssumeRolePolicyDocument=json.dumps(A_ , indent=2 ) ) A : str = { '''Version''': '''2012-10-17''', '''Statement''': [ { '''Effect''': '''Allow''', '''Action''': [ '''sagemaker:*''', '''ecr:GetDownloadUrlForLayer''', '''ecr:BatchGetImage''', '''ecr:BatchCheckLayerAvailability''', '''ecr:GetAuthorizationToken''', '''cloudwatch:PutMetricData''', '''cloudwatch:GetMetricData''', '''cloudwatch:GetMetricStatistics''', '''cloudwatch:ListMetrics''', '''logs:CreateLogGroup''', '''logs:CreateLogStream''', '''logs:DescribeLogStreams''', '''logs:PutLogEvents''', '''logs:GetLogEvents''', '''s3:CreateBucket''', '''s3:ListBucket''', '''s3:GetBucketLocation''', '''s3:GetObject''', '''s3:PutObject''', ], '''Resource''': '''*''', } ], } # attach policy to role iam_client.put_role_policy( RoleName=A_ , PolicyName=F'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(A_ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F'''role {role_name} already exists. Using existing one''' ) def _lowerCamelCase( UpperCamelCase__ : Optional[int] ) -> Optional[Any]: A : int = botoa.client('''iam''' ) return iam_client.get_role(RoleName=A_ )["Role"]["Arn"] def _lowerCamelCase( ) -> List[Any]: A : Optional[int] = _ask_options( '''How do you want to authorize?''' , ['''AWS Profile''', '''Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '''] , A_ , ) A : Dict = None if credentials_configuration == 0: A : List[str] = _ask_field('''Enter your AWS Profile name: [default] ''' , default='''default''' ) A : Union[str, Any] = aws_profile else: print( '''Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,''' '''`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`''' ) A : List[Any] = _ask_field('''AWS Access Key ID: ''' ) A : Optional[int] = aws_access_key_id A : Optional[int] = _ask_field('''AWS Secret Access Key: ''' ) A : int = aws_secret_access_key A : Union[str, Any] = _ask_field('''Enter your AWS Region: [us-east-1]''' , default='''us-east-1''' ) A : Optional[int] = aws_region A : Tuple = _ask_options( '''Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?''' , ['''Provide IAM Role name''', '''Create new IAM role using credentials'''] , A_ , ) if role_management == 0: A : List[str] = _ask_field('''Enter your IAM role name: ''' ) else: A : str = '''accelerate_sagemaker_execution_role''' print(F'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(A_ ) A : str = _ask_field( '''Do you want to use custom Docker image? [yes/NO]: ''' , _convert_yes_no_to_bool , default=A_ , error_message='''Please enter yes or no.''' , ) A : Optional[Any] = None if is_custom_docker_image: A : Dict = _ask_field('''Enter your Docker image: ''' , lambda UpperCamelCase__ : str(A_ ).lower() ) A : Any = _ask_field( '''Do you want to provide SageMaker input channels with data locations? [yes/NO]: ''' , _convert_yes_no_to_bool , default=A_ , error_message='''Please enter yes or no.''' , ) A : Dict = None if is_sagemaker_inputs_enabled: A : List[Any] = _ask_field( '''Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ''' , lambda UpperCamelCase__ : str(A_ ).lower() , ) A : Union[str, Any] = _ask_field( '''Do you want to enable SageMaker metrics? [yes/NO]: ''' , _convert_yes_no_to_bool , default=A_ , error_message='''Please enter yes or no.''' , ) A : int = None if is_sagemaker_metrics_enabled: A : List[Any] = _ask_field( '''Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ''' , lambda UpperCamelCase__ : str(A_ ).lower() , ) A : Any = _ask_options( '''What is the distributed mode?''' , ['''No distributed training''', '''Data parallelism'''] , _convert_sagemaker_distributed_mode , ) A : Union[str, Any] = {} A : Union[str, Any] = _ask_field( '''Do you wish to optimize your script with torch dynamo?[yes/NO]:''' , _convert_yes_no_to_bool , default=A_ , error_message='''Please enter yes or no.''' , ) if use_dynamo: A : int = '''dynamo_''' A : List[str] = _ask_options( '''Which dynamo backend would you like to use?''' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) A : int = _ask_field( '''Do you want to customize the defaults sent to torch.compile? [yes/NO]: ''' , _convert_yes_no_to_bool , default=A_ , error_message='''Please enter yes or no.''' , ) if use_custom_options: A : str = _ask_options( '''Which mode do you want to use?''' , A_ , lambda UpperCamelCase__ : TORCH_DYNAMO_MODES[int(A_ )] , default='''default''' , ) A : Union[str, Any] = _ask_field( '''Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ''' , _convert_yes_no_to_bool , default=A_ , error_message='''Please enter yes or no.''' , ) A : Optional[int] = _ask_field( '''Do you want to enable dynamic shape tracing? [yes/NO]: ''' , _convert_yes_no_to_bool , default=A_ , error_message='''Please enter yes or no.''' , ) A : List[str] = '''Which EC2 instance type you want to use for your training?''' if distributed_type != SageMakerDistributedType.NO: A : Union[str, Any] = _ask_options( A_ , A_ , lambda UpperCamelCase__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(A_ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" A : List[Any] = _ask_field(A_ , lambda UpperCamelCase__ : str(A_ ).lower() , default='''ml.p3.2xlarge''' ) A : Dict = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): A : List[Any] = _ask_field( '''How many machines do you want use? [1]: ''' , A_ , default=1 , ) A : List[str] = _ask_options( '''Do you wish to use FP16 or BF16 (mixed precision)?''' , ['''no''', '''fp16''', '''bf16''', '''fp8'''] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( '''Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.''' ) return SageMakerConfig( image_uri=A_ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=A_ , use_cpu=A_ , dynamo_config=A_ , eca_instance_type=A_ , profile=A_ , region=A_ , iam_role_name=A_ , mixed_precision=A_ , num_machines=A_ , sagemaker_inputs_file=A_ , sagemaker_metrics_file=A_ , )
710
'''simple docstring''' from __future__ import annotations import math def _lowerCamelCase( UpperCamelCase__ : int ) -> list[int]: if num <= 0: A : str = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(UpperCamelCase__ ) A : int = [True] * (num + 1) A : Dict = [] A : str = 2 A : Any = int(math.sqrt(UpperCamelCase__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(UpperCamelCase__ ) # Set multiples of start be False for i in range(start * start , num + 1 , UpperCamelCase__ ): if sieve[i] is True: A : Union[str, Any] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(UpperCamelCase__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
537
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json', } class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = """nllb-moe""" _a = ["""past_key_values"""] _a = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowerCAmelCase=128_112 , lowerCAmelCase=1_024 , lowerCAmelCase=12 , lowerCAmelCase=4_096 , lowerCAmelCase=16 , lowerCAmelCase=12 , lowerCAmelCase=4_096 , lowerCAmelCase=16 , lowerCAmelCase=0.05 , lowerCAmelCase=0.05 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase="relu" , lowerCAmelCase=1_024 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=0.0 , lowerCAmelCase=0.02 , lowerCAmelCase=2 , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase="float32" , lowerCAmelCase=False , lowerCAmelCase=128 , lowerCAmelCase=64 , lowerCAmelCase=4 , lowerCAmelCase=4 , lowerCAmelCase=0.001 , lowerCAmelCase=0.001 , lowerCAmelCase="all" , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=1.0 , lowerCAmelCase=0.2 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase=False , **lowerCAmelCase , ) -> Any: '''simple docstring''' _lowercase =vocab_size _lowercase =max_position_embeddings _lowercase =d_model _lowercase =encoder_ffn_dim _lowercase =encoder_layers _lowercase =encoder_attention_heads _lowercase =decoder_ffn_dim _lowercase =decoder_layers _lowercase =decoder_attention_heads _lowercase =dropout _lowercase =attention_dropout _lowercase =activation_dropout _lowercase =activation_function _lowercase =init_std _lowercase =encoder_layerdrop _lowercase =decoder_layerdrop _lowercase =use_cache _lowercase =encoder_layers _lowercase =scale_embedding # scale factor will be sqrt(d_model) if True _lowercase =router_z_loss_coef _lowercase =router_aux_loss_coef _lowercase =decoder_sparse_step _lowercase =encoder_sparse_step _lowercase =num_experts _lowercase =expert_capacity _lowercase =router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) _lowercase =router_dtype _lowercase =router_ignore_padding_tokens _lowercase =batch_prioritized_routing _lowercase =second_expert_policy _lowercase =normalize_router_prob_before_dropping _lowercase =moe_eval_capacity_token_fraction _lowercase =moe_token_dropout _lowercase =output_router_logits super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
291
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
291
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __lowerCAmelCase = { '''configuration_layoutlmv3''': [ '''LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LayoutLMv3Config''', '''LayoutLMv3OnnxConfig''', ], '''processing_layoutlmv3''': ['''LayoutLMv3Processor'''], '''tokenization_layoutlmv3''': ['''LayoutLMv3Tokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['''LayoutLMv3TokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LayoutLMv3ForQuestionAnswering''', '''LayoutLMv3ForSequenceClassification''', '''LayoutLMv3ForTokenClassification''', '''LayoutLMv3Model''', '''LayoutLMv3PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLayoutLMv3ForQuestionAnswering''', '''TFLayoutLMv3ForSequenceClassification''', '''TFLayoutLMv3ForTokenClassification''', '''TFLayoutLMv3Model''', '''TFLayoutLMv3PreTrainedModel''', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['''LayoutLMv3FeatureExtractor'''] __lowerCAmelCase = ['''LayoutLMv3ImageProcessor'''] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
704
"""simple docstring""" import requests from bsa import BeautifulSoup def A_ ( __UpperCamelCase : str , __UpperCamelCase : dict ): lowercase = BeautifulSoup(requests.get(__UpperCamelCase , params=__UpperCamelCase ).content , '''html.parser''' ) lowercase = soup.find('''div''' , attrs={'''class''': '''gs_ri'''} ) lowercase = div.find('''div''' , attrs={'''class''': '''gs_fl'''} ).find_all('''a''' ) return anchors[2].get_text() if __name__ == "__main__": __lowerCAmelCase = { '''title''': ( '''Precisely geometry controlled microsupercapacitors for ultrahigh areal ''' '''capacitance, volumetric capacitance, and energy density''' ), '''journal''': '''Chem. Mater.''', '''volume''': 30, '''pages''': '''3979-3990''', '''year''': 2_018, '''hl''': '''en''', } print(get_citation('''https://scholar.google.com/scholar_lookup''', params=params))
396
0
'''simple docstring''' from math import factorial lowercase__ : dict[str, int] = {str(digit): factorial(digit) for digit in range(10)} def a__ ( lowercase : int ) -> int: """simple docstring""" if not isinstance(lowercase, lowercase ): raise TypeError('''Parameter number must be int''' ) if number < 0: raise ValueError('''Parameter number must be greater than or equal to 0''' ) # Converts number in string to iterate on its digits and adds its factorial. return sum(DIGIT_FACTORIAL[digit] for digit in str(lowercase ) ) def a__ ( lowercase : int = 60, lowercase : int = 1000000 ) -> int: """simple docstring""" if not isinstance(lowercase, lowercase ) or not isinstance(lowercase, lowercase ): raise TypeError('''Parameters chain_length and number_limit must be int''' ) if chain_length <= 0 or number_limit <= 0: raise ValueError( '''Parameters chain_length and number_limit must be greater than 0''' ) # the counter for the chains with the exact desired length _UpperCamelCase = 0 # the cached sizes of the previous chains _UpperCamelCase = {} for start_chain_element in range(1, lowercase ): # The temporary set will contain the elements of the chain _UpperCamelCase = set() _UpperCamelCase = 0 # Stop computing the chain when you find a cached size, a repeating item or the # length is greater then the desired one. _UpperCamelCase = start_chain_element while ( chain_element not in chain_sets_lengths and chain_element not in chain_set and chain_set_length <= chain_length ): chain_set.add(lowercase ) chain_set_length += 1 _UpperCamelCase = digit_factorial_sum(lowercase ) if chain_element in chain_sets_lengths: chain_set_length += chain_sets_lengths[chain_element] _UpperCamelCase = chain_set_length # If chain contains the exact amount of elements increase the counter if chain_set_length == chain_length: chains_counter += 1 return chains_counter if __name__ == "__main__": import doctest doctest.testmod() print(F"""{solution()}""")
98
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType SCREAMING_SNAKE_CASE__ : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off SCREAMING_SNAKE_CASE__ : int = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] SCREAMING_SNAKE_CASE__ : List[str] = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class __lowerCAmelCase ( _UpperCamelCase ): _UpperCamelCase : Any = """whisper""" _UpperCamelCase : Union[str, Any] = ["""past_key_values"""] _UpperCamelCase : Union[str, Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , snake_case=51_865 , snake_case=80 , snake_case=6 , snake_case=4 , snake_case=6 , snake_case=4 , snake_case=1_536 , snake_case=1_536 , snake_case=0.0 , snake_case=0.0 , snake_case=50_257 , snake_case=True , snake_case=True , snake_case="gelu" , snake_case=256 , snake_case=0.0 , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=False , snake_case=1_500 , snake_case=448 , snake_case=50_256 , snake_case=50_256 , snake_case=50_256 , snake_case=None , snake_case=[220, 50_256] , snake_case=False , snake_case=256 , snake_case=False , snake_case=0.05 , snake_case=10 , snake_case=2 , snake_case=0.0 , snake_case=10 , snake_case=0 , snake_case=7 , **snake_case , ) -> Dict: """simple docstring""" a__ : Optional[Any] = vocab_size a__ : int = num_mel_bins a__ : Dict = d_model a__ : List[Any] = encoder_layers a__ : List[Any] = encoder_attention_heads a__ : Optional[int] = decoder_layers a__ : int = decoder_attention_heads a__ : Optional[Any] = decoder_ffn_dim a__ : List[Any] = encoder_ffn_dim a__ : int = dropout a__ : Optional[int] = attention_dropout a__ : Tuple = activation_dropout a__ : Optional[Any] = activation_function a__ : List[Any] = init_std a__ : List[Any] = encoder_layerdrop a__ : Dict = decoder_layerdrop a__ : List[Any] = use_cache a__ : Union[str, Any] = encoder_layers a__ : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True a__ : Tuple = max_source_positions a__ : Optional[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. a__ : Optional[Any] = classifier_proj_size a__ : int = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a__ : Tuple = apply_spec_augment a__ : int = mask_time_prob a__ : Optional[Any] = mask_time_length a__ : List[str] = mask_time_min_masks a__ : List[str] = mask_feature_prob a__ : Dict = mask_feature_length a__ : Any = mask_feature_min_masks a__ : List[str] = median_filter_width super().__init__( pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , is_encoder_decoder=snake_case , decoder_start_token_id=snake_case , suppress_tokens=snake_case , begin_suppress_tokens=snake_case , **snake_case , ) class __lowerCAmelCase ( _UpperCamelCase ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" a__ : Dict = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: a__ : Tuple = {0: "batch"} else: a__ : Union[str, Any] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(snake_case , direction="inputs" ) return common_inputs def _snake_case ( self , snake_case , snake_case = -1 , snake_case = -1 , snake_case = False , snake_case = None , snake_case = 22_050 , snake_case = 5.0 , snake_case = 220 , ) -> Mapping[str, Any]: """simple docstring""" a__ : int = OrderedDict() a__ : List[str] = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=snake_case , framework=snake_case , sampling_rate=snake_case , time_duration=snake_case , frequency=snake_case , ) a__ : Optional[int] = encoder_inputs["input_features"].shape[2] a__ : str = encoder_sequence_length // 2 if self.use_past else seq_length a__ : Optional[int] = super().generate_dummy_inputs( preprocessor.tokenizer , snake_case , snake_case , snake_case , snake_case ) a__ : Any = encoder_inputs.pop("input_features" ) a__ : Dict = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: a__ : Tuple = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def _snake_case ( self ) -> float: """simple docstring""" return 1E-3
112
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase): @slow def a_ ( self : List[Any] ): """simple docstring""" A_ : List[str] = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=_lowerCamelCase ).to(_lowerCamelCase ) A_ : int = AutoTokenizer.from_pretrained('''google/mt5-small''' ) A_ : List[Any] = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids A_ : Any = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids A_ : Tuple = model(input_ids.to(_lowerCamelCase ) , labels=labels.to(_lowerCamelCase ) ).loss A_ : Optional[Any] = -(labels.shape[-1] * loss.item()) A_ : List[Any] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
361
"""simple docstring""" # Function to print upper half of diamond (pyramid) def lowercase_ ( _UpperCAmelCase ): """simple docstring""" for i in range(0 , _UpperCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def lowercase_ ( _UpperCAmelCase ): """simple docstring""" for i in range(_UpperCAmelCase , 0 , -1 ): for _ in range(_UpperCAmelCase , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def lowercase_ ( _UpperCAmelCase ): """simple docstring""" if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(_UpperCAmelCase ) # upper half reverse_floyd(_UpperCAmelCase ) # lower half if __name__ == "__main__": print(r'| /\ | |- | |- |--| |\ /| |-') print(r'|/ \| |- |_ |_ |__| | \/ | |_') _lowerCamelCase : Tuple = 1 while K: _lowerCamelCase : Optional[int] = int(input('enter the number and , and see the magic : ')) print() pretty_print(user_number) _lowerCamelCase : Optional[Any] = int(input('press 0 to exit... and 1 to continue...')) print('Good Bye...')
361
1
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
225
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" __a = os.path.abspath(_SCREAMING_SNAKE_CASE ) logger.info(f"Converting TensorFlow checkpoint from {tf_path}" ) # Load weights from TF model __a = tf.train.list_variables(_SCREAMING_SNAKE_CASE ) __a = [] __a = [] __a = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") __a = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"Skipping non-model layer {full_name}" ) continue if "optimizer" in full_name: logger.info(f"Skipping optimization layer {full_name}" ) continue if name[0] == "model": # ignore initial 'model' __a = name[1:] # figure out how many levels deep the name is __a = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(_SCREAMING_SNAKE_CASE ) # read data __a = tf.train.load_variable(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) names.append("""/""".join(_SCREAMING_SNAKE_CASE ) ) arrays.append(_SCREAMING_SNAKE_CASE ) logger.info(f"Read a total of {len(_SCREAMING_SNAKE_CASE ):,} layers" ) # Sanity check if len(set(_SCREAMING_SNAKE_CASE ) ) != 1: raise ValueError(f"Found layer names with different depths (layer depth {list(set(_SCREAMING_SNAKE_CASE ) )})" ) __a = list(set(_SCREAMING_SNAKE_CASE ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __a = full_name.split("""/""" ) __a = model __a = [] for i, m_name in enumerate(_SCREAMING_SNAKE_CASE ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): __a = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) __a = getattr(_SCREAMING_SNAKE_CASE , """embeddings""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) __a = getattr(_SCREAMING_SNAKE_CASE , """encoder""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """layer""" ) __a = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) __a = getattr(_SCREAMING_SNAKE_CASE , """pooler""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """token_type_embeddings""" ) else: raise ValueError(f"Unknown embedding layer with name {full_name}" ) trace.append("""weight""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) __a = getattr(_SCREAMING_SNAKE_CASE , """attention""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) __a = getattr(_SCREAMING_SNAKE_CASE , """attention""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """output""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) __a = getattr(_SCREAMING_SNAKE_CASE , """attention""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """output""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) __a = getattr(_SCREAMING_SNAKE_CASE , """output""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) __a = getattr(_SCREAMING_SNAKE_CASE , """output""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) __a = getattr(_SCREAMING_SNAKE_CASE , """intermediate""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) __a = getattr(_SCREAMING_SNAKE_CASE , """weight""" ) else: logger.warning(f"Ignored {m_name}" ) # for certain layers reshape is necessary __a = """.""".join(_SCREAMING_SNAKE_CASE ) if re.match(r"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , _SCREAMING_SNAKE_CASE ) or re.match( r"""(\S+)\.attention\.output\.dense\.weight""" , _SCREAMING_SNAKE_CASE ): __a = array.reshape(pointer.data.shape ) if "kernel" in full_name: __a = array.transpose() if pointer.shape == array.shape: __a = torch.from_numpy(_SCREAMING_SNAKE_CASE ) else: raise ValueError( f"Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:" f" {array.shape}" ) logger.info(f"Successfully set variable {full_name} to PyTorch layer {trace}" ) return model def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str ): """simple docstring""" logger.info(f"Loading model based on config from {config_path}..." ) __a = BertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) __a = BertModel(_SCREAMING_SNAKE_CASE ) # Load weights from checkpoint logger.info(f"Loading weights from checkpoint {tf_checkpoint_path}..." ) load_tfa_weights_in_bert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model logger.info(f"Saving PyTorch model to {pytorch_dump_path}..." ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow 2.x checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model (must include filename).""", ) lowerCamelCase__ = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
225
1
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging lowercase_ = "\\n\n" lowercase_ = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" lowercase_ = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): '''simple docstring''' def a__ (self ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''input_texts''': datasets.Value('''string''' ), } ) , reference_urls=['''https://huggingface.co/docs/transformers/perplexity'''] , ) def a__ (self , A , A , A = 16 , A = True , A=None ) -> Optional[int]: """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": _a = '''cuda''' else: _a = '''cuda''' if torch.cuda.is_available() else '''cpu''' _a = AutoModelForCausalLM.from_pretrained(A ) _a = model.to(A ) _a = AutoTokenizer.from_pretrained(A ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: _a = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(A ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'''pad_token''': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" _a = model.config.max_length - 1 else: _a = model.config.max_length _a = tokenizer( A , add_special_tokens=A , padding=A , truncation=A , max_length=A , return_tensors='''pt''' , return_attention_mask=A , ).to(A ) _a = encodings['''input_ids'''] _a = encodings['''attention_mask'''] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." _a = [] _a = CrossEntropyLoss(reduction='''none''' ) for start_index in logging.tqdm(range(0 , len(A ) , A ) ): _a = min(start_index + batch_size , len(A ) ) _a = encoded_texts[start_index:end_index] _a = attn_masks[start_index:end_index] if add_start_token: _a = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(A ) _a = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) _a = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(A ), attn_mask] , dim=1 ) _a = encoded_batch with torch.no_grad(): _a = model(A , attention_mask=A ).logits _a = out_logits[..., :-1, :].contiguous() _a = labels[..., 1:].contiguous() _a = attn_mask[..., 1:].contiguous() _a = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , A ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(A )}
352
'''simple docstring''' from __future__ import annotations import math def lowerCAmelCase (__A , __A , __A , __A , __A): """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''') if not scores: raise ValueError('''Scores cannot be empty''') if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __A , __A , __A) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __A , __A , __A) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A) , ) ) def lowerCAmelCase (): """simple docstring""" _a = [90, 23, 6, 33, 21, 65, 123, 34_423] _a = math.log(len(__A) , 2) print(F'''Optimal value : {minimax(0 , 0 , __A , __A , __A)}''') if __name__ == "__main__": import doctest doctest.testmod() main()
352
1
from __future__ import annotations from typing import Any def _SCREAMING_SNAKE_CASE ( __snake_case ) -> None: create_state_space_tree(__snake_case , [] , 0 ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case ) -> None: if index == len(__snake_case ): print(__snake_case ) return create_state_space_tree(__snake_case , __snake_case , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__snake_case , __snake_case , index + 1 ) current_subsequence.pop() if __name__ == "__main__": __a: list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
108
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = 'ylacombe/bark-small' lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = 'en_speaker_1' lowerCamelCase_ = 'This is a test string' lowerCamelCase_ = 'speaker_embeddings_path.json' lowerCamelCase_ = 'speaker_embeddings' def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) lowerCamelCase_ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) lowerCamelCase_ = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) lowerCamelCase_ = 35 lowerCamelCase_ = 2 lowerCamelCase_ = 8 lowerCamelCase_ = { 'semantic_prompt': np.ones(SCREAMING_SNAKE_CASE_ ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset lowerCamelCase_ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file lowerCamelCase_ = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = processor(text=self.input_string , voice_preset=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(SCREAMING_SNAKE_CASE_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub lowerCamelCase_ = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = BarkProcessor(tokenizer=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = processor(text=self.input_string ) lowerCamelCase_ = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
42
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging a_ : int = logging.get_logger(__name__) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" _lowercase : str = ["pixel_values"] def __init__( self , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 1 / 2_5_5 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> None: super().__init__(**_lowerCamelCase ) a__ = size if size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} a__ = get_size_dict(_lowerCamelCase ) a__ = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} a__ = get_size_dict(_lowerCamelCase , default_to_square=_lowerCamelCase , param_name='''crop_size''' ) a__ = do_resize a__ = do_rescale a__ = do_normalize a__ = do_center_crop a__ = crop_size a__ = size a__ = resample a__ = rescale_factor a__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN a__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray: a__ = get_size_dict(_lowerCamelCase ) if "shortest_edge" in size: a__ = get_resize_output_image_size(_lowerCamelCase , size=size['''shortest_edge'''] , default_to_square=_lowerCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: a__ = (size['''height'''], size['''width''']) else: raise ValueError(f"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray: a__ = get_size_dict(_lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(_lowerCamelCase , size=(size['''height'''], size['''width''']) , data_format=_lowerCamelCase , **_lowerCamelCase ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE ) -> np.ndarray: return rescale(_lowerCamelCase , scale=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> np.ndarray: return normalize(_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase , data_format=_lowerCamelCase , **_lowerCamelCase ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE , ) -> BatchFeature: a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = do_normalize if do_normalize is not None else self.do_normalize a__ = do_center_crop if do_center_crop is not None else self.do_center_crop a__ = crop_size if crop_size is not None else self.crop_size a__ = get_size_dict(_lowerCamelCase , param_name='''crop_size''' , default_to_square=_lowerCamelCase ) a__ = resample if resample is not None else self.resample a__ = rescale_factor if rescale_factor is not None else self.rescale_factor a__ = image_mean if image_mean is not None else self.image_mean a__ = image_std if image_std is not None else self.image_std a__ = size if size is not None else self.size a__ = get_size_dict(_lowerCamelCase ) if not is_batched(_lowerCamelCase ): a__ = [images] if not valid_images(_lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. a__ = [to_numpy_array(_lowerCamelCase ) for image in images] if do_resize: a__ = [self.resize(image=_lowerCamelCase , size=_lowerCamelCase , resample=_lowerCamelCase ) for image in images] if do_center_crop: a__ = [self.center_crop(image=_lowerCamelCase , size=_lowerCamelCase ) for image in images] if do_rescale: a__ = [self.rescale(image=_lowerCamelCase , scale=_lowerCamelCase ) for image in images] if do_normalize: a__ = [self.normalize(image=_lowerCamelCase , mean=_lowerCamelCase , std=_lowerCamelCase ) for image in images] a__ = [to_channel_dimension_format(_lowerCamelCase , _lowerCamelCase ) for image in images] a__ = {'''pixel_values''': images} return BatchFeature(data=_lowerCamelCase , tensor_type=_lowerCamelCase )
712
from manim import * class __UpperCamelCase ( _lowercase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Dict: a__ = Rectangle(height=0.5 , width=0.5 ) a__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) a__ = [mem.copy() for i in range(6 )] a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0 ) a__ = VGroup(*SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0 ) a__ = VGroup(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0 ) a__ = Text('''CPU''' , font_size=2_4 ) a__ = Group(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE ) cpu.move_to([-2.5, -0.5, 0] ) self.add(SCREAMING_SNAKE_CASE ) a__ = [mem.copy() for i in range(1 )] a__ = VGroup(*SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0 ) a__ = Text('''GPU''' , font_size=2_4 ) a__ = Group(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE ) gpu.align_to(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) gpu.set_x(gpu.get_x() - 1 ) self.add(SCREAMING_SNAKE_CASE ) a__ = [mem.copy() for i in range(6 )] a__ = VGroup(*SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0 ) a__ = Text('''Model''' , font_size=2_4 ) a__ = Group(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).arrange(SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE ) model.move_to([3, -1.0, 0] ) self.play( Create(SCREAMING_SNAKE_CASE , run_time=1 ) , Create(SCREAMING_SNAKE_CASE , run_time=1 ) , Create(SCREAMING_SNAKE_CASE , run_time=1 ) , ) a__ = MarkupText( f"First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM." , font_size=2_4 , ) a__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a__ = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE , run_time=2.5 ) , Write(SCREAMING_SNAKE_CASE ) , Write(SCREAMING_SNAKE_CASE ) ) self.add(SCREAMING_SNAKE_CASE ) a__ = [] a__ = [] a__ = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE ): a__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(SCREAMING_SNAKE_CASE , opacity=0.7 ) cpu_target.move_to(SCREAMING_SNAKE_CASE ) cpu_target.generate_target() a__ = 0.46 / 4 a__ = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=SCREAMING_SNAKE_CASE ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=SCREAMING_SNAKE_CASE , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=SCREAMING_SNAKE_CASE , buff=0.0 ) cpu_targs.append(SCREAMING_SNAKE_CASE ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(SCREAMING_SNAKE_CASE ) ) second_animations.append(MoveToTarget(SCREAMING_SNAKE_CASE , run_time=1.5 ) ) self.play(*SCREAMING_SNAKE_CASE ) self.play(*SCREAMING_SNAKE_CASE ) self.wait()
148
0
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets __snake_case : List[str] = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' __snake_case : str = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' __snake_case : int = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def __lowerCamelCase ( __snake_case : Tuple, __snake_case : Optional[int], __snake_case : Dict, __snake_case : bool, __snake_case : Optional[Dict[int, int]] = None, __snake_case : bool = False, ) -> Any: """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): A__ : Any =new_id # turn into Numpy arrays A__ : List[Any] =np.array(__snake_case ) A__ : List[Any] =np.array(__snake_case ) if reduce_labels: A__ : str =255 A__ : Optional[Any] =label - 1 A__ : Tuple =255 A__ : Optional[Any] =label != ignore_index A__ : str =np.not_equal(__snake_case, __snake_case ) A__ : List[str] =pred_label[mask] A__ : str =np.array(__snake_case )[mask] A__ : List[str] =pred_label[pred_label == label] A__ : List[Any] =np.histogram(__snake_case, bins=__snake_case, range=(0, num_labels - 1) )[0] A__ : Any =np.histogram(__snake_case, bins=__snake_case, range=(0, num_labels - 1) )[0] A__ : Optional[int] =np.histogram(__snake_case, bins=__snake_case, range=(0, num_labels - 1) )[0] A__ : Dict =area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Dict, __snake_case : Optional[int], __snake_case : bool, __snake_case : Optional[Dict[int, int]] = None, __snake_case : bool = False, ) -> Optional[int]: """simple docstring""" A__ : int =np.zeros((num_labels,), dtype=np.floataa ) A__ : int =np.zeros((num_labels,), dtype=np.floataa ) A__ : List[Any] =np.zeros((num_labels,), dtype=np.floataa ) A__ : int =np.zeros((num_labels,), dtype=np.floataa ) for result, gt_seg_map in zip(__snake_case, __snake_case ): A__ , A__ , A__ , A__ : List[Any] =intersect_and_union( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Optional[int], __snake_case : Union[str, Any], __snake_case : bool, __snake_case : Optional[int] = None, __snake_case : Optional[Dict[int, int]] = None, __snake_case : bool = False, ) -> List[Any]: """simple docstring""" A__ , A__ , A__ , A__ : Optional[Any] =total_intersect_and_union( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) # compute metrics A__ : Tuple ={} A__ : Optional[int] =total_area_intersect.sum() / total_area_label.sum() A__ : Optional[int] =total_area_intersect / total_area_union A__ : str =total_area_intersect / total_area_label A__ : Any =np.nanmean(__snake_case ) A__ : Tuple =np.nanmean(__snake_case ) A__ : List[str] =all_acc A__ : Tuple =iou A__ : Tuple =acc if nan_to_num is not None: A__ : str ={metric: np.nan_to_num(__snake_case, nan=__snake_case ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { """predictions""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), """references""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), } ) , reference_urls=[ """https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py""" ] , ) def lowercase__ ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : bool , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Dict[int, int]] = None , lowerCAmelCase_ : bool = False , ) -> Optional[int]: '''simple docstring''' A__ : Optional[int] =mean_iou( results=lowerCAmelCase_ , gt_seg_maps=lowerCAmelCase_ , num_labels=lowerCAmelCase_ , ignore_index=lowerCAmelCase_ , nan_to_num=lowerCAmelCase_ , label_map=lowerCAmelCase_ , reduce_labels=lowerCAmelCase_ , ) return iou_result
215
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class lowerCamelCase ( lowercase_ , lowercase_ ): '''simple docstring''' __snake_case = 1 @register_to_config def __init__( self : int , lowerCAmelCase_ : int = 10_00 , lowerCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None ) -> Union[str, Any]: '''simple docstring''' # set `betas`, `alphas`, `timesteps` self.set_timesteps(lowerCAmelCase_ ) # standard deviation of the initial noise distribution A__ : Union[str, Any] =1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. A__ : str =4 # running values A__ : Optional[int] =[] def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None ) -> Tuple: '''simple docstring''' A__ : int =num_inference_steps A__ : str =torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] A__ : Optional[int] =torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: A__ : Tuple =torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: A__ : Optional[Any] =torch.sin(steps * math.pi / 2 ) ** 2 A__ : Optional[Any] =(1.0 - self.betas**2) ** 0.5 A__ : Union[str, Any] =(torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] A__ : str =timesteps.to(lowerCAmelCase_ ) A__ : str =[] def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : int , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : bool = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) A__ : Optional[int] =(self.timesteps == timestep).nonzero().item() A__ : List[str] =timestep_index + 1 A__ : List[Any] =sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(lowerCAmelCase_ ) if len(self.ets ) == 1: A__ : Union[str, Any] =self.ets[-1] elif len(self.ets ) == 2: A__ : Union[str, Any] =(3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: A__ : int =(23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: A__ : Dict =(1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) A__ : str =self._get_prev_sample(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , lowerCAmelCase_ : torch.FloatTensor , *lowerCAmelCase_ : Union[str, Any] , **lowerCAmelCase_ : int ) -> torch.FloatTensor: '''simple docstring''' return sample def lowercase__ ( self : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] ) -> Dict: '''simple docstring''' A__ : Tuple =self.alphas[timestep_index] A__ : List[Any] =self.betas[timestep_index] A__ : int =self.alphas[prev_timestep_index] A__ : List[str] =self.betas[prev_timestep_index] A__ : int =(sample - sigma * ets) / max(lowerCAmelCase_ , 1e-8 ) A__ : Dict =next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : str ) -> Optional[int]: '''simple docstring''' return self.config.num_train_timesteps
215
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer SCREAMING_SNAKE_CASE__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} SCREAMING_SNAKE_CASE__ = { "vocab_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt" ), "google/electra-base-generator": "https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt", "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt" ), }, "tokenizer_file": { "google/electra-small-generator": ( "https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json" ), "google/electra-base-generator": ( "https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json" ), "google/electra-large-generator": ( "https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json" ), "google/electra-small-discriminator": ( "https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json" ), "google/electra-base-discriminator": ( "https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json" ), "google/electra-large-discriminator": ( "https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json" ), }, } SCREAMING_SNAKE_CASE__ = { "google/electra-small-generator": 512, "google/electra-base-generator": 512, "google/electra-large-generator": 512, "google/electra-small-discriminator": 512, "google/electra-base-discriminator": 512, "google/electra-large-discriminator": 512, } SCREAMING_SNAKE_CASE__ = { "google/electra-small-generator": {"do_lower_case": True}, "google/electra-base-generator": {"do_lower_case": True}, "google/electra-large-generator": {"do_lower_case": True}, "google/electra-small-discriminator": {"do_lower_case": True}, "google/electra-base-discriminator": {"do_lower_case": True}, "google/electra-large-discriminator": {"do_lower_case": True}, } class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : str = VOCAB_FILES_NAMES _lowerCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : Dict = ElectraTokenizer def __init__( self , lowerCAmelCase=None , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase="[UNK]" , lowerCAmelCase="[SEP]" , lowerCAmelCase="[PAD]" , lowerCAmelCase="[CLS]" , lowerCAmelCase="[MASK]" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): """simple docstring""" super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , tokenize_chinese_chars=lowerCAmelCase , strip_accents=lowerCAmelCase , **lowerCAmelCase , ) snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase ) != tokenize_chinese_chars ): snake_case = getattr(lowerCAmelCase , normalizer_state.pop('type' ) ) snake_case = do_lower_case snake_case = strip_accents snake_case = tokenize_chinese_chars snake_case = normalizer_class(**lowerCAmelCase ) snake_case = do_lower_case def snake_case ( self , lowerCAmelCase , lowerCAmelCase=None ): """simple docstring""" snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ): """simple docstring""" snake_case = [self.sep_token_id] snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self , lowerCAmelCase , lowerCAmelCase = None ): """simple docstring""" snake_case = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase ) return tuple(lowerCAmelCase )
104
"""simple docstring""" import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): """simple docstring""" snake_case = ['a', 'b', 'c'] # Defaults to last layer if both are None snake_case ,snake_case = get_aligned_output_features_output_indices(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , ['c'] ) self.assertEqual(lowerCAmelCase , [2] ) # Out indices set to match out features snake_case ,snake_case = get_aligned_output_features_output_indices(['a', 'c'] , lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , ['a', 'c'] ) self.assertEqual(lowerCAmelCase , [0, 2] ) # Out features set to match out indices snake_case ,snake_case = get_aligned_output_features_output_indices(lowerCAmelCase , [0, 2] , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , ['a', 'c'] ) self.assertEqual(lowerCAmelCase , [0, 2] ) # Out features selected from negative indices snake_case ,snake_case = get_aligned_output_features_output_indices(lowerCAmelCase , [-3, -1] , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , ['a', 'c'] ) self.assertEqual(lowerCAmelCase , [-3, -1] ) def snake_case ( self ): """simple docstring""" with self.assertRaises(lowerCAmelCase ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , lowerCAmelCase ) # Out features must be a list with self.assertRaises(lowerCAmelCase ): verify_out_features_out_indices(('a', 'b') , (0, 1) , ['a', 'b'] ) # Out features must be a subset of stage names with self.assertRaises(lowerCAmelCase ): verify_out_features_out_indices(['a', 'b'] , (0, 1) , ['a'] ) # Out indices must be a list or tuple with self.assertRaises(lowerCAmelCase ): verify_out_features_out_indices(lowerCAmelCase , 0 , ['a', 'b'] ) # Out indices must be a subset of stage names with self.assertRaises(lowerCAmelCase ): verify_out_features_out_indices(lowerCAmelCase , (0, 1) , ['a'] ) # Out features and out indices must be the same length with self.assertRaises(lowerCAmelCase ): verify_out_features_out_indices(['a', 'b'] , (0,) , ['a', 'b', 'c'] ) # Out features should match out indices with self.assertRaises(lowerCAmelCase ): verify_out_features_out_indices(['a', 'b'] , (0, 2) , ['a', 'b', 'c'] ) # Out features and out indices should be in order with self.assertRaises(lowerCAmelCase ): verify_out_features_out_indices(['b', 'a'] , (0, 1) , ['a', 'b'] ) # Check passes with valid inputs verify_out_features_out_indices(['a', 'b', 'd'] , (0, 1, -1) , ['a', 'b', 'c', 'd'] ) def snake_case ( self ): """simple docstring""" snake_case = BackboneMixin() snake_case = ['a', 'b', 'c'] snake_case = ['a', 'c'] snake_case = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly snake_case = ['a', 'b'] self.assertEqual(backbone.out_features , ['a', 'b'] ) self.assertEqual(backbone.out_indices , [0, 1] ) snake_case = [-3, -1] self.assertEqual(backbone.out_features , ['a', 'c'] ) self.assertEqual(backbone.out_indices , [-3, -1] )
104
1
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def __snake_case ( lowerCAmelCase : list[list[float]] ): __UpperCAmelCase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCAmelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix __UpperCAmelCase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements __UpperCAmelCase = [[0.0, 0.0], [0.0, 0.0]] __UpperCAmelCase , __UpperCAmelCase = matrix[1][1], matrix[0][0] __UpperCAmelCase , __UpperCAmelCase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCAmelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCAmelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __UpperCAmelCase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix __UpperCAmelCase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] __UpperCAmelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) __UpperCAmelCase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) __UpperCAmelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) __UpperCAmelCase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) __UpperCAmelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) __UpperCAmelCase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) __UpperCAmelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) __UpperCAmelCase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) __UpperCAmelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) __UpperCAmelCase = array(lowerCAmelCase ) for i in range(3 ): for j in range(3 ): __UpperCAmelCase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __UpperCAmelCase = array(lowerCAmelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCAmelCase ) # Calculate the inverse of the matrix return [[float(d(lowerCAmelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
396
'''simple docstring''' from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _UpperCamelCase : Any = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' _UpperCamelCase : List[Any] = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' _UpperCamelCase : List[str] = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _lowercase( datasets.Metric ): """simple docstring""" def snake_case ( self: int ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ,id='token' ) ,id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' ,id='token' ) ,id='sequence' ) ,id='references' ), } ) ,) def snake_case ( self: Dict ,a: List[List[List[str]]] ,a: List[List[str]] ,a: int = 1 ,a: int = 4 ,): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=a ,hypotheses=a ,min_len=a ,max_len=a ) }
396
1
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _lowerCAmelCase ( __a ): def __a ( self , _UpperCamelCase ) -> Optional[Any]: with open(_UpperCamelCase , encoding="utf-8" ) as input_file: lowerCAmelCase_ = re.compile(r"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) lowerCAmelCase_ = input_file.read() lowerCAmelCase_ = regexp.search(_UpperCamelCase ) return match def __a ( self , _UpperCamelCase ) -> Dict: with open(_UpperCamelCase , encoding="utf-8" ) as input_file: lowerCAmelCase_ = re.compile(r"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) lowerCAmelCase_ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` lowerCAmelCase_ = regexp.finditer(_UpperCamelCase ) lowerCAmelCase_ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = Path("./datasets" ) lowerCAmelCase_ = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_UpperCamelCase ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = Path("./datasets" ) lowerCAmelCase_ = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(_UpperCamelCase ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
279
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _lowerCAmelCase ( __a , __a ): @register_to_config def __init__( self , _UpperCamelCase = 128 , _UpperCamelCase = 256 , _UpperCamelCase = 2000.0 , _UpperCamelCase = 768 , _UpperCamelCase = 12 , _UpperCamelCase = 12 , _UpperCamelCase = 64 , _UpperCamelCase = 2_048 , _UpperCamelCase = 0.1 , ) -> str: super().__init__() lowerCAmelCase_ = nn.Sequential( nn.Linear(_UpperCamelCase , d_model * 4 , bias=_UpperCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_UpperCamelCase ) , nn.SiLU() , ) lowerCAmelCase_ = nn.Embedding(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = False lowerCAmelCase_ = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) lowerCAmelCase_ = nn.Dropout(p=_UpperCamelCase ) lowerCAmelCase_ = nn.ModuleList() for lyr_num in range(_UpperCamelCase ): # FiLM conditional T5 decoder lowerCAmelCase_ = DecoderLayer(d_model=_UpperCamelCase , d_kv=_UpperCamelCase , num_heads=_UpperCamelCase , d_ff=_UpperCamelCase , dropout_rate=_UpperCamelCase ) self.decoders.append(_UpperCamelCase ) lowerCAmelCase_ = TaLayerNorm(_UpperCamelCase ) lowerCAmelCase_ = nn.Dropout(p=_UpperCamelCase ) lowerCAmelCase_ = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) def __a ( self , _UpperCamelCase , _UpperCamelCase ) -> int: lowerCAmelCase_ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. lowerCAmelCase_ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) lowerCAmelCase_ = self.conditioning_emb(_UpperCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) lowerCAmelCase_ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. lowerCAmelCase_ = torch.broadcast_to( torch.arange(_UpperCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) lowerCAmelCase_ = self.position_encoding(_UpperCamelCase ) lowerCAmelCase_ = self.continuous_inputs_projection(_UpperCamelCase ) inputs += position_encodings lowerCAmelCase_ = self.dropout(_UpperCamelCase ) # decoder: No padding present. lowerCAmelCase_ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. lowerCAmelCase_ = [(x, self.encoder_decoder_mask(_UpperCamelCase , _UpperCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings lowerCAmelCase_ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) lowerCAmelCase_ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: lowerCAmelCase_ = lyr( _UpperCamelCase , conditioning_emb=_UpperCamelCase , encoder_hidden_states=_UpperCamelCase , encoder_attention_mask=_UpperCamelCase , )[0] lowerCAmelCase_ = self.decoder_norm(_UpperCamelCase ) lowerCAmelCase_ = self.post_dropout(_UpperCamelCase ) lowerCAmelCase_ = self.spec_out(_UpperCamelCase ) return spec_out class _lowerCAmelCase ( nn.Module ): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=1e-6 ) -> Dict: super().__init__() lowerCAmelCase_ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_UpperCamelCase , d_kv=_UpperCamelCase , num_heads=_UpperCamelCase , dropout_rate=_UpperCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_UpperCamelCase , d_kv=_UpperCamelCase , num_heads=_UpperCamelCase , dropout_rate=_UpperCamelCase , layer_norm_epsilon=_UpperCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_UpperCamelCase , d_ff=_UpperCamelCase , dropout_rate=_UpperCamelCase , layer_norm_epsilon=_UpperCamelCase ) ) def __a ( self , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , ) -> Any: lowerCAmelCase_ = self.layer[0]( _UpperCamelCase , conditioning_emb=_UpperCamelCase , attention_mask=_UpperCamelCase , ) if encoder_hidden_states is not None: lowerCAmelCase_ = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0 ).to( encoder_hidden_states.dtype ) lowerCAmelCase_ = self.layer[1]( _UpperCamelCase , key_value_states=_UpperCamelCase , attention_mask=_UpperCamelCase , ) # Apply Film Conditional Feed Forward layer lowerCAmelCase_ = self.layer[-1](_UpperCamelCase , _UpperCamelCase ) return (hidden_states,) class _lowerCAmelCase ( nn.Module ): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: super().__init__() lowerCAmelCase_ = TaLayerNorm(_UpperCamelCase ) lowerCAmelCase_ = TaFiLMLayer(in_features=d_model * 4 , out_features=_UpperCamelCase ) lowerCAmelCase_ = Attention(query_dim=_UpperCamelCase , heads=_UpperCamelCase , dim_head=_UpperCamelCase , out_bias=_UpperCamelCase , scale_qk=_UpperCamelCase ) lowerCAmelCase_ = nn.Dropout(_UpperCamelCase ) def __a ( self , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , ) -> Dict: # pre_self_attention_layer_norm lowerCAmelCase_ = self.layer_norm(_UpperCamelCase ) if conditioning_emb is not None: lowerCAmelCase_ = self.FiLMLayer(_UpperCamelCase , _UpperCamelCase ) # Self-attention block lowerCAmelCase_ = self.attention(_UpperCamelCase ) lowerCAmelCase_ = hidden_states + self.dropout(_UpperCamelCase ) return hidden_states class _lowerCAmelCase ( nn.Module ): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: super().__init__() lowerCAmelCase_ = Attention(query_dim=_UpperCamelCase , heads=_UpperCamelCase , dim_head=_UpperCamelCase , out_bias=_UpperCamelCase , scale_qk=_UpperCamelCase ) lowerCAmelCase_ = TaLayerNorm(_UpperCamelCase , eps=_UpperCamelCase ) lowerCAmelCase_ = nn.Dropout(_UpperCamelCase ) def __a ( self , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , ) -> int: lowerCAmelCase_ = self.layer_norm(_UpperCamelCase ) lowerCAmelCase_ = self.attention( _UpperCamelCase , encoder_hidden_states=_UpperCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) lowerCAmelCase_ = hidden_states + self.dropout(_UpperCamelCase ) return layer_output class _lowerCAmelCase ( nn.Module ): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple: super().__init__() lowerCAmelCase_ = TaDenseGatedActDense(d_model=_UpperCamelCase , d_ff=_UpperCamelCase , dropout_rate=_UpperCamelCase ) lowerCAmelCase_ = TaFiLMLayer(in_features=d_model * 4 , out_features=_UpperCamelCase ) lowerCAmelCase_ = TaLayerNorm(_UpperCamelCase , eps=_UpperCamelCase ) lowerCAmelCase_ = nn.Dropout(_UpperCamelCase ) def __a ( self , _UpperCamelCase , _UpperCamelCase=None ) -> Tuple: lowerCAmelCase_ = self.layer_norm(_UpperCamelCase ) if conditioning_emb is not None: lowerCAmelCase_ = self.film(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = self.DenseReluDense(_UpperCamelCase ) lowerCAmelCase_ = hidden_states + self.dropout(_UpperCamelCase ) return hidden_states class _lowerCAmelCase ( nn.Module ): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: super().__init__() lowerCAmelCase_ = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) lowerCAmelCase_ = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) lowerCAmelCase_ = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) lowerCAmelCase_ = nn.Dropout(_UpperCamelCase ) lowerCAmelCase_ = NewGELUActivation() def __a ( self , _UpperCamelCase ) -> int: lowerCAmelCase_ = self.act(self.wi_a(_UpperCamelCase ) ) lowerCAmelCase_ = self.wi_a(_UpperCamelCase ) lowerCAmelCase_ = hidden_gelu * hidden_linear lowerCAmelCase_ = self.dropout(_UpperCamelCase ) lowerCAmelCase_ = self.wo(_UpperCamelCase ) return hidden_states class _lowerCAmelCase ( nn.Module ): def __init__( self , _UpperCamelCase , _UpperCamelCase=1e-6 ) -> int: super().__init__() lowerCAmelCase_ = nn.Parameter(torch.ones(_UpperCamelCase ) ) lowerCAmelCase_ = eps def __a ( self , _UpperCamelCase ) -> Union[str, Any]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 lowerCAmelCase_ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=_UpperCamelCase ) lowerCAmelCase_ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: lowerCAmelCase_ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _lowerCAmelCase ( nn.Module ): def __a ( self , _UpperCamelCase ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044715 * torch.pow(_UpperCamelCase , 3.0 )) )) class _lowerCAmelCase ( nn.Module ): def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> str: super().__init__() lowerCAmelCase_ = nn.Linear(_UpperCamelCase , out_features * 2 , bias=_UpperCamelCase ) def __a ( self , _UpperCamelCase , _UpperCamelCase ) -> int: lowerCAmelCase_ = self.scale_bias(_UpperCamelCase ) lowerCAmelCase_ , lowerCAmelCase_ = torch.chunk(_UpperCamelCase , 2 , -1 ) lowerCAmelCase_ = x * (1 + scale) + shift return x
279
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __magic_name__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any]=10 ) -> Union[str, Any]: __lowerCamelCase = [] for _ in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __magic_name__ ( __lowerCAmelCase : Dict , __lowerCAmelCase : str=10 ) -> Tuple: __lowerCamelCase = [] for step in range(__lowerCAmelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: __lowerCamelCase = os.path.join(__lowerCAmelCase , '''schedule.bin''' ) torch.save(scheduler.state_dict() , __lowerCAmelCase ) __lowerCamelCase = torch.load(__lowerCAmelCase ) scheduler.load_state_dict(__lowerCAmelCase ) return lrs @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]: self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertAlmostEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , delta=SCREAMING_SNAKE_CASE__ ) def __A ( self : List[Any] ) -> int: __lowerCamelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.tensor([0.4, 0.2, -0.5] ) __lowerCamelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __lowerCamelCase = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(1_00 ): __lowerCamelCase = criterion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def __A ( self : Any ) -> Union[str, Any]: __lowerCamelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = torch.tensor([0.4, 0.2, -0.5] ) __lowerCamelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __lowerCamelCase = Adafactor( params=[w] , lr=1e-2 , eps=(1e-30, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=SCREAMING_SNAKE_CASE__ , weight_decay=0.0 , relative_step=SCREAMING_SNAKE_CASE__ , scale_parameter=SCREAMING_SNAKE_CASE__ , warmup_init=SCREAMING_SNAKE_CASE__ , ) for _ in range(10_00 ): __lowerCamelCase = criterion(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): a__ : Union[str, Any] = nn.Linear(50 , 50 ) if is_torch_available() else None a__ : List[Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None a__ : Any = 10 def __A ( self : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=None ) -> Dict: self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertAlmostEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , delta=SCREAMING_SNAKE_CASE__ , msg=SCREAMING_SNAKE_CASE__ ) def __A ( self : Tuple ) -> List[Any]: __lowerCamelCase = {'''num_warmup_steps''': 2, '''num_training_steps''': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) __lowerCamelCase = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1e-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): __lowerCamelCase , __lowerCamelCase = data __lowerCamelCase = scheduler_func(self.optimizer , **SCREAMING_SNAKE_CASE__ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) __lowerCamelCase = unwrap_schedule(SCREAMING_SNAKE_CASE__ , self.num_steps ) self.assertListAlmostEqual( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , tol=1e-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) __lowerCamelCase = scheduler_func(self.optimizer , **SCREAMING_SNAKE_CASE__ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(SCREAMING_SNAKE_CASE__ ) # wrap to test picklability of the schedule __lowerCamelCase = unwrap_and_save_reload_schedule(SCREAMING_SNAKE_CASE__ , self.num_steps ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , msg=f'''failed for {scheduler_func} in save and reload''' ) class lowerCAmelCase__ : def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: __lowerCamelCase = fn def __call__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]: return self.fn(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @classmethod def __A ( self : int , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: __lowerCamelCase = list(map(self , scheduler.lr_lambdas ) )
298
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowerCAmelCase__ : def __init__( self : Optional[int] ) -> Optional[int]: __lowerCamelCase = '''''' __lowerCamelCase = '''''' __lowerCamelCase = [] __lowerCamelCase = 0 __lowerCamelCase = 2_56 __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ) -> Dict: __lowerCamelCase = cva.imread(SCREAMING_SNAKE_CASE__ , 0 ) __lowerCamelCase = copy.deepcopy(self.img ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='''x''' ) __lowerCamelCase = np.sum(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __lowerCamelCase = x[i] / self.k self.sk += prk __lowerCamelCase = (self.L - 1) * self.sk if self.rem != 0: __lowerCamelCase = int(last % last ) __lowerCamelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = int(np.ma.count(self.img ) / self.img[1].size ) __lowerCamelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): __lowerCamelCase = self.img[j][i] if num != self.last_list[num]: __lowerCamelCase = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def __A ( self : Optional[Any] ) -> Union[str, Any]: plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def __A ( self : str ) -> Union[str, Any]: cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(os.path.basename(__file__), "image_data/input.jpg") SCREAMING_SNAKE_CASE__ : List[str] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
298
1
import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class a ( __UpperCAmelCase ): def __init__( self : str , snake_case__ : Tuple , snake_case__ : Optional[Any]=13 , snake_case__ : List[Any]=7 , snake_case__ : Any=True , snake_case__ : List[str]=True , snake_case__ : Optional[Any]=True , snake_case__ : Union[str, Any]=True , snake_case__ : List[str]=99 , snake_case__ : Tuple=32 , snake_case__ : Tuple=5 , snake_case__ : Union[str, Any]=4 , snake_case__ : List[str]=37 , snake_case__ : List[str]="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : str=0.1 , snake_case__ : Tuple=512 , snake_case__ : Any=16 , snake_case__ : Optional[Any]=2 , snake_case__ : Tuple=0.0_2 , snake_case__ : List[Any]=False , snake_case__ : Dict=True , snake_case__ : Dict="None" , snake_case__ : Optional[Any]=3 , snake_case__ : List[str]=4 , snake_case__ : Dict=None , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_input_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_labels __lowerCAmelCase = num_choices __lowerCAmelCase = relative_attention __lowerCAmelCase = position_biased_input __lowerCAmelCase = pos_att_type __lowerCAmelCase = scope def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __lowerCAmelCase = self.get_config() __lowerCAmelCase = 300 return config def UpperCAmelCase__ ( self : Dict , snake_case__ : str ): """simple docstring""" self.parent.assertListEqual(list(result.loss.size() ) , [] ) def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Any , snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Optional[Any] ): """simple docstring""" __lowerCAmelCase = DebertaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() __lowerCAmelCase = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ )[0] __lowerCAmelCase = model(snake_case__ , token_type_ids=snake_case__ )[0] __lowerCAmelCase = model(snake_case__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : int ): """simple docstring""" __lowerCAmelCase = DebertaForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() __lowerCAmelCase = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self : Tuple , snake_case__ : int , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Union[str, Any] ): """simple docstring""" __lowerCAmelCase = self.num_labels __lowerCAmelCase = DebertaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() __lowerCAmelCase = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case__ ) def UpperCAmelCase__ ( self : str , snake_case__ : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : List[str] ): """simple docstring""" __lowerCAmelCase = self.num_labels __lowerCAmelCase = DebertaForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() __lowerCAmelCase = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : Any , snake_case__ : int , snake_case__ : str , snake_case__ : List[str] , snake_case__ : List[Any] ): """simple docstring""" __lowerCAmelCase = DebertaForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() __lowerCAmelCase = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase_ : Any = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) lowercase_ : List[str] = ( { 'feature-extraction': DebertaModel, 'fill-mask': DebertaForMaskedLM, 'question-answering': DebertaForQuestionAnswering, 'text-classification': DebertaForSequenceClassification, 'token-classification': DebertaForTokenClassification, 'zero-shot': DebertaForSequenceClassification, } if is_torch_available() else {} ) lowercase_ : int = True lowercase_ : Any = False lowercase_ : Dict = False lowercase_ : List[str] = False lowercase_ : Dict = False def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __lowerCAmelCase = DebertaModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case__ ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case__ ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case__ ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case__ ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case__ ) @slow def UpperCAmelCase__ ( self : Any ): """simple docstring""" for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = DebertaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def UpperCAmelCase__ ( self : str ): """simple docstring""" pass @slow def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __lowerCAmelCase = DebertaModel.from_pretrained("microsoft/deberta-base" ) __lowerCAmelCase = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __lowerCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __lowerCAmelCase = model(snake_case__ , attention_mask=snake_case__ )[0] # compare the actual values for a slice. __lowerCAmelCase = torch.tensor( [[[-0.5_9_8_6, -0.8_0_5_5, -0.8_4_6_2], [1.4_4_8_4, -0.9_3_4_8, -0.8_0_5_9], [0.3_1_2_3, 0.0_0_3_2, -1.4_1_3_1]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case__ , atol=1E-4 ) , F"{output[:, 1:4, 1:4]}" )
376
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
376
1
def lowerCAmelCase__( lowercase : str , lowercase : str = " " ) -> List[Any]: __snake_case : Any = [] __snake_case : List[str] = 0 for index, char in enumerate(lowerCAmelCase__ ): if char == separator: split_words.append(string[last_index:index] ) __snake_case : Optional[Any] = index + 1 elif index + 1 == len(lowerCAmelCase__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
243
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class UpperCamelCase__ ( __lowercase ): _SCREAMING_SNAKE_CASE : jnp.ndarray @flax_register_to_config class UpperCamelCase__ ( nn.Module ,__lowercase ,__lowercase ): _SCREAMING_SNAKE_CASE : int = 32 _SCREAMING_SNAKE_CASE : int = 4 _SCREAMING_SNAKE_CASE : int = 4 _SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _SCREAMING_SNAKE_CASE : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") _SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False _SCREAMING_SNAKE_CASE : Tuple[int] = (320, 640, 1_280, 1_280) _SCREAMING_SNAKE_CASE : int = 2 _SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 _SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None _SCREAMING_SNAKE_CASE : int = 1_280 _SCREAMING_SNAKE_CASE : float = 0.0 _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : bool = False def lowerCAmelCase (self : Dict , snake_case_ : jax.random.KeyArray ): # init input tensors __a : Tuple = (1, self.in_channels, self.sample_size, self.sample_size) __a : List[str] = jnp.zeros(snake_case_ , dtype=jnp.floataa ) __a : Optional[Any] = jnp.ones((1,) , dtype=jnp.intaa ) __a : Optional[int] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __a , __a : Dict = jax.random.split(snake_case_ ) __a : Optional[Any] = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(snake_case_ , snake_case_ , snake_case_ , snake_case_ )["params"] def lowerCAmelCase (self : Tuple ): __a : Tuple = self.block_out_channels __a : List[str] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __a : Optional[Any] = self.num_attention_heads or self.attention_head_dim # input __a : int = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __a : Union[str, Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __a : Any = FlaxTimestepEmbedding(snake_case_ , dtype=self.dtype ) __a : str = self.only_cross_attention if isinstance(snake_case_ , snake_case_ ): __a : Tuple = (only_cross_attention,) * len(self.down_block_types ) if isinstance(snake_case_ , snake_case_ ): __a : Union[str, Any] = (num_attention_heads,) * len(self.down_block_types ) # down __a : Dict = [] __a : Union[str, Any] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): __a : Any = output_channel __a : Union[str, Any] = block_out_channels[i] __a : List[str] = i == len(snake_case_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": __a : Any = FlaxCrossAttnDownBlockaD( in_channels=snake_case_ , out_channels=snake_case_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __a : int = FlaxDownBlockaD( in_channels=snake_case_ , out_channels=snake_case_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(snake_case_ ) __a : Dict = down_blocks # mid __a : Optional[Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up __a : List[str] = [] __a : str = list(reversed(snake_case_ ) ) __a : Optional[int] = list(reversed(snake_case_ ) ) __a : Optional[int] = list(reversed(snake_case_ ) ) __a : Optional[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): __a : Optional[int] = output_channel __a : List[Any] = reversed_block_out_channels[i] __a : str = reversed_block_out_channels[min(i + 1 , len(snake_case_ ) - 1 )] __a : List[Any] = i == len(snake_case_ ) - 1 if up_block_type == "CrossAttnUpBlock2D": __a : Optional[Any] = FlaxCrossAttnUpBlockaD( in_channels=snake_case_ , out_channels=snake_case_ , prev_output_channel=snake_case_ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __a : Dict = FlaxUpBlockaD( in_channels=snake_case_ , out_channels=snake_case_ , prev_output_channel=snake_case_ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(snake_case_ ) __a : str = output_channel __a : Any = up_blocks # out __a : List[str] = nn.GroupNorm(num_groups=3_2 , epsilon=1E-5 ) __a : Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self : str , snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Any=None , snake_case_ : Any=None , snake_case_ : bool = True , snake_case_ : bool = False , ): # 1. time if not isinstance(snake_case_ , jnp.ndarray ): __a : Dict = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(snake_case_ , jnp.ndarray ) and len(timesteps.shape ) == 0: __a : Optional[int] = timesteps.astype(dtype=jnp.floataa ) __a : List[Any] = jnp.expand_dims(snake_case_ , 0 ) __a : Tuple = self.time_proj(snake_case_ ) __a : Tuple = self.time_embedding(snake_case_ ) # 2. pre-process __a : Union[str, Any] = jnp.transpose(snake_case_ , (0, 2, 3, 1) ) __a : List[Any] = self.conv_in(snake_case_ ) # 3. down __a : List[str] = (sample,) for down_block in self.down_blocks: if isinstance(snake_case_ , snake_case_ ): __a , __a : Dict = down_block(snake_case_ , snake_case_ , snake_case_ , deterministic=not train ) else: __a , __a : Dict = down_block(snake_case_ , snake_case_ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: __a : Tuple = () for down_block_res_sample, down_block_additional_residual in zip( snake_case_ , snake_case_ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) __a : List[str] = new_down_block_res_samples # 4. mid __a : Union[str, Any] = self.mid_block(snake_case_ , snake_case_ , snake_case_ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: __a : int = down_block_res_samples[-(self.layers_per_block + 1) :] __a : Dict = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(snake_case_ , snake_case_ ): __a : int = up_block( snake_case_ , temb=snake_case_ , encoder_hidden_states=snake_case_ , res_hidden_states_tuple=snake_case_ , deterministic=not train , ) else: __a : Optional[Any] = up_block(snake_case_ , temb=snake_case_ , res_hidden_states_tuple=snake_case_ , deterministic=not train ) # 6. post-process __a : str = self.conv_norm_out(snake_case_ ) __a : Union[str, Any] = nn.silu(snake_case_ ) __a : Any = self.conv_out(snake_case_ ) __a : Dict = jnp.transpose(snake_case_ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=snake_case_ )
521
0
"""simple docstring""" import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow UpperCamelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ """text-classification""", """language-modeling""", """summarization""", """token-classification""", """question-answering""", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) UpperCamelCase = logging.getLogger() def _lowerCamelCase ( ) -> Tuple: """simple docstring""" A__ = argparse.ArgumentParser() parser.add_argument("-f" ) A__ = parser.parse_args() return args.f def _lowerCamelCase ( UpperCAmelCase_ : Dict, UpperCAmelCase_ : Tuple="eval" ) -> List[Any]: """simple docstring""" A__ = os.path.join(UpperCAmelCase_, F"""{split}_results.json""" ) if os.path.exists(UpperCAmelCase_ ): with open(UpperCAmelCase_, "r" ) as f: return json.load(UpperCAmelCase_ ) raise ValueError(F"""can't find {path}""" ) UpperCamelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCamelCase__ ( __a ): """simple docstring""" def snake_case__ ( self ) -> List[str]: A__ = self.get_auto_remove_tmp_dir() A__ = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(A__ , "argv" , A__ ): run_flax_glue.main() A__ = get_results(A__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.7_5 ) @slow def snake_case__ ( self ) -> List[Any]: A__ = self.get_auto_remove_tmp_dir() A__ = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A__ , "argv" , A__ ): run_clm_flax.main() A__ = get_results(A__ ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def snake_case__ ( self ) -> int: A__ = self.get_auto_remove_tmp_dir() A__ = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(A__ , "argv" , A__ ): run_summarization_flax.main() A__ = get_results(A__ , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def snake_case__ ( self ) -> Union[str, Any]: A__ = self.get_auto_remove_tmp_dir() A__ = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(A__ , "argv" , A__ ): run_mlm_flax.main() A__ = get_results(A__ ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def snake_case__ ( self ) -> Dict: A__ = self.get_auto_remove_tmp_dir() A__ = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(A__ , "argv" , A__ ): run_ta_mlm_flax.main() A__ = get_results(A__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.4_2 ) @slow def snake_case__ ( self ) -> int: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu A__ = 7 if get_gpu_count() > 1 else 2 A__ = self.get_auto_remove_tmp_dir() A__ = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(A__ , "argv" , A__ ): run_flax_ner.main() A__ = get_results(A__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.7_5 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def snake_case__ ( self ) -> Any: A__ = self.get_auto_remove_tmp_dir() A__ = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(A__ , "argv" , A__ ): run_qa.main() A__ = get_results(A__ ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
700
"""simple docstring""" import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) UpperCamelCase = None UpperCamelCase = { """7B""": 1_1008, """13B""": 1_3824, """30B""": 1_7920, """65B""": 2_2016, """70B""": 2_8672, } UpperCamelCase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def _lowerCamelCase ( UpperCAmelCase_ : Union[str, Any], UpperCAmelCase_ : Optional[Any]=1, UpperCAmelCase_ : Union[str, Any]=256 ) -> Any: """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def _lowerCamelCase ( UpperCAmelCase_ : Optional[int] ) -> List[str]: """simple docstring""" with open(UpperCAmelCase_, "r" ) as f: return json.load(UpperCAmelCase_ ) def _lowerCamelCase ( UpperCAmelCase_ : int, UpperCAmelCase_ : Tuple ) -> Tuple: """simple docstring""" with open(UpperCAmelCase_, "w" ) as f: json.dump(UpperCAmelCase_, UpperCAmelCase_ ) def _lowerCamelCase ( UpperCAmelCase_ : Optional[int], UpperCAmelCase_ : Union[str, Any], UpperCAmelCase_ : Union[str, Any], UpperCAmelCase_ : Optional[int]=True ) -> List[Any]: """simple docstring""" os.makedirs(UpperCAmelCase_, exist_ok=UpperCAmelCase_ ) A__ = os.path.join(UpperCAmelCase_, "tmp" ) os.makedirs(UpperCAmelCase_, exist_ok=UpperCAmelCase_ ) A__ = read_json(os.path.join(UpperCAmelCase_, "params.json" ) ) A__ = NUM_SHARDS[model_size] A__ = params["n_layers"] A__ = params["n_heads"] A__ = n_heads // num_shards A__ = params["dim"] A__ = dim // n_heads A__ = 1_0000.0 A__ = 1.0 / (base ** (torch.arange(0, UpperCAmelCase_, 2 ).float() / dims_per_head)) if "n_kv_heads" in params: A__ = params["n_kv_heads"] # for GQA / MQA A__ = n_heads_per_shard // num_key_value_heads A__ = dim // num_key_value_heads else: # compatibility with other checkpoints A__ = n_heads A__ = n_heads_per_shard A__ = dim # permute for sliced rotary def permute(UpperCAmelCase_ : Optional[Any], UpperCAmelCase_ : List[str]=n_heads, UpperCAmelCase_ : List[str]=dim, UpperCAmelCase_ : str=dim ): return w.view(UpperCAmelCase_, dima // n_heads // 2, 2, UpperCAmelCase_ ).transpose(1, 2 ).reshape(UpperCAmelCase_, UpperCAmelCase_ ) print(F"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) A__ = torch.load(os.path.join(UpperCAmelCase_, "consolidated.00.pth" ), map_location="cpu" ) else: # Sharded A__ = [ torch.load(os.path.join(UpperCAmelCase_, F"""consolidated.{i:02d}.pth""" ), map_location="cpu" ) for i in range(UpperCAmelCase_ ) ] A__ = 0 A__ = {"weight_map": {}} for layer_i in range(UpperCAmelCase_ ): A__ = F"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded A__ = { F"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wq.weight"""] ), F"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wk.weight"""] ), F"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[F"""layers.{layer_i}.attention.wv.weight"""], F"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[F"""layers.{layer_i}.attention.wo.weight"""], F"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w1.weight"""], F"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w2.weight"""], F"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w3.weight"""], F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[F"""layers.{layer_i}.attention_norm.weight"""], F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[F"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. A__ = { F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.attention_norm.weight""" ].clone(), F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } A__ = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wq.weight"""].view(UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ) for i in range(UpperCAmelCase_ ) ], dim=0, ).reshape(UpperCAmelCase_, UpperCAmelCase_ ) ) A__ = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wk.weight"""].view( UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ) for i in range(UpperCAmelCase_ ) ], dim=0, ).reshape(UpperCAmelCase_, UpperCAmelCase_ ), UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, ) A__ = torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wv.weight"""].view( UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ) for i in range(UpperCAmelCase_ ) ], dim=0, ).reshape(UpperCAmelCase_, UpperCAmelCase_ ) A__ = torch.cat( [loaded[i][F"""layers.{layer_i}.attention.wo.weight"""] for i in range(UpperCAmelCase_ )], dim=1 ) A__ = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(UpperCAmelCase_ )], dim=0 ) A__ = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(UpperCAmelCase_ )], dim=1 ) A__ = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(UpperCAmelCase_ )], dim=0 ) A__ = inv_freq for k, v in state_dict.items(): A__ = filename param_count += v.numel() torch.save(UpperCAmelCase_, os.path.join(UpperCAmelCase_, UpperCAmelCase_ ) ) A__ = F"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded A__ = { "model.embed_tokens.weight": loaded["tok_embeddings.weight"], "model.norm.weight": loaded["norm.weight"], "lm_head.weight": loaded["output.weight"], } else: A__ = { "model.norm.weight": loaded[0]["norm.weight"], "model.embed_tokens.weight": torch.cat( [loaded[i]["tok_embeddings.weight"] for i in range(UpperCAmelCase_ )], dim=1 ), "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(UpperCAmelCase_ )], dim=0 ), } for k, v in state_dict.items(): A__ = filename param_count += v.numel() torch.save(UpperCAmelCase_, os.path.join(UpperCAmelCase_, UpperCAmelCase_ ) ) # Write configs A__ = {"total_size": param_count * 2} write_json(UpperCAmelCase_, os.path.join(UpperCAmelCase_, "pytorch_model.bin.index.json" ) ) A__ = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1 A__ = params["multiple_of"] if "multiple_of" in params else 256 A__ = LlamaConfig( hidden_size=UpperCAmelCase_, intermediate_size=compute_intermediate_size(UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ), num_attention_heads=params["n_heads"], num_hidden_layers=params["n_layers"], rms_norm_eps=params["norm_eps"], num_key_value_heads=UpperCAmelCase_, ) config.save_pretrained(UpperCAmelCase_ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("Loading the checkpoint in a Llama model." ) A__ = LlamaForCausalLM.from_pretrained(UpperCAmelCase_, torch_dtype=torch.floataa, low_cpu_mem_usage=UpperCAmelCase_ ) # Avoid saving this as part of the config. del model.config._name_or_path print("Saving in the Transformers format." ) model.save_pretrained(UpperCAmelCase_, safe_serialization=UpperCAmelCase_ ) shutil.rmtree(UpperCAmelCase_ ) def _lowerCamelCase ( UpperCAmelCase_ : Optional[Any], UpperCAmelCase_ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" A__ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) A__ = tokenizer_class(UpperCAmelCase_ ) tokenizer.save_pretrained(UpperCAmelCase_ ) def _lowerCamelCase ( ) -> int: """simple docstring""" A__ = argparse.ArgumentParser() parser.add_argument( "--input_dir", help="Location of LLaMA weights, which contains tokenizer.model and model folders", ) parser.add_argument( "--model_size", choices=["7B", "7Bf", "13B", "13Bf", "30B", "65B", "70B", "70Bf", "tokenizer_only"], ) parser.add_argument( "--output_dir", help="Location to write HF model and tokenizer", ) parser.add_argument("--safe_serialization", type=UpperCAmelCase_, help="Whether or not to save using `safetensors`." ) A__ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir, input_base_path=os.path.join(args.input_dir, args.model_size ), model_size=args.model_size, safe_serialization=args.safe_serialization, ) A__ = os.path.join(args.input_dir, "tokenizer.model" ) write_tokenizer(args.output_dir, UpperCAmelCase_ ) if __name__ == "__main__": main()
562
0
"""simple docstring""" import copy import fnmatch import json import os import pickle as pkl import shutil import sys import tarfile import tempfile from collections import OrderedDict from contextlib import contextmanager from functools import partial from hashlib import shaaaa from io import BytesIO from pathlib import Path from urllib.parse import urlparse from zipfile import ZipFile, is_zipfile import cva import numpy as np import requests import wget from filelock import FileLock from PIL import Image from tqdm.auto import tqdm from yaml import Loader, dump, load try: import torch _a : List[Any] = True except ImportError: _a : int = False try: from torch.hub import _get_torch_home _a : Optional[Any] = _get_torch_home() except ImportError: _a : Any = os.path.expanduser( os.getenv('TORCH_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')) ) _a : Any = os.path.join(torch_cache_home, 'transformers') _a : Dict = 'https://cdn.huggingface.co' _a : Dict = 'https://s3.amazonaws.com/models.huggingface.co/bert' _a : Dict = '/'.join(str(Path(__file__).resolve()).split('/')[:-1]) _a : Union[str, Any] = os.path.join(PATH, 'config.yaml') _a : Union[str, Any] = os.path.join(PATH, 'attributes.txt') _a : str = os.path.join(PATH, 'objects.txt') _a : str = os.getenv('PYTORCH_PRETRAINED_BERT_CACHE', default_cache_path) _a : int = os.getenv('PYTORCH_TRANSFORMERS_CACHE', PYTORCH_PRETRAINED_BERT_CACHE) _a : List[Any] = os.getenv('TRANSFORMERS_CACHE', PYTORCH_TRANSFORMERS_CACHE) _a : Tuple = 'pytorch_model.bin' _a : Optional[int] = 'config.yaml' def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int=OBJECTS ,_lowerCamelCase : Dict=ATTRIBUTES ) -> Tuple: _lowerCAmelCase : Optional[Any] = [] with open(_lowerCamelCase ) as f: for object in f.readlines(): vg_classes.append(object.split(""",""" )[0].lower().strip() ) _lowerCAmelCase : Optional[int] = [] with open(_lowerCamelCase ) as f: for object in f.readlines(): vg_attrs.append(object.split(""",""" )[0].lower().strip() ) return vg_classes, vg_attrs def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ) -> Optional[int]: _lowerCAmelCase : List[Any] = OrderedDict() with open(_lowerCamelCase ,"""rb""" ) as f: _lowerCAmelCase : Any = pkl.load(_lowerCamelCase )["""model"""] for k in copy.deepcopy(list(ckp.keys() ) ): _lowerCAmelCase : Union[str, Any] = ckp.pop(_lowerCamelCase ) if isinstance(_lowerCamelCase ,np.ndarray ): _lowerCAmelCase : List[Any] = torch.tensor(_lowerCamelCase ) else: assert isinstance(_lowerCamelCase ,torch.tensor ), type(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = v return r class __A : _UpperCamelCase : List[Any] = {} def __init__( self , a__ , a__ = "root" , a__=0 ): _lowerCAmelCase : Optional[int] = name _lowerCAmelCase : int = level _lowerCAmelCase : Optional[Any] = {} for k, v in dictionary.items(): if v is None: raise ValueError() _lowerCAmelCase : Any = copy.deepcopy(_a ) _lowerCAmelCase : Optional[int] = copy.deepcopy(_a ) if isinstance(_a , _a ): _lowerCAmelCase : List[str] = Config(_a , name=_a , level=level + 1 ) _lowerCAmelCase : Any = v setattr(self , _a , _a ) _lowerCAmelCase : Union[str, Any] = d def __repr__( self ): return str(list((self._pointer.keys()) ) ) def __setattr__( self , a__ , a__ ): _lowerCAmelCase : Dict = val _lowerCAmelCase : Optional[Any] = val _lowerCAmelCase : List[Any] = key.split(""".""" ) _lowerCAmelCase : str = len(_a ) - 1 _lowerCAmelCase : Optional[Any] = self._pointer if len(_a ) > 1: for i, l in enumerate(_a ): if hasattr(self , _a ) and isinstance(getattr(self , _a ) , _a ): setattr(getattr(self , _a ) , """.""".join(levels[i:] ) , _a ) if l == last_level: _lowerCAmelCase : Union[str, Any] = val else: _lowerCAmelCase : List[Any] = pointer[l] def __A ( self ): return self._pointer def __A ( self , a__ , a__ ): with open(F"{file_name}" , """w""" ) as stream: dump(_a , _a ) def __A ( self , a__ , a__ ): with open(F"{file_name}" , """w""" ) as stream: json.dump(_a , _a ) @staticmethod def __A ( a__ ): with open(_a ) as stream: _lowerCAmelCase : Optional[Any] = load(_a , Loader=_a ) return data def __str__( self ): _lowerCAmelCase : List[Any] = """ """ if self._name != "root": _lowerCAmelCase : Any = F"{t * (self._level-1)}{self._name}:\n" else: _lowerCAmelCase : List[Any] = """""" _lowerCAmelCase : Optional[Any] = self._level for i, (k, v) in enumerate(self._pointer.items() ): if isinstance(_a , _a ): r += F"{t * (self._level)}{v}\n" self._level += 1 else: r += F"{t * (self._level)}{k}: {v} ({type(_a ).__name__})\n" _lowerCAmelCase : Any = level return r[:-1] @classmethod def __A ( cls , a__ , **a__ ): _lowerCAmelCase , _lowerCAmelCase : List[str] = cls.get_config_dict(_a , **_a ) return cls(_a ) @classmethod def __A ( cls , a__ , **a__ ): _lowerCAmelCase : str = kwargs.pop("""cache_dir""" , _a ) _lowerCAmelCase : Optional[int] = kwargs.pop("""force_download""" , _a ) _lowerCAmelCase : Dict = kwargs.pop("""resume_download""" , _a ) _lowerCAmelCase : Union[str, Any] = kwargs.pop("""proxies""" , _a ) _lowerCAmelCase : Tuple = kwargs.pop("""local_files_only""" , _a ) if os.path.isdir(_a ): _lowerCAmelCase : List[str] = os.path.join(_a , _a ) elif os.path.isfile(_a ) or is_remote_url(_a ): _lowerCAmelCase : int = pretrained_model_name_or_path else: _lowerCAmelCase : Dict = hf_bucket_url(_a , filename=_a , use_cdn=_a ) try: # Load from URL or cache if already cached _lowerCAmelCase : int = cached_path( _a , cache_dir=_a , force_download=_a , proxies=_a , resume_download=_a , local_files_only=_a , ) # Load config dict if resolved_config_file is None: raise EnvironmentError _lowerCAmelCase : List[Any] = Config.load_yaml(_a ) except EnvironmentError: _lowerCAmelCase : List[Any] = """Can\'t load config for""" raise EnvironmentError(_a ) if resolved_config_file == config_file: print("""loading configuration file from path""" ) else: print("""loading configuration file cache""" ) return Config.load_yaml(_a ), kwargs def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ) -> Any: _lowerCAmelCase : Optional[Any] = torch.load("""dump.pt""" ,map_location=in_tensor.device ) _lowerCAmelCase : str = in_tensor.numpy() _lowerCAmelCase : Dict = out_tensor.numpy()[0] print(na.shape ,na[0, 0, :5] ) print(na.shape ,na[0, 0, :5] ) assert np.allclose(_lowerCamelCase ,_lowerCamelCase ,rtol=0.01 ,atol=0.1 ), ( f"{sum([1 for x in np.isclose(_lowerCamelCase ,_lowerCamelCase ,rtol=0.01 ,atol=0.1 ).flatten() if x is False] )/len(na.flatten() )*100:.4f} %" " element-wise mismatch" ) raise Exception("""tensors are all good""" ) # Hugging face functions below def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ) -> Union[str, Any]: _lowerCAmelCase : Optional[Any] = urlparse(_lowerCamelCase ) return parsed.scheme in ("http", "https") def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str ,_lowerCamelCase : str=True ) -> Union[str, Any]: _lowerCAmelCase : Union[str, Any] = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX _lowerCAmelCase : str = """/""" not in model_id if legacy_format: return f"{endpoint}/{model_id}-{filename}" else: return f"{endpoint}/{model_id}/{filename}" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ,_lowerCamelCase : Dict ,_lowerCamelCase : str=None ,_lowerCamelCase : List[Any]=0 ,_lowerCamelCase : int=None ,) -> Optional[int]: _lowerCAmelCase : Union[str, Any] = """python/{}""".format(sys.version.split()[0] ) if _torch_available: ua += "; torch/{}".format(torch.__version__ ) if isinstance(_lowerCamelCase ,_lowerCamelCase ): ua += "; " + "; ".join("""{}/{}""".format(_lowerCamelCase ,_lowerCamelCase ) for k, v in user_agent.items() ) elif isinstance(_lowerCamelCase ,_lowerCamelCase ): ua += "; " + user_agent _lowerCAmelCase : Optional[Any] = {"""user-agent""": ua} if resume_size > 0: _lowerCAmelCase : Optional[int] = """bytes=%d-""" % (resume_size,) _lowerCAmelCase : List[Any] = requests.get(_lowerCamelCase ,stream=_lowerCamelCase ,proxies=_lowerCamelCase ,headers=_lowerCamelCase ) if response.status_code == 416: # Range not satisfiable return _lowerCAmelCase : Any = response.headers.get("""Content-Length""" ) _lowerCAmelCase : str = resume_size + int(_lowerCamelCase ) if content_length is not None else None _lowerCAmelCase : List[Any] = tqdm( unit="""B""" ,unit_scale=_lowerCamelCase ,total=_lowerCamelCase ,initial=_lowerCamelCase ,desc="""Downloading""" ,) for chunk in response.iter_content(chunk_size=1024 ): if chunk: # filter out keep-alive new chunks progress.update(len(_lowerCamelCase ) ) temp_file.write(_lowerCamelCase ) progress.close() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : List[str]=None ,_lowerCamelCase : Union[str, Any]=False ,_lowerCamelCase : Optional[int]=None ,_lowerCamelCase : List[str]=10 ,_lowerCamelCase : str=False ,_lowerCamelCase : Any=None ,_lowerCamelCase : Union[str, Any]=False ,) -> List[str]: if cache_dir is None: _lowerCAmelCase : Dict = TRANSFORMERS_CACHE if isinstance(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : Dict = str(_lowerCamelCase ) os.makedirs(_lowerCamelCase ,exist_ok=_lowerCamelCase ) _lowerCAmelCase : List[str] = None if not local_files_only: try: _lowerCAmelCase : List[Any] = requests.head(_lowerCamelCase ,allow_redirects=_lowerCamelCase ,proxies=_lowerCamelCase ,timeout=_lowerCamelCase ) if response.status_code == 200: _lowerCAmelCase : List[Any] = response.headers.get("""ETag""" ) except (EnvironmentError, requests.exceptions.Timeout): # etag is already None pass _lowerCAmelCase : Union[str, Any] = url_to_filename(_lowerCamelCase ,_lowerCamelCase ) # get cache path to put the file _lowerCAmelCase : List[str] = os.path.join(_lowerCamelCase ,_lowerCamelCase ) # etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible. # try to get the last downloaded one if etag is None: if os.path.exists(_lowerCamelCase ): return cache_path else: _lowerCAmelCase : List[Any] = [ file for file in fnmatch.filter(os.listdir(_lowerCamelCase ) ,filename + """.*""" ) if not file.endswith(""".json""" ) and not file.endswith(""".lock""" ) ] if len(_lowerCamelCase ) > 0: return os.path.join(_lowerCamelCase ,matching_files[-1] ) else: # If files cannot be found and local_files_only=True, # the models might've been found if local_files_only=False # Notify the user about that if local_files_only: raise ValueError( """Cannot find the requested files in the cached path and outgoing traffic has been""" """ disabled. To enable model look-ups and downloads online, set \'local_files_only\'""" """ to False.""" ) return None # From now on, etag is not None. if os.path.exists(_lowerCamelCase ) and not force_download: return cache_path # Prevent parallel downloads of the same file with a lock. _lowerCAmelCase : Union[str, Any] = cache_path + """.lock""" with FileLock(_lowerCamelCase ): # If the download just completed while the lock was activated. if os.path.exists(_lowerCamelCase ) and not force_download: # Even if returning early like here, the lock will be released. return cache_path if resume_download: _lowerCAmelCase : List[Any] = cache_path + """.incomplete""" @contextmanager def _resumable_file_manager(): with open(_lowerCamelCase ,"""a+b""" ) as f: yield f _lowerCAmelCase : Tuple = _resumable_file_manager if os.path.exists(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = os.stat(_lowerCamelCase ).st_size else: _lowerCAmelCase : List[Any] = 0 else: _lowerCAmelCase : Optional[Any] = partial(tempfile.NamedTemporaryFile ,dir=_lowerCamelCase ,delete=_lowerCamelCase ) _lowerCAmelCase : Dict = 0 # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. with temp_file_manager() as temp_file: print( """%s not found in cache or force_download set to True, downloading to %s""" ,_lowerCamelCase ,temp_file.name ,) http_get( _lowerCamelCase ,_lowerCamelCase ,proxies=_lowerCamelCase ,resume_size=_lowerCamelCase ,user_agent=_lowerCamelCase ,) os.replace(temp_file.name ,_lowerCamelCase ) _lowerCAmelCase : str = {"""url""": url, """etag""": etag} _lowerCAmelCase : Optional[Any] = cache_path + """.json""" with open(_lowerCamelCase ,"""w""" ) as meta_file: json.dump(_lowerCamelCase ,_lowerCamelCase ) return cache_path def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ,_lowerCamelCase : str=None ) -> List[str]: _lowerCAmelCase : Optional[int] = url.encode("""utf-8""" ) _lowerCAmelCase : Tuple = shaaaa(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = url_hash.hexdigest() if etag: _lowerCAmelCase : Dict = etag.encode("""utf-8""" ) _lowerCAmelCase : int = shaaaa(_lowerCamelCase ) filename += "." + etag_hash.hexdigest() if url.endswith(""".h5""" ): filename += ".h5" return filename def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict ,_lowerCamelCase : int=None ,_lowerCamelCase : List[Any]=False ,_lowerCamelCase : List[str]=None ,_lowerCamelCase : str=False ,_lowerCamelCase : Any=None ,_lowerCamelCase : List[str]=False ,_lowerCamelCase : List[Any]=False ,_lowerCamelCase : int=False ,) -> Dict: if cache_dir is None: _lowerCAmelCase : Union[str, Any] = TRANSFORMERS_CACHE if isinstance(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : List[str] = str(_lowerCamelCase ) if isinstance(_lowerCamelCase ,_lowerCamelCase ): _lowerCAmelCase : Dict = str(_lowerCamelCase ) if is_remote_url(_lowerCamelCase ): # URL, so get it from the cache (downloading if necessary) _lowerCAmelCase : int = get_from_cache( _lowerCamelCase ,cache_dir=_lowerCamelCase ,force_download=_lowerCamelCase ,proxies=_lowerCamelCase ,resume_download=_lowerCamelCase ,user_agent=_lowerCamelCase ,local_files_only=_lowerCamelCase ,) elif os.path.exists(_lowerCamelCase ): # File, and it exists. _lowerCAmelCase : Tuple = url_or_filename elif urlparse(_lowerCamelCase ).scheme == "": # File, but it doesn't exist. raise EnvironmentError("""file {} not found""".format(_lowerCamelCase ) ) else: # Something unknown raise ValueError("""unable to parse {} as a URL or as a local path""".format(_lowerCamelCase ) ) if extract_compressed_file: if not is_zipfile(_lowerCamelCase ) and not tarfile.is_tarfile(_lowerCamelCase ): return output_path # Path where we extract compressed archives # We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/" _lowerCAmelCase , _lowerCAmelCase : Any = os.path.split(_lowerCamelCase ) _lowerCAmelCase : int = output_file.replace(""".""" ,"""-""" ) + """-extracted""" _lowerCAmelCase : Dict = os.path.join(_lowerCamelCase ,_lowerCamelCase ) if os.path.isdir(_lowerCamelCase ) and os.listdir(_lowerCamelCase ) and not force_extract: return output_path_extracted # Prevent parallel extractions _lowerCAmelCase : List[Any] = output_path + """.lock""" with FileLock(_lowerCamelCase ): shutil.rmtree(_lowerCamelCase ,ignore_errors=_lowerCamelCase ) os.makedirs(_lowerCamelCase ) if is_zipfile(_lowerCamelCase ): with ZipFile(_lowerCamelCase ,"""r""" ) as zip_file: zip_file.extractall(_lowerCamelCase ) zip_file.close() elif tarfile.is_tarfile(_lowerCamelCase ): _lowerCAmelCase : str = tarfile.open(_lowerCamelCase ) tar_file.extractall(_lowerCamelCase ) tar_file.close() else: raise EnvironmentError("""Archive format of {} could not be identified""".format(_lowerCamelCase ) ) return output_path_extracted return output_path def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ,_lowerCamelCase : int="," ) -> List[Any]: assert isinstance(_lowerCamelCase ,_lowerCamelCase ) if os.path.isfile(_lowerCamelCase ): with open(_lowerCamelCase ) as f: _lowerCAmelCase : Optional[int] = eval(f.read() ) else: _lowerCAmelCase : List[Any] = requests.get(_lowerCamelCase ) try: _lowerCAmelCase : List[Any] = requests.json() except Exception: _lowerCAmelCase : str = req.content.decode() assert data is not None, "could not connect" try: _lowerCAmelCase : List[Any] = eval(_lowerCamelCase ) except Exception: _lowerCAmelCase : Any = data.split("""\n""" ) req.close() return data def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ) -> Union[str, Any]: _lowerCAmelCase : Dict = requests.get(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = np.array(Image.open(BytesIO(response.content ) ) ) return img def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ) -> Optional[int]: _lowerCAmelCase : Optional[int] = url.split("""/""" )[-1] if fn not in os.listdir(os.getcwd() ): wget.download(_lowerCamelCase ) with open(_lowerCamelCase ,"""rb""" ) as stream: _lowerCAmelCase : Any = pkl.load(_lowerCamelCase ) _lowerCAmelCase : Any = weights.pop("""model""" ) _lowerCAmelCase : int = {} for k, v in model.items(): _lowerCAmelCase : List[Any] = torch.from_numpy(_lowerCamelCase ) if "running_var" in k: _lowerCAmelCase : Optional[Any] = torch.tensor([0] ) _lowerCAmelCase : Optional[Any] = k.replace("""running_var""" ,"""num_batches_tracked""" ) _lowerCAmelCase : Dict = zero return new def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: print(f"{os.path.abspath(os.path.join(_lowerCamelCase ,os.pardir ) )}/demo.ipynb" ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : Dict="RGB" ) -> Union[str, Any]: assert isinstance(_lowerCamelCase ,_lowerCamelCase ) if os.path.isfile(_lowerCamelCase ): _lowerCAmelCase : List[str] = cva.imread(_lowerCamelCase ) else: _lowerCAmelCase : Optional[int] = get_image_from_url(_lowerCamelCase ) assert img is not None, f"could not connect to: {im}" _lowerCAmelCase : Tuple = cva.cvtColor(_lowerCamelCase ,cva.COLOR_BGR2RGB ) if input_format == "RGB": _lowerCAmelCase : Any = img[:, :, ::-1] return img def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Union[str, Any]=1 ) -> str: return (images[i : i + batch] for i in range(0 ,len(_lowerCamelCase ) ,_lowerCamelCase ))
213
'''simple docstring''' def lowerCAmelCase_ ( a : int ): a__ = generate_pascal_triangle(a ) for row_idx in range(a ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def lowerCAmelCase_ ( a : int ): if not isinstance(a , a ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [] for current_row_idx in range(a ): a__ = populate_current_row(a , a ) triangle.append(a ) return triangle def lowerCAmelCase_ ( a : list[list[int]] , a : int ): a__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 a__ , a__ = 1, 1 for current_col_idx in range(1 , a ): calculate_current_element( a , a , a , a ) return current_row def lowerCAmelCase_ ( a : list[list[int]] , a : list[int] , a : int , a : int , ): a__ = triangle[current_row_idx - 1][current_col_idx - 1] a__ = triangle[current_row_idx - 1][current_col_idx] a__ = above_to_left_elt + above_to_right_elt def lowerCAmelCase_ ( a : int ): if not isinstance(a , a ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) a__ = [[1]] for row_index in range(1 , a ): a__ = [0] + result[-1] + [0] a__ = row_index + 1 # Calculate the number of distinct elements in a row a__ = sum(divmod(a , 2 ) ) a__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] a__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() a__ = row_first_half + row_second_half result.append(a ) return result def lowerCAmelCase_ ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(a : Callable , a : int ) -> None: a__ = f'''{func.__name__}({value})''' a__ = timeit(f'''__main__.{call}''' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(a , a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
394
0
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = None _snake_case = BloomTokenizerFast _snake_case = BloomTokenizerFast _snake_case = True _snake_case = False _snake_case = '''tokenizer_file''' _snake_case = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''} def A__ ( self ) -> Union[str, Any]: super().setUp() __lowerCAmelCase = BloomTokenizerFast.from_pretrained("""bigscience/tokenizer""" ) tokenizer.save_pretrained(self.tmpdirname ) def A__ ( self , **snake_case_ ) -> str: kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **snake_case_ ) def A__ ( self ) -> List[Any]: __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = ["""The quick brown fox</s>""", """jumps over the lazy dog</s>"""] __lowerCAmelCase = [[2_175, 23_714, 73_173, 144_252, 2], [77, 132_619, 3_478, 368, 109_586, 35_433, 2]] __lowerCAmelCase = tokenizer.batch_encode_plus(snake_case_ )["""input_ids"""] self.assertListEqual(snake_case_ , snake_case_ ) __lowerCAmelCase = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self , snake_case_=6 ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(snake_case_ , **snake_case_ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input __lowerCAmelCase = """This is a simple input""" __lowerCAmelCase = ["""This is a simple input 1""", """This is a simple input 2"""] __lowerCAmelCase = ("""This is a simple input""", """This is a pair""") __lowerCAmelCase = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests try: tokenizer_r.encode(snake_case_ , max_length=snake_case_ ) tokenizer_r.encode_plus(snake_case_ , max_length=snake_case_ ) tokenizer_r.batch_encode_plus(snake_case_ , max_length=snake_case_ ) tokenizer_r.encode(snake_case_ , max_length=snake_case_ ) tokenizer_r.batch_encode_plus(snake_case_ , max_length=snake_case_ ) except ValueError: self.fail("""Bloom Tokenizer should be able to deal with padding""" ) __lowerCAmelCase = None # Hotfixing padding = None self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Simple input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Simple input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" , ) # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Pair input self.assertRaises(snake_case_ , tokenizer_r.encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" ) # Pair input self.assertRaises( snake_case_ , tokenizer_r.batch_encode_plus , snake_case_ , max_length=snake_case_ , padding="""max_length""" , ) def A__ ( self ) -> Dict: __lowerCAmelCase = self.get_rust_tokenizer() __lowerCAmelCase = load_dataset("""xnli""" , """all_languages""" , split="""test""" , streaming=snake_case_ ) __lowerCAmelCase = next(iter(snake_case_ ) )["""premise"""] # pick up one data __lowerCAmelCase = list(sample_data.values() ) __lowerCAmelCase = list(map(tokenizer.encode , snake_case_ ) ) __lowerCAmelCase = [tokenizer.decode(snake_case_ , clean_up_tokenization_spaces=snake_case_ ) for x in output_tokens] self.assertListEqual(snake_case_ , snake_case_ ) def A__ ( self ) -> Union[str, Any]: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
714
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ : '''simple docstring''' def __init__( self , snake_case_ , snake_case_=13 , snake_case_=32 , snake_case_=3 , snake_case_=4 , snake_case_=[10, 20, 30, 40] , snake_case_=[2, 2, 3, 2] , snake_case_=True , snake_case_=True , snake_case_=37 , snake_case_="gelu" , snake_case_=10 , snake_case_=0.02 , snake_case_=["stage2", "stage3", "stage4"] , snake_case_=[2, 3, 4] , snake_case_=None , ) -> List[str]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_stages __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = num_labels __lowerCAmelCase = initializer_range __lowerCAmelCase = out_features __lowerCAmelCase = out_indices __lowerCAmelCase = scope def A__ ( self ) -> List[Any]: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def A__ ( self ) -> List[Any]: return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=snake_case_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: __lowerCAmelCase = ConvNextModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() __lowerCAmelCase = model(snake_case_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> Dict: __lowerCAmelCase = ConvNextForImageClassification(snake_case_ ) model.to(snake_case_ ) model.eval() __lowerCAmelCase = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ ) -> List[str]: __lowerCAmelCase = ConvNextBackbone(config=snake_case_ ) model.to(snake_case_ ) model.eval() __lowerCAmelCase = model(snake_case_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __lowerCAmelCase = None __lowerCAmelCase = ConvNextBackbone(config=snake_case_ ) model.to(snake_case_ ) model.eval() __lowerCAmelCase = model(snake_case_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A__ ( self ) -> List[str]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( A__ , A__ , unittest.TestCase ): '''simple docstring''' _snake_case = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) _snake_case = ( {'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification} if is_torch_available() else {} ) _snake_case = True _snake_case = False _snake_case = False _snake_case = False _snake_case = False def A__ ( self ) -> int: __lowerCAmelCase = ConvNextModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def A__ ( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> str: return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def A__ ( self ) -> str: pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def A__ ( self ) -> List[Any]: pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def A__ ( self ) -> Optional[int]: pass def A__ ( self ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case_ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case_ ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def A__ ( self ) -> Dict: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*snake_case_ ) def A__ ( self ) -> Union[str, Any]: def check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ): __lowerCAmelCase = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) __lowerCAmelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase = self.model_tester.num_stages self.assertEqual(len(snake_case_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ) def A__ ( self ) -> str: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case_ ) @slow def A__ ( self ) -> str: for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = ConvNextModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def lowercase (): __lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def A__ ( self ) -> Any: return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def A__ ( self ) -> Any: __lowerCAmelCase = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(snake_case_ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=snake_case_ , return_tensors="""pt""" ).to(snake_case_ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**snake_case_ ) # verify the logits __lowerCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case_ ) __lowerCAmelCase = torch.tensor([-0.0_260, -0.4_739, 0.1_911] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1e-4 ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase , A__ ): '''simple docstring''' _snake_case = (ConvNextBackbone,) if is_torch_available() else () _snake_case = ConvNextConfig _snake_case = False def A__ ( self ) -> Dict: __lowerCAmelCase = ConvNextModelTester(self )
573
0
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = 0 ) -> List[Any]: """simple docstring""" __snake_case : int = right or len(_lowerCamelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(_lowerCamelCase , _lowerCamelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
26
def __UpperCamelCase ( A ): if len(A ) < 2: return collection def circle_sort_util(A , A , A ) -> bool: UpperCamelCase__ = False if low == high: return swapped UpperCamelCase__ = low UpperCamelCase__ = high while left < right: if collection[left] > collection[right]: UpperCamelCase__ , UpperCamelCase__ = ( collection[right], collection[left], ) UpperCamelCase__ = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: UpperCamelCase__ , UpperCamelCase__ = ( collection[right + 1], collection[left], ) UpperCamelCase__ = True UpperCamelCase__ = low + int((high - low) / 2 ) UpperCamelCase__ = circle_sort_util(A , A , A ) UpperCamelCase__ = circle_sort_util(A , mid + 1 , A ) return swapped or left_swap or right_swap UpperCamelCase__ = True while is_not_sorted is True: UpperCamelCase__ = circle_sort_util(A , 0 , len(A ) - 1 ) return collection if __name__ == "__main__": __magic_name__ =input('''Enter numbers separated by a comma:\n''').strip() __magic_name__ =[int(item) for item in user_input.split(''',''')] print(circle_sort(unsorted))
415
0
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a__ ( A_, A_ ): '''simple docstring''' assert isinstance(A_, A_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""", [False, True] ) def a__ ( A_, A_, A_ ): '''simple docstring''' __magic_name__ = tmp_path / """cache""" __magic_name__ = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __magic_name__ = TextDatasetReader(A_, cache_dir=A_, keep_in_memory=A_ ).read() _check_text_dataset(A_, A_ ) @pytest.mark.parametrize( """features""", [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ], ) def a__ ( A_, A_, A_ ): '''simple docstring''' __magic_name__ = tmp_path / """cache""" __magic_name__ = {"""text""": """string"""} __magic_name__ = features.copy() if features else default_expected_features __magic_name__ = ( Features({feature: Value(A_ ) for feature, dtype in features.items()} ) if features is not None else None ) __magic_name__ = TextDatasetReader(A_, features=A_, cache_dir=A_ ).read() _check_text_dataset(A_, A_ ) @pytest.mark.parametrize("""split""", [None, NamedSplit("""train""" ), """train""", """test"""] ) def a__ ( A_, A_, A_ ): '''simple docstring''' __magic_name__ = tmp_path / """cache""" __magic_name__ = {"""text""": """string"""} __magic_name__ = TextDatasetReader(A_, cache_dir=A_, split=A_ ).read() _check_text_dataset(A_, A_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""", [str, list] ) def a__ ( A_, A_, A_ ): '''simple docstring''' if issubclass(A_, A_ ): __magic_name__ = text_path elif issubclass(A_, A_ ): __magic_name__ = [text_path] __magic_name__ = tmp_path / """cache""" __magic_name__ = {"""text""": """string"""} __magic_name__ = TextDatasetReader(A_, cache_dir=A_ ).read() _check_text_dataset(A_, A_ ) def a__ ( A_, A_, A_=("train",) ): '''simple docstring''' assert isinstance(A_, A_ ) for split in splits: __magic_name__ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""", [False, True] ) def a__ ( A_, A_, A_ ): '''simple docstring''' __magic_name__ = tmp_path / """cache""" __magic_name__ = {"""text""": """string"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __magic_name__ = TextDatasetReader({"""train""": text_path}, cache_dir=A_, keep_in_memory=A_ ).read() _check_text_datasetdict(A_, A_ ) @pytest.mark.parametrize( """features""", [ None, {"""text""": """string"""}, {"""text""": """int32"""}, {"""text""": """float32"""}, ], ) def a__ ( A_, A_, A_ ): '''simple docstring''' __magic_name__ = tmp_path / """cache""" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" __magic_name__ = {"""text""": """string"""} __magic_name__ = features.copy() if features else default_expected_features __magic_name__ = ( Features({feature: Value(A_ ) for feature, dtype in features.items()} ) if features is not None else None ) __magic_name__ = TextDatasetReader({"""train""": text_path}, features=A_, cache_dir=A_ ).read() _check_text_datasetdict(A_, A_ ) @pytest.mark.parametrize("""split""", [None, NamedSplit("""train""" ), """train""", """test"""] ) def a__ ( A_, A_, A_ ): '''simple docstring''' if split: __magic_name__ = {split: text_path} else: __magic_name__ = """train""" __magic_name__ = {"""train""": text_path, """test""": text_path} __magic_name__ = tmp_path / """cache""" __magic_name__ = {"""text""": """string"""} __magic_name__ = TextDatasetReader(A_, cache_dir=A_ ).read() _check_text_datasetdict(A_, A_, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
718
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( _A , unittest.TestCase ): '''simple docstring''' a__ = FunnelTokenizer a__ = FunnelTokenizerFast a__ = True a__ = True def _lowercase ( self : List[Any] ) -> str: """simple docstring""" super().setUp() __magic_name__ = [ """<unk>""", """<cls>""", """<sep>""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def _lowercase ( self : Dict , **UpperCamelCase__ : Tuple ) -> Union[str, Any]: """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowercase ( self : str , **UpperCamelCase__ : str ) -> List[str]: """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowercase ( self : List[str] , UpperCamelCase__ : str ) -> List[Any]: """simple docstring""" __magic_name__ = """UNwant\u00E9d,running""" __magic_name__ = """unwanted, running""" return input_text, output_text def _lowercase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __magic_name__ = self.tokenizer_class(self.vocab_file ) __magic_name__ = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(UpperCamelCase__ , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [7, 4, 5, 10, 8, 9] ) def _lowercase ( self : str ) -> List[Any]: """simple docstring""" __magic_name__ = self.get_tokenizers(do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: __magic_name__ = tokenizer("""UNwant\u00E9d,running""" ) __magic_name__ = len(inputs["""input_ids"""] ) - 1 self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len ) __magic_name__ = tokenizer("""UNwant\u00E9d,running""" , """UNwant\u00E9d,running""" ) self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len + [1] * sentence_len )
76
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : str =logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] ={ """kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""", """kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""", """kssteven/ibert-roberta-large-mnli""": ( """https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json""" ), } class _A ( lowerCAmelCase ): snake_case__ : Dict = 'ibert' def __init__( self , __lowerCAmelCase=3_0522 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , __lowerCAmelCase="absolute" , __lowerCAmelCase=False , __lowerCAmelCase="none" , **__lowerCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_act lowercase = intermediate_size lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = initializer_range lowercase = layer_norm_eps lowercase = position_embedding_type lowercase = quant_mode lowercase = force_dequant class _A ( lowerCAmelCase ): @property def A__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowercase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
359
"""simple docstring""" import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[int]="attention" ) -> str: '''simple docstring''' lowercase = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] lowercase = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] lowercase = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] lowercase = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]=False ) -> str: '''simple docstring''' if split_mlp_wi: lowercase = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] lowercase = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] lowercase = (wi_a, wi_a) else: lowercase = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] lowercase = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> Any: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def UpperCAmelCase__ ( lowerCAmelCase__ :dict , *, lowerCAmelCase__ :int , lowerCAmelCase__ :bool ) -> List[str]: '''simple docstring''' lowercase = traverse_util.flatten_dict(variables["""target"""] ) lowercase = {"""/""".join(lowerCAmelCase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowercase = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowerCAmelCase__ ) lowercase = collections.OrderedDict() # Shared embeddings. lowercase = old["""token_embedder/embedding"""] # Encoder. for i in range(lowerCAmelCase__ ): # Block i, layer 0 (Self Attention). lowercase = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """pre_attention_layer_norm""" ) lowercase , lowercase , lowercase , lowercase = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """attention""" ) lowercase = layer_norm lowercase = k.T lowercase = o.T lowercase = q.T lowercase = v.T # Block i, layer 1 (MLP). lowercase = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , """pre_mlp_layer_norm""" ) lowercase , lowercase = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """encoder""" , lowerCAmelCase__ ) lowercase = layer_norm if split_mlp_wi: lowercase = wi[0].T lowercase = wi[1].T else: lowercase = wi.T lowercase = wo.T lowercase = old[ """encoder/relpos_bias/rel_embedding""" ].T lowercase = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase__ ): # Block i, layer 0 (Self Attention). lowercase = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowercase , lowercase , lowercase , lowercase = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """self_attention""" ) lowercase = layer_norm lowercase = k.T lowercase = o.T lowercase = q.T lowercase = v.T # Block i, layer 1 (Cross Attention). lowercase = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowercase , lowercase , lowercase , lowercase = tax_attention_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """encoder_decoder_attention""" ) lowercase = layer_norm lowercase = k.T lowercase = o.T lowercase = q.T lowercase = v.T # Block i, layer 2 (MLP). lowercase = tax_layer_norm_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , """pre_mlp_layer_norm""" ) lowercase , lowercase = tax_mlp_lookup(lowerCAmelCase__ , lowerCAmelCase__ , """decoder""" , lowerCAmelCase__ ) lowercase = layer_norm if split_mlp_wi: lowercase = wi[0].T lowercase = wi[1].T else: lowercase = wi.T lowercase = wo.T lowercase = old["""decoder/decoder_norm/scale"""] lowercase = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowercase = old["""decoder/logits_dense/kernel"""].T return new def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :bool ) -> int: '''simple docstring''' lowercase = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowercase = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowercase = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowercase = state_dict["""shared.weight"""] return state_dict def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase = checkpoints.load_tax_checkpoint(lowerCAmelCase__ ) lowercase = convert_tax_to_pytorch(lowerCAmelCase__ , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase__ ) lowercase = make_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ , strict=lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :bool = False ) -> Tuple: '''simple docstring''' lowercase = TaConfig.from_json_file(lowerCAmelCase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowercase = TaEncoderModel(lowerCAmelCase__ ) else: lowercase = TaForConditionalGeneration(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowerCAmelCase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase__ ) print("""Done""" ) if __name__ == "__main__": __lowerCAmelCase : List[Any] =argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) __lowerCAmelCase : List[Any] =parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
359
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: Dict=False , SCREAMING_SNAKE_CASE_: Dict=False ) -> Optional[int]: '''simple docstring''' A__ = "backbone." if is_semantic else "" A__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'{prefix}blocks.{i}.norm1.weight', F'beit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'{prefix}blocks.{i}.norm1.bias', F'beit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'{prefix}blocks.{i}.attn.proj.weight', F'beit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'{prefix}blocks.{i}.attn.proj.bias', F'beit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'{prefix}blocks.{i}.norm2.weight', F'beit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'{prefix}blocks.{i}.norm2.bias', F'beit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc1.weight', F'beit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc1.bias', F'beit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc2.weight', F'beit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc2.bias', F'beit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ (F'{prefix}cls_token', "beit.embeddings.cls_token"), (F'{prefix}patch_embed.proj.weight', "beit.embeddings.patch_embeddings.projection.weight"), (F'{prefix}patch_embed.proj.bias', "beit.embeddings.patch_embeddings.projection.bias"), (F'{prefix}pos_embed', "beit.embeddings.position_embeddings"), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("mask_token", "beit.embeddings.mask_token"), ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) else: # layernorm + classification head rename_keys.extend( [ ("fc_norm.weight", "beit.pooler.layernorm.weight"), ("fc_norm.bias", "beit.pooler.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Optional[int]=False , SCREAMING_SNAKE_CASE_: int=False ) -> Optional[int]: '''simple docstring''' for i in range(config.num_hidden_layers ): A__ = "backbone." if is_semantic else "" # queries, keys and values A__ = state_dict.pop(F'{prefix}blocks.{i}.attn.qkv.weight' ) A__ = state_dict.pop(F'{prefix}blocks.{i}.attn.q_bias' ) A__ = state_dict.pop(F'{prefix}blocks.{i}.attn.v_bias' ) A__ = in_proj_weight[ : config.hidden_size, : ] A__ = q_bias A__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ = in_proj_weight[ -config.hidden_size :, : ] A__ = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained A__ = state_dict.pop(F'{prefix}blocks.{i}.gamma_1' ) A__ = state_dict.pop(F'{prefix}blocks.{i}.gamma_2' ) A__ = gamma_a A__ = gamma_a def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: List[Any] ) -> Union[str, Any]: '''simple docstring''' A__ = dct.pop(SCREAMING_SNAKE_CASE_ ) A__ = val def lowerCAmelCase__ ( ) -> int: '''simple docstring''' A__ = "http://images.cocodataset.org/val2017/000000039769.jpg" A__ = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) return im @torch.no_grad() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Dict , SCREAMING_SNAKE_CASE_: Dict , SCREAMING_SNAKE_CASE_: Any=False ) -> Dict: '''simple docstring''' A__ = False if "rvlcdip" in checkpoint_url else True A__ = BeitConfig(use_absolute_position_embeddings=SCREAMING_SNAKE_CASE_ , use_mask_token=SCREAMING_SNAKE_CASE_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: A__ = 1_0_2_4 A__ = 4_0_9_6 A__ = 2_4 A__ = 1_6 # labels if "rvlcdip" in checkpoint_url: A__ = 1_6 A__ = "huggingface/label-files" A__ = "rvlcdip-id2label.json" A__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) , "r" ) ) A__ = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys A__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="cpu" )["model"] A__ = create_rename_keys(SCREAMING_SNAKE_CASE_ , has_lm_head=SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , has_lm_head=SCREAMING_SNAKE_CASE_ ) # load HuggingFace model A__ = BeitForMaskedImageModeling(SCREAMING_SNAKE_CASE_ ) if has_lm_head else BeitForImageClassification(SCREAMING_SNAKE_CASE_ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check outputs on an image A__ = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE_ ) A__ = prepare_img() A__ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors="pt" ) A__ = encoding["pixel_values"] A__ = model(SCREAMING_SNAKE_CASE_ ) A__ = outputs.logits # verify logits A__ = [1, 1_6] if "rvlcdip" in checkpoint_url else [1, 1_9_6, 8_1_9_2] assert logits.shape == torch.Size(SCREAMING_SNAKE_CASE_ ), "Shape of logits not as expected" Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: if has_lm_head: A__ = "dit-base" if "base" in checkpoint_url else "dit-large" else: A__ = "dit-base-finetuned-rvlcdip" if "dit-b" in checkpoint_url else "dit-large-finetuned-rvlcdip" image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=SCREAMING_SNAKE_CASE_ , ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=SCREAMING_SNAKE_CASE_ , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) lowerCAmelCase__ = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
626
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class a__ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowercase , lowercase=7 , lowercase=3 , lowercase=30 , lowercase=400 , lowercase=True , lowercase=None , lowercase=0.9 , lowercase=None , lowercase=True , lowercase=[0.5, 0.5, 0.5] , lowercase=[0.5, 0.5, 0.5] , ) -> str: '''simple docstring''' A__ = size if size is not None else {"shortest_edge": 30} A__ = crop_size if crop_size is not None else {"height": 30, "width": 30} A__ = parent A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution A__ = do_resize_and_center_crop A__ = size A__ = crop_pct A__ = crop_size A__ = do_normalize A__ = image_mean A__ = image_std def UpperCamelCase ( self ) -> int: '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class a__ ( snake_case , unittest.TestCase ): """simple docstring""" __lowerCamelCase = PoolFormerImageProcessor if is_vision_available() else None def UpperCamelCase ( self ) -> str: '''simple docstring''' A__ = PoolFormerImageProcessingTester(self ) @property def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self ) -> Any: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , "do_resize_and_center_crop" ) ) self.assertTrue(hasattr(lowercase , "size" ) ) self.assertTrue(hasattr(lowercase , "crop_pct" ) ) self.assertTrue(hasattr(lowercase , "do_normalize" ) ) self.assertTrue(hasattr(lowercase , "image_mean" ) ) self.assertTrue(hasattr(lowercase , "image_std" ) ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 30} ) self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30} ) A__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def UpperCamelCase ( self ) -> Optional[int]: '''simple docstring''' pass def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched A__ = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCamelCase ( self ) -> Tuple: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched A__ = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched A__ = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
626
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class _lowercase : def __init__( self , a , ): snake_case__ : Optional[int] =parent snake_case__ : List[str] =1_3 snake_case__ : Dict =7 snake_case__ : List[Any] =True snake_case__ : Optional[int] =True snake_case__ : str =True snake_case__ : str =True snake_case__ : List[Any] =True snake_case__ : Tuple =False snake_case__ : int =False snake_case__ : List[Any] =False snake_case__ : List[Any] =2 snake_case__ : Optional[int] =9_9 snake_case__ : Any =0 snake_case__ : int =3_2 snake_case__ : List[str] =2 snake_case__ : Union[str, Any] =4 snake_case__ : int =0.1 snake_case__ : Dict =0.1 snake_case__ : List[Any] =5_1_2 snake_case__ : int =1_6 snake_case__ : Any =2 snake_case__ : Dict =0.02 snake_case__ : str =3 snake_case__ : List[str] =4 snake_case__ : List[Any] ="""last""" snake_case__ : List[Any] =True snake_case__ : Optional[Any] =None snake_case__ : List[Any] =0 def lowercase__ ( self ): snake_case__ : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Tuple =random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) snake_case__ : int =None if self.use_input_lengths: snake_case__ : Tuple =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case__ : Optional[Any] =None if self.use_token_type_ids: snake_case__ : int =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case__ : Tuple =None snake_case__ : Union[str, Any] =None snake_case__ : Tuple =None if self.use_labels: snake_case__ : List[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : str =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : List[str] =ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) snake_case__ : Optional[int] =ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : int =FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self , a , a , a , a , a , a , a , a , a , ): snake_case__ : Union[str, Any] =TFFlaubertModel(config=a ) snake_case__ : str ={"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} snake_case__ : Dict =model(a ) snake_case__ : Optional[Any] =[input_ids, input_mask] snake_case__ : str =model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self , a , a , a , a , a , a , a , a , a , ): snake_case__ : Union[str, Any] =TFFlaubertWithLMHeadModel(a ) snake_case__ : Any ={"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} snake_case__ : Optional[int] =model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self , a , a , a , a , a , a , a , a , a , ): snake_case__ : Tuple =TFFlaubertForQuestionAnsweringSimple(a ) snake_case__ : int ={"""input_ids""": input_ids, """lengths""": input_lengths} snake_case__ : Dict =model(a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self , a , a , a , a , a , a , a , a , a , ): snake_case__ : Dict =TFFlaubertForSequenceClassification(a ) snake_case__ : Optional[int] ={"""input_ids""": input_ids, """lengths""": input_lengths} snake_case__ : Optional[Any] =model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self , a , a , a , a , a , a , a , a , a , ): snake_case__ : Tuple =self.num_labels snake_case__ : List[Any] =TFFlaubertForTokenClassification(config=a ) snake_case__ : Any ={"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} snake_case__ : List[str] =model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self , a , a , a , a , a , a , a , a , a , ): snake_case__ : List[Any] =self.num_choices snake_case__ : Optional[int] =TFFlaubertForMultipleChoice(config=a ) snake_case__ : List[Any] =tf.tile(tf.expand_dims(a , 1 ) , (1, self.num_choices, 1) ) snake_case__ : List[str] =tf.tile(tf.expand_dims(a , 1 ) , (1, self.num_choices, 1) ) snake_case__ : str =tf.tile(tf.expand_dims(a , 1 ) , (1, self.num_choices, 1) ) snake_case__ : List[Any] ={ """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } snake_case__ : Optional[Any] =model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self ): snake_case__ : Optional[Any] =self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Any =config_and_inputs snake_case__ : int ={ """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class _lowercase ( _A , _A , unittest.TestCase ): _a : Optional[Any] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _a : Tuple = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _a : Optional[Any] = ( { 'feature-extraction': TFFlaubertModel, 'fill-mask': TFFlaubertWithLMHeadModel, 'question-answering': TFFlaubertForQuestionAnsweringSimple, 'text-classification': TFFlaubertForSequenceClassification, 'token-classification': TFFlaubertForTokenClassification, 'zero-shot': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _a : Union[str, Any] = False _a : Dict = False def lowercase__ ( self , a , a , a , a , a ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self ): snake_case__ : Tuple =TFFlaubertModelTester(self ) snake_case__ : int =ConfigTester(self , config_class=a , emb_dim=3_7 ) def lowercase__ ( self ): self.config_tester.run_common_tests() def lowercase__ ( self ): snake_case__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a ) def lowercase__ ( self ): snake_case__ : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a ) def lowercase__ ( self ): snake_case__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a ) def lowercase__ ( self ): snake_case__ : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a ) def lowercase__ ( self ): snake_case__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*a ) def lowercase__ ( self ): snake_case__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*a ) @slow def lowercase__ ( self ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Tuple =TFFlaubertModel.from_pretrained(a ) self.assertIsNotNone(a ) @require_tf @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): @slow def lowercase__ ( self ): snake_case__ : str =TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) snake_case__ : Union[str, Any] =tf.convert_to_tensor( [[0, 1_5_8, 7_3_5, 2_5_9_2, 1_4_2_4, 6_7_2_7, 8_2, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" snake_case__ : Tuple =model(a )[0] snake_case__ : List[Any] =tf.TensorShape((1, 8, 5_1_2) ) self.assertEqual(output.shape , a ) # compare the actual values for a slice. snake_case__ : Dict =tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
385
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __lowerCamelCase : int = logging.get_logger(__name__) @add_end_docstrings( _A , R'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , ) class _lowercase ( _A ): def lowercase__ ( self , a ): if self.framework == "tf": snake_case__ : int =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": snake_case__ : Optional[Any] =torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=a ) else: raise ValueError("""Unsupported framework""" ) return masked_index def lowercase__ ( self , a ): snake_case__ : str =self.get_masked_index(a ) snake_case__ : Any =np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , F"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def lowercase__ ( self , a ): if isinstance(a , a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(a ) def lowercase__ ( self , a , a=None , **a ): if return_tensors is None: snake_case__ : Optional[Any] =self.framework snake_case__ : List[str] =self.tokenizer(a , return_tensors=a ) self.ensure_exactly_one_mask_token(a ) return model_inputs def lowercase__ ( self , a ): snake_case__ : Optional[Any] =self.model(**a ) snake_case__ : str =model_inputs["""input_ids"""] return model_outputs def lowercase__ ( self , a , a=5 , a=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: snake_case__ : Union[str, Any] =target_ids.shape[0] snake_case__ : Union[str, Any] =model_outputs["""input_ids"""][0] snake_case__ : List[Any] =model_outputs["""logits"""] if self.framework == "tf": snake_case__ : str =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] snake_case__ : Any =outputs.numpy() snake_case__ : Optional[Any] =outputs[0, masked_index, :] snake_case__ : List[Any] =stable_softmax(a , axis=-1 ) if target_ids is not None: snake_case__ : str =tf.gather_nd(tf.squeeze(a , 0 ) , target_ids.reshape(-1 , 1 ) ) snake_case__ : List[str] =tf.expand_dims(a , 0 ) snake_case__ : Optional[Any] =tf.math.top_k(a , k=a ) snake_case__ , snake_case__ : int =topk.values.numpy(), topk.indices.numpy() else: snake_case__ : List[Any] =torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample snake_case__ : int =outputs[0, masked_index, :] snake_case__ : Optional[int] =logits.softmax(dim=-1 ) if target_ids is not None: snake_case__ : Dict =probs[..., target_ids] snake_case__ , snake_case__ : List[Any] =probs.topk(a ) snake_case__ : List[Any] =[] snake_case__ : int =values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): snake_case__ : Dict =[] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place snake_case__ : List[Any] =input_ids.numpy().copy() if target_ids is not None: snake_case__ : Tuple =target_ids[p].tolist() snake_case__ : Any =p # Filter padding out: snake_case__ : int =tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back snake_case__ : Union[str, Any] =self.tokenizer.decode(a , skip_special_tokens=a ) snake_case__ : int ={"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(a ) result.append(a ) if single_mask: return result[0] return result def lowercase__ ( self , a , a=None ): if isinstance(a , a ): snake_case__ : Tuple =[targets] try: snake_case__ : Any =self.tokenizer.get_vocab() except Exception: snake_case__ : List[Any] ={} snake_case__ : Any =[] for target in targets: snake_case__ : Optional[int] =vocab.get(a , a ) if id_ is None: snake_case__ : str =self.tokenizer( a , add_special_tokens=a , return_attention_mask=a , return_token_type_ids=a , max_length=1 , truncation=a , )["""input_ids"""] if len(a ) == 0: logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " """We cannot replace it with anything meaningful, ignoring it""" ) continue snake_case__ : Any =input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) snake_case__ : Optional[Any] =list(set(a ) ) if len(a ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) snake_case__ : Tuple =np.array(a ) return target_ids def lowercase__ ( self , a=None , a=None ): snake_case__ : int ={} if targets is not None: snake_case__ : str =self.get_target_ids(a , a ) snake_case__ : Union[str, Any] =target_ids if top_k is not None: snake_case__ : Dict =top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self , a , *a , **a ): snake_case__ : List[Any] =super().__call__(a , **a ) if isinstance(a , a ) and len(a ) == 1: return outputs[0] return outputs
385
1
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def _lowerCamelCase ( *lowerCamelCase__ : Optional[int] ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowercase__ : Optional[int] = list(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): lowercase__ : Dict = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def _lowerCamelCase ( lowerCamelCase__ : Exception ): lowercase__ : Any = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def _lowerCamelCase ( lowerCamelCase__ : callable = None , lowerCamelCase__ : int = 1_28 ): if function is None: return functools.partial(lowerCamelCase__ , starting_batch_size=lowerCamelCase__ ) lowercase__ : Any = starting_batch_size def decorator(*lowerCamelCase__ : int , **lowerCamelCase__ : int ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() lowercase__ : str = list(inspect.signature(lowerCamelCase__ ).parameters.keys() ) # Guard against user error if len(lowerCamelCase__ ) < (len(lowerCamelCase__ ) + 1): lowercase__ : Dict = """, """.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) except Exception as e: if should_reduce_batch_size(lowerCamelCase__ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
128
"""simple docstring""" import socket def _lowerCamelCase ( ): lowercase__ : str = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) lowercase__ : int = socket.gethostname() lowercase__ : Optional[Any] = 1_23_12 sock.connect((host, port) ) sock.send(B"""Hello server!""" ) with open("""Received_file""" , """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: lowercase__ : Union[str, Any] = sock.recv(10_24 ) if not data: break out_file.write(lowerCamelCase__ ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
128
1
'''simple docstring''' from sklearn.metrics import fa_score import datasets _SCREAMING_SNAKE_CASE = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' _SCREAMING_SNAKE_CASE = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' _SCREAMING_SNAKE_CASE = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def _snake_case ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , _lowerCAmelCase=1 , _lowerCAmelCase="binary" , _lowerCAmelCase=None ) -> Optional[int]: _lowerCAmelCase = fa_score( lowercase__ , lowercase__ , labels=lowercase__ , pos_label=lowercase__ , average=lowercase__ , sample_weight=lowercase__ ) return {"f1": float(lowercase__ ) if score.size == 1 else score}
18
"""simple docstring""" def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->Dict: """simple docstring""" assert x is not None assert y is not None __lowercase : Optional[int] = len(_lowerCamelCase ) __lowercase : Union[str, Any] = len(_lowerCamelCase ) # declaring the array for storing the dp values __lowercase : int = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1, m + 1 ): for j in range(1, n + 1 ): __lowercase : List[Any] = 1 if x[i - 1] == y[j - 1] else 0 __lowercase : Any = max(l[i - 1][j], l[i][j - 1], l[i - 1][j - 1] + match ) __lowercase : Tuple = "" __lowercase ,__lowercase : str = m, n while i > 0 and j > 0: __lowercase : Optional[int] = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __lowercase : Tuple = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": __A : Optional[int] = 'AGGTAB' __A : List[Any] = 'GXTXAYB' __A : List[Any] = 4 __A : Tuple = 'GTAB' __A, __A : int = longest_common_subsequence(a, b) print('len =', ln, ', sub-sequence =', subseq) import doctest doctest.testmod()
575
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case ( ) -> Any: """simple docstring""" UpperCamelCase_ : int = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=a_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=a_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=a_ ) return parser.parse_args() def snake_case ( ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Tuple = parse_args() # Import training_script as a module. UpperCamelCase_ : int = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCamelCase_ : int = script_fpath.stem UpperCamelCase_ : List[str] = importlib.import_module(a_ ) # Patch sys.argv UpperCamelCase_ : Tuple = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
707
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class A ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ): UpperCamelCase_ : str = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() UpperCamelCase_ : int = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) UpperCamelCase_ : Tuple = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } UpperCamelCase_ : Optional[Any] = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_60_00, """return_attention_mask""": False, """do_normalize""": True, } UpperCamelCase_ : int = tempfile.mkdtemp() UpperCamelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase_ : List[Any] = os.path.join(self.tmpdirname , __lowerCAmelCase ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + """\n""" ) with open(self.feature_extraction_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + """\n""" ) # load decoder from hub UpperCamelCase_ : Union[str, Any] = """hf-internal-testing/ngram-beam-search-decoder""" def _UpperCAmelCase ( self , **__lowerCAmelCase ): UpperCamelCase_ : str = self.add_kwargs_tokens_map.copy() kwargs.update(__lowerCAmelCase ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _UpperCAmelCase ( self , **__lowerCAmelCase ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _UpperCAmelCase ( self , **__lowerCAmelCase ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__lowerCAmelCase ) def _UpperCAmelCase ( self ): shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Union[str, Any] = self.get_tokenizer() UpperCamelCase_ : str = self.get_feature_extractor() UpperCamelCase_ : Tuple = self.get_decoder() UpperCamelCase_ : int = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , decoder=__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_ : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCAmelCase ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , __lowerCAmelCase ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , __lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Union[str, Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match UpperCamelCase_ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def _UpperCAmelCase ( self ): UpperCamelCase_ : int = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(__lowerCAmelCase , """include""" ): WavaVecaProcessorWithLM( tokenizer=__lowerCAmelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Tuple = self.get_feature_extractor() UpperCamelCase_ : Tuple = self.get_tokenizer() UpperCamelCase_ : Any = self.get_decoder() UpperCamelCase_ : List[Any] = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , decoder=__lowerCAmelCase ) UpperCamelCase_ : List[Any] = floats_list((3, 10_00) ) UpperCamelCase_ : Tuple = feature_extractor(__lowerCAmelCase , return_tensors="""np""" ) UpperCamelCase_ : str = processor(__lowerCAmelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Dict = self.get_feature_extractor() UpperCamelCase_ : List[Any] = self.get_tokenizer() UpperCamelCase_ : List[Any] = self.get_decoder() UpperCamelCase_ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , decoder=__lowerCAmelCase ) UpperCamelCase_ : List[str] = """This is a test string""" UpperCamelCase_ : Optional[Any] = processor(text=__lowerCAmelCase ) UpperCamelCase_ : int = tokenizer(__lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCAmelCase ( self , __lowerCAmelCase=(2, 10, 16) , __lowerCAmelCase=77 ): np.random.seed(__lowerCAmelCase ) return np.random.rand(*__lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : int = self.get_feature_extractor() UpperCamelCase_ : Tuple = self.get_tokenizer() UpperCamelCase_ : Optional[int] = self.get_decoder() UpperCamelCase_ : int = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , decoder=__lowerCAmelCase ) UpperCamelCase_ : List[str] = self._get_dummy_logits(shape=(10, 16) , seed=13 ) UpperCamelCase_ : Any = processor.decode(__lowerCAmelCase ) UpperCamelCase_ : Any = decoder.decode_beams(__lowerCAmelCase )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual("""</s> <s> </s>""" , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : Union[str, Any] = self.get_feature_extractor() UpperCamelCase_ : str = self.get_tokenizer() UpperCamelCase_ : List[Any] = self.get_decoder() UpperCamelCase_ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , decoder=__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCamelCase_ : List[Any] = processor.batch_decode(__lowerCAmelCase ) else: with get_context(__lowerCAmelCase ).Pool() as pool: UpperCamelCase_ : Any = processor.batch_decode(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase_ : Tuple = list(__lowerCAmelCase ) with get_context("""fork""" ).Pool() as p: UpperCamelCase_ : Optional[int] = decoder.decode_beams_batch(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ : Union[str, Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(__lowerCAmelCase , decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""] , decoded_processor.text ) self.assertListEqual(__lowerCAmelCase , decoded_processor.logit_score ) self.assertListEqual(__lowerCAmelCase , decoded_processor.lm_score ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Dict = self.get_feature_extractor() UpperCamelCase_ : Tuple = self.get_tokenizer() UpperCamelCase_ : Tuple = self.get_decoder() UpperCamelCase_ : Optional[Any] = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , decoder=__lowerCAmelCase ) UpperCamelCase_ : List[str] = self._get_dummy_logits() UpperCamelCase_ : Dict = 15 UpperCamelCase_ : str = -20.0 UpperCamelCase_ : Dict = -4.0 UpperCamelCase_ : Union[str, Any] = processor.batch_decode( __lowerCAmelCase , beam_width=__lowerCAmelCase , beam_prune_logp=__lowerCAmelCase , token_min_logp=__lowerCAmelCase , ) UpperCamelCase_ : Any = decoded_processor_out.text UpperCamelCase_ : Tuple = list(__lowerCAmelCase ) with get_context("""fork""" ).Pool() as pool: UpperCamelCase_ : str = decoder.decode_beams_batch( __lowerCAmelCase , __lowerCAmelCase , beam_width=__lowerCAmelCase , beam_prune_logp=__lowerCAmelCase , token_min_logp=__lowerCAmelCase , ) UpperCamelCase_ : str = [d[0][0] for d in decoded_decoder_out] UpperCamelCase_ : List[str] = [d[0][2] for d in decoded_decoder_out] UpperCamelCase_ : Union[str, Any] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""] , __lowerCAmelCase ) self.assertTrue(np.array_equal(__lowerCAmelCase , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.0_54, -18.4_47] , __lowerCAmelCase , atol=1E-3 ) ) self.assertTrue(np.array_equal(__lowerCAmelCase , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.5_54, -13.94_74] , __lowerCAmelCase , atol=1E-3 ) ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[int] = self.get_feature_extractor() UpperCamelCase_ : Union[str, Any] = self.get_tokenizer() UpperCamelCase_ : int = self.get_decoder() UpperCamelCase_ : Dict = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , decoder=__lowerCAmelCase ) UpperCamelCase_ : str = self._get_dummy_logits() UpperCamelCase_ : Optional[int] = 2.0 UpperCamelCase_ : List[str] = 5.0 UpperCamelCase_ : Optional[Any] = -20.0 UpperCamelCase_ : Optional[Any] = True UpperCamelCase_ : Union[str, Any] = processor.batch_decode( __lowerCAmelCase , alpha=__lowerCAmelCase , beta=__lowerCAmelCase , unk_score_offset=__lowerCAmelCase , lm_score_boundary=__lowerCAmelCase , ) UpperCamelCase_ : List[str] = decoded_processor_out.text UpperCamelCase_ : List[str] = list(__lowerCAmelCase ) decoder.reset_params( alpha=__lowerCAmelCase , beta=__lowerCAmelCase , unk_score_offset=__lowerCAmelCase , lm_score_boundary=__lowerCAmelCase , ) with get_context("""fork""" ).Pool() as pool: UpperCamelCase_ : int = decoder.decode_beams_batch( __lowerCAmelCase , __lowerCAmelCase , ) UpperCamelCase_ : Any = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""] , __lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -20.0 ) self.assertEqual(lm_model.score_boundary , __lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Dict = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCamelCase_ : Optional[int] = processor.decoder.model_container[processor.decoder._model_key] UpperCamelCase_ : int = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() UpperCamelCase_ : Any = os.listdir(__lowerCAmelCase ) UpperCamelCase_ : Optional[Any] = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Union[str, Any] = snapshot_download("""hf-internal-testing/processor_with_lm""" ) UpperCamelCase_ : Union[str, Any] = WavaVecaProcessorWithLM.from_pretrained(__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] UpperCamelCase_ : Tuple = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() UpperCamelCase_ : Union[str, Any] = os.listdir(__lowerCAmelCase ) UpperCamelCase_ : str = os.listdir(__lowerCAmelCase ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCamelCase_ : Tuple = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCamelCase_ : Dict = floats_list((3, 10_00) ) UpperCamelCase_ : List[Any] = processor_wavaveca(__lowerCAmelCase , return_tensors="""np""" ) UpperCamelCase_ : Tuple = processor_auto(__lowerCAmelCase , return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 ) UpperCamelCase_ : Optional[int] = self._get_dummy_logits() UpperCamelCase_ : Dict = processor_wavaveca.batch_decode(__lowerCAmelCase ) UpperCamelCase_ : Any = processor_auto.batch_decode(__lowerCAmelCase ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Tuple = self.get_feature_extractor() UpperCamelCase_ : int = self.get_tokenizer() UpperCamelCase_ : List[Any] = self.get_decoder() UpperCamelCase_ : List[str] = WavaVecaProcessorWithLM(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase , decoder=__lowerCAmelCase ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , ) @staticmethod def _UpperCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ : Union[str, Any] = [d[key] for d in offsets] return retrieved_list def _UpperCAmelCase ( self ): UpperCamelCase_ : Dict = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCamelCase_ : int = self._get_dummy_logits()[0] UpperCamelCase_ : List[Any] = processor.decode(__lowerCAmelCase , output_word_offsets=__lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""] , """end_offset""" ) , [1, 3, 5] ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Any = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) UpperCamelCase_ : Union[str, Any] = self._get_dummy_logits() UpperCamelCase_ : Dict = processor.batch_decode(__lowerCAmelCase , output_word_offsets=__lowerCAmelCase ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(__lowerCAmelCase , __lowerCAmelCase ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(__lowerCAmelCase , """word""" ) ) for o in outputs["""word_offsets"""]] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """word""" ) , ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """start_offset""" ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0] , """end_offset""" ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def _UpperCAmelCase ( self ): import torch UpperCamelCase_ : str = load_dataset("""common_voice""" , """en""" , split="""train""" , streaming=__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = ds.cast_column("""audio""" , datasets.Audio(sampling_rate=1_60_00 ) ) UpperCamelCase_ : Union[str, Any] = iter(__lowerCAmelCase ) UpperCamelCase_ : int = next(__lowerCAmelCase ) UpperCamelCase_ : List[str] = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) UpperCamelCase_ : Tuple = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCamelCase_ : Dict = processor(sample["""audio"""]["""array"""] , return_tensors="""pt""" ).input_values with torch.no_grad(): UpperCamelCase_ : List[Any] = model(__lowerCAmelCase ).logits.cpu().numpy() UpperCamelCase_ : Tuple = processor.decode(logits[0] , output_word_offsets=__lowerCAmelCase ) UpperCamelCase_ : List[Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCamelCase_ : Dict = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] UpperCamelCase_ : Optional[Any] = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(__lowerCAmelCase , """word""" ) ) , __lowerCAmelCase ) self.assertEqual(""" """.join(self.get_from_offsets(__lowerCAmelCase , """word""" ) ) , output.text ) # output times UpperCamelCase_ : str = torch.tensor(self.get_from_offsets(__lowerCAmelCase , """start_time""" ) ) UpperCamelCase_ : Union[str, Any] = torch.tensor(self.get_from_offsets(__lowerCAmelCase , """end_time""" ) ) # fmt: off UpperCamelCase_ : Union[str, Any] = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99] ) UpperCamelCase_ : Union[str, Any] = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94] ) # fmt: on self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=0.01 ) ) self.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=0.01 ) )
543
0
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase ( A__: Optional[Any] , A__: Optional[Any]=0.999 , A__: Dict="cosine" , ) -> Optional[Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(A__: str ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A__: Union[str, Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __lowerCamelCase : Any = [] for i in range(A__ ): __lowerCamelCase : str = i / num_diffusion_timesteps __lowerCamelCase : Any = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A__ ) / alpha_bar_fn(A__ ) , A__ ) ) return torch.tensor(A__ , dtype=torch.floataa ) class __lowercase( lowercase__ , lowercase__ ): '''simple docstring''' __a : Optional[int] = [e.name for e in KarrasDiffusionSchedulers] __a : List[Any] = 2 @register_to_config def __init__( self , __a = 1000 , __a = 0.00_085 , __a = 0.012 , __a = "linear" , __a = None , __a = "epsilon" , __a = "linspace" , __a = 0 , ): if trained_betas is not None: __lowerCamelCase : str = torch.tensor(__a , dtype=torch.floataa ) elif beta_schedule == "linear": __lowerCamelCase : List[Any] = torch.linspace(__a , __a , __a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowerCamelCase : Dict = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowerCamelCase : str = betas_for_alpha_bar(__a ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __lowerCamelCase : Any = 1.0 - self.betas __lowerCamelCase : Any = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__a , __a , __a ) def snake_case_ ( self , __a , __a=None ): if schedule_timesteps is None: __lowerCamelCase : Optional[int] = self.timesteps __lowerCamelCase : Tuple = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowerCamelCase : Optional[int] = 1 if len(__a ) > 1 else 0 else: __lowerCamelCase : Union[str, Any] = timestep.cpu().item() if torch.is_tensor(__a ) else timestep __lowerCamelCase : str = self._index_counter[timestep_int] return indices[pos].item() @property def snake_case_ ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def snake_case_ ( self , __a , __a , ): __lowerCamelCase : List[Any] = self.index_for_timestep(__a ) if self.state_in_first_order: __lowerCamelCase : Optional[int] = self.sigmas[step_index] else: __lowerCamelCase : Any = self.sigmas_interpol[step_index] __lowerCamelCase : List[str] = sample / ((sigma**2 + 1) ** 0.5) return sample def snake_case_ ( self , __a , __a = None , __a = None , ): __lowerCamelCase : List[str] = num_inference_steps __lowerCamelCase : str = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowerCamelCase : List[str] = np.linspace(0 , num_train_timesteps - 1 , __a , dtype=__a )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowerCamelCase : Dict = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase : Optional[int] = (np.arange(0 , __a ) * step_ratio).round()[::-1].copy().astype(__a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowerCamelCase : Optional[int] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowerCamelCase : Union[str, Any] = (np.arange(__a , 0 , -step_ratio )).round().copy().astype(__a ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) __lowerCamelCase : Optional[Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowerCamelCase : List[Any] = torch.from_numpy(np.log(__a ) ).to(__a ) __lowerCamelCase : Union[str, Any] = np.interp(__a , np.arange(0 , len(__a ) ) , __a ) __lowerCamelCase : List[Any] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowerCamelCase : List[str] = torch.from_numpy(__a ).to(device=__a ) # interpolate sigmas __lowerCamelCase : List[Any] = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __lowerCamelCase : Optional[int] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __lowerCamelCase : int = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(__a ).startswith('mps' ): # mps does not support float64 __lowerCamelCase : Union[str, Any] = torch.from_numpy(__a ).to(__a , dtype=torch.floataa ) else: __lowerCamelCase : Optional[int] = torch.from_numpy(__a ).to(__a ) # interpolate timesteps __lowerCamelCase : List[Any] = self.sigma_to_t(__a ).to(__a , dtype=timesteps.dtype ) __lowerCamelCase : Tuple = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __lowerCamelCase : Any = torch.cat([timesteps[:1], interleaved_timesteps] ) __lowerCamelCase : int = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowerCamelCase : Dict = defaultdict(__a ) def snake_case_ ( self , __a ): # get log sigma __lowerCamelCase : List[str] = sigma.log() # get distribution __lowerCamelCase : Any = log_sigma - self.log_sigmas[:, None] # get sigmas range __lowerCamelCase : Optional[Any] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __lowerCamelCase : int = low_idx + 1 __lowerCamelCase : List[Any] = self.log_sigmas[low_idx] __lowerCamelCase : Any = self.log_sigmas[high_idx] # interpolate sigmas __lowerCamelCase : List[Any] = (low - log_sigma) / (low - high) __lowerCamelCase : List[Any] = w.clamp(0 , 1 ) # transform interpolation to time range __lowerCamelCase : Dict = (1 - w) * low_idx + w * high_idx __lowerCamelCase : Dict = t.view(sigma.shape ) return t @property def snake_case_ ( self ): return self.sample is None def snake_case_ ( self , __a , __a , __a , __a = True , ): __lowerCamelCase : Union[str, Any] = self.index_for_timestep(__a ) # advance index counter by 1 __lowerCamelCase : Optional[Any] = timestep.cpu().item() if torch.is_tensor(__a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowerCamelCase : Any = self.sigmas[step_index] __lowerCamelCase : Dict = self.sigmas_interpol[step_index + 1] __lowerCamelCase : Any = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __lowerCamelCase : List[str] = self.sigmas[step_index - 1] __lowerCamelCase : Dict = self.sigmas_interpol[step_index] __lowerCamelCase : List[str] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowerCamelCase : Any = 0 __lowerCamelCase : Union[str, Any] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowerCamelCase : Tuple = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase : Optional[int] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowerCamelCase : Optional[Any] = sigma_hat if self.state_in_first_order else sigma_interpol __lowerCamelCase : Dict = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowerCamelCase : Union[str, Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowerCamelCase : Any = sigma_interpol - sigma_hat # store for 2nd order step __lowerCamelCase : str = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __lowerCamelCase : List[str] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __lowerCamelCase : List[str] = sigma_next - sigma_hat __lowerCamelCase : int = self.sample __lowerCamelCase : Dict = None __lowerCamelCase : Any = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__a ) def snake_case_ ( self , __a , __a , __a , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowerCamelCase : List[str] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__a ): # mps does not support float64 __lowerCamelCase : Any = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowerCamelCase : int = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowerCamelCase : Union[str, Any] = self.timesteps.to(original_samples.device ) __lowerCamelCase : Union[str, Any] = timesteps.to(original_samples.device ) __lowerCamelCase : Tuple = [self.index_for_timestep(__a , __a ) for t in timesteps] __lowerCamelCase : List[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowerCamelCase : List[str] = sigma.unsqueeze(-1 ) __lowerCamelCase : Tuple = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
594
"""simple docstring""" import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class __lowercase( lowercase__ ): '''simple docstring''' __a : int = (DDPMParallelScheduler,) def snake_case_ ( self , **__a ): __lowerCamelCase : Any = { 'num_train_timesteps': 1000, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**__a ) return config def snake_case_ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__a ) def snake_case_ ( self ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__a , beta_end=__a ) def snake_case_ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__a ) def snake_case_ ( self ): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__a ) def snake_case_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=__a ) def snake_case_ ( self ): self.check_over_configs(thresholding=__a ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__a , prediction_type=__a , sample_max_value=__a , ) def snake_case_ ( self ): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__a ) def snake_case_ ( self ): for t in [0, 500, 999]: self.check_over_forward(time_step=__a ) def snake_case_ ( self ): __lowerCamelCase : Dict = self.scheduler_classes[0] __lowerCamelCase : Any = self.get_scheduler_config() __lowerCamelCase : Any = scheduler_class(**__a ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1E-5 def snake_case_ ( self ): __lowerCamelCase : Tuple = self.scheduler_classes[0] __lowerCamelCase : Optional[int] = self.get_scheduler_config() __lowerCamelCase : str = scheduler_class(**__a ) __lowerCamelCase : Any = len(__a ) __lowerCamelCase : Dict = self.dummy_model() __lowerCamelCase : Optional[Any] = self.dummy_sample_deter __lowerCamelCase : List[Any] = self.dummy_sample_deter + 0.1 __lowerCamelCase : Any = self.dummy_sample_deter - 0.1 __lowerCamelCase : Optional[Any] = samplea.shape[0] __lowerCamelCase : Any = torch.stack([samplea, samplea, samplea] , dim=0 ) __lowerCamelCase : Optional[int] = torch.arange(__a )[0:3, None].repeat(1 , __a ) __lowerCamelCase : Dict = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __lowerCamelCase : Dict = scheduler.batch_step_no_noise(__a , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) __lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(__a ) ) __lowerCamelCase : Dict = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 1_153.1_833 ) < 1E-2 assert abs(result_mean.item() - 0.5_005 ) < 1E-3 def snake_case_ ( self ): __lowerCamelCase : Optional[Any] = self.scheduler_classes[0] __lowerCamelCase : List[Any] = self.get_scheduler_config() __lowerCamelCase : Union[str, Any] = scheduler_class(**__a ) __lowerCamelCase : Optional[Any] = len(__a ) __lowerCamelCase : int = self.dummy_model() __lowerCamelCase : Dict = self.dummy_sample_deter __lowerCamelCase : Union[str, Any] = torch.manual_seed(0 ) for t in reversed(range(__a ) ): # 1. predict noise residual __lowerCamelCase : List[str] = model(__a , __a ) # 2. predict previous mean of sample x_t-1 __lowerCamelCase : List[str] = scheduler.step(__a , __a , __a , generator=__a ).prev_sample __lowerCamelCase : int = pred_prev_sample __lowerCamelCase : Dict = torch.sum(torch.abs(__a ) ) __lowerCamelCase : Any = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def snake_case_ ( self ): __lowerCamelCase : List[str] = self.scheduler_classes[0] __lowerCamelCase : Optional[Any] = self.get_scheduler_config(prediction_type='v_prediction' ) __lowerCamelCase : Tuple = scheduler_class(**__a ) __lowerCamelCase : Tuple = len(__a ) __lowerCamelCase : str = self.dummy_model() __lowerCamelCase : Dict = self.dummy_sample_deter __lowerCamelCase : str = torch.manual_seed(0 ) for t in reversed(range(__a ) ): # 1. predict noise residual __lowerCamelCase : str = model(__a , __a ) # 2. predict previous mean of sample x_t-1 __lowerCamelCase : int = scheduler.step(__a , __a , __a , generator=__a ).prev_sample __lowerCamelCase : Union[str, Any] = pred_prev_sample __lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(__a ) ) __lowerCamelCase : Optional[int] = torch.mean(torch.abs(__a ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def snake_case_ ( self ): __lowerCamelCase : Dict = self.scheduler_classes[0] __lowerCamelCase : Any = self.get_scheduler_config() __lowerCamelCase : Tuple = scheduler_class(**__a ) __lowerCamelCase : List[str] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__a ) __lowerCamelCase : str = scheduler.timesteps for i, timestep in enumerate(__a ): if i == len(__a ) - 1: __lowerCamelCase : Tuple = -1 else: __lowerCamelCase : Dict = timesteps[i + 1] __lowerCamelCase : Optional[Any] = scheduler.previous_timestep(__a ) __lowerCamelCase : Dict = prev_t.item() self.assertEqual(__a , __a ) def snake_case_ ( self ): __lowerCamelCase : List[Any] = self.scheduler_classes[0] __lowerCamelCase : Union[str, Any] = self.get_scheduler_config() __lowerCamelCase : Dict = scheduler_class(**__a ) __lowerCamelCase : Any = [100, 87, 50, 51, 0] with self.assertRaises(__a , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=__a ) def snake_case_ ( self ): __lowerCamelCase : str = self.scheduler_classes[0] __lowerCamelCase : Dict = self.get_scheduler_config() __lowerCamelCase : str = scheduler_class(**__a ) __lowerCamelCase : List[str] = [100, 87, 50, 1, 0] __lowerCamelCase : Dict = len(__a ) with self.assertRaises(__a , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=__a , timesteps=__a ) def snake_case_ ( self ): __lowerCamelCase : List[str] = self.scheduler_classes[0] __lowerCamelCase : List[Any] = self.get_scheduler_config() __lowerCamelCase : str = scheduler_class(**__a ) __lowerCamelCase : List[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( __a , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=__a )
594
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class A_ ( _a ): lowerCAmelCase__ = 4_2 class A_ ( _a , _a ): @register_to_config def __init__( self: List[Any] ,__lowerCAmelCase: int = 65_536 ,__lowerCAmelCase: Optional[int] = None ,__lowerCAmelCase: int = 2 ,__lowerCAmelCase: int = 2 ,__lowerCAmelCase: int = 0 ,__lowerCAmelCase: str = "fourier" ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: float = 0.0 ,__lowerCAmelCase: Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") ,__lowerCAmelCase: Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") ,__lowerCAmelCase: Tuple[str] = "UNetMidBlock1D" ,__lowerCAmelCase: str = None ,__lowerCAmelCase: Tuple[int] = (32, 32, 64) ,__lowerCAmelCase: str = None ,__lowerCAmelCase: int = 8 ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: bool = False ,): '''simple docstring''' super().__init__() _lowerCamelCase : List[str] = sample_size # time if time_embedding_type == "fourier": _lowerCamelCase : Optional[Any] = GaussianFourierProjection( embedding_size=8 ,set_W_to_weight=__lowerCAmelCase ,log=__lowerCAmelCase ,flip_sin_to_cos=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = 2 * block_out_channels[0] elif time_embedding_type == "positional": _lowerCamelCase : Any = Timesteps( block_out_channels[0] ,flip_sin_to_cos=__lowerCAmelCase ,downscale_freq_shift=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = block_out_channels[0] if use_timestep_embedding: _lowerCamelCase : str = block_out_channels[0] * 4 _lowerCamelCase : str = TimestepEmbedding( in_channels=__lowerCAmelCase ,time_embed_dim=__lowerCAmelCase ,act_fn=__lowerCAmelCase ,out_dim=block_out_channels[0] ,) _lowerCamelCase : int = nn.ModuleList([] ) _lowerCamelCase : Tuple = None _lowerCamelCase : Tuple = nn.ModuleList([] ) _lowerCamelCase : List[str] = None # down _lowerCamelCase : List[Any] = in_channels for i, down_block_type in enumerate(__lowerCAmelCase ): _lowerCamelCase : Optional[Any] = output_channel _lowerCamelCase : List[str] = block_out_channels[i] if i == 0: input_channel += extra_in_channels _lowerCamelCase : Tuple = i == len(__lowerCAmelCase ) - 1 _lowerCamelCase : List[Any] = get_down_block( __lowerCAmelCase ,num_layers=__lowerCAmelCase ,in_channels=__lowerCAmelCase ,out_channels=__lowerCAmelCase ,temb_channels=block_out_channels[0] ,add_downsample=not is_final_block or downsample_each_block ,) self.down_blocks.append(__lowerCAmelCase ) # mid _lowerCamelCase : Optional[Any] = get_mid_block( __lowerCAmelCase ,in_channels=block_out_channels[-1] ,mid_channels=block_out_channels[-1] ,out_channels=block_out_channels[-1] ,embed_dim=block_out_channels[0] ,num_layers=__lowerCAmelCase ,add_downsample=__lowerCAmelCase ,) # up _lowerCamelCase : Optional[int] = list(reversed(__lowerCAmelCase ) ) _lowerCamelCase : Tuple = reversed_block_out_channels[0] if out_block_type is None: _lowerCamelCase : Tuple = out_channels else: _lowerCamelCase : Optional[Any] = block_out_channels[0] for i, up_block_type in enumerate(__lowerCAmelCase ): _lowerCamelCase : List[Any] = output_channel _lowerCamelCase : List[str] = ( reversed_block_out_channels[i + 1] if i < len(__lowerCAmelCase ) - 1 else final_upsample_channels ) _lowerCamelCase : Union[str, Any] = i == len(__lowerCAmelCase ) - 1 _lowerCamelCase : Tuple = get_up_block( __lowerCAmelCase ,num_layers=__lowerCAmelCase ,in_channels=__lowerCAmelCase ,out_channels=__lowerCAmelCase ,temb_channels=block_out_channels[0] ,add_upsample=not is_final_block ,) self.up_blocks.append(__lowerCAmelCase ) _lowerCamelCase : Dict = output_channel # out _lowerCamelCase : Dict = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 ,32 ) _lowerCamelCase : List[Any] = get_out_block( out_block_type=__lowerCAmelCase ,num_groups_out=__lowerCAmelCase ,embed_dim=block_out_channels[0] ,out_channels=__lowerCAmelCase ,act_fn=__lowerCAmelCase ,fc_dim=block_out_channels[-1] // 4 ,) def _lowercase ( self: Optional[int] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Union[torch.Tensor, float, int] ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : Dict = timestep if not torch.is_tensor(__lowerCAmelCase ): _lowerCamelCase : int = torch.tensor([timesteps] ,dtype=torch.long ,device=sample.device ) elif torch.is_tensor(__lowerCAmelCase ) and len(timesteps.shape ) == 0: _lowerCamelCase : Optional[Any] = timesteps[None].to(sample.device ) _lowerCamelCase : Dict = self.time_proj(__lowerCAmelCase ) if self.config.use_timestep_embedding: _lowerCamelCase : Any = self.time_mlp(__lowerCAmelCase ) else: _lowerCamelCase : Optional[int] = timestep_embed[..., None] _lowerCamelCase : int = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _lowerCamelCase : Any = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _lowerCamelCase : Any = () for downsample_block in self.down_blocks: _lowerCamelCase : Dict = downsample_block(hidden_states=__lowerCAmelCase ,temb=__lowerCAmelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _lowerCamelCase : Union[str, Any] = self.mid_block(__lowerCAmelCase ,__lowerCAmelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _lowerCamelCase : Any = down_block_res_samples[-1:] _lowerCamelCase : Tuple = down_block_res_samples[:-1] _lowerCamelCase : str = upsample_block(__lowerCAmelCase ,res_hidden_states_tuple=__lowerCAmelCase ,temb=__lowerCAmelCase ) # 5. post-process if self.out_block: _lowerCamelCase : List[str] = self.out_block(__lowerCAmelCase ,__lowerCAmelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=__lowerCAmelCase )
709
"""simple docstring""" from __future__ import annotations def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> list[str]: '''simple docstring''' if partitions <= 0: raise ValueError("partitions must be a positive number!" ) if partitions > number_of_bytes: raise ValueError("partitions can not > number_of_bytes!" ) _lowerCamelCase : Any = number_of_bytes // partitions _lowerCamelCase : Any = [] for i in range(_lowerCamelCase ): _lowerCamelCase : Tuple = i * bytes_per_partition + 1 _lowerCamelCase : List[str] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F"""{start_bytes}-{end_bytes}""" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
386
0
def lowerCamelCase__ ( __lowerCamelCase : int ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Tuple = f"""Input value of [number={number}] must be an integer""" raise TypeError(__lowerCamelCase ) if number < 1: __UpperCAmelCase : List[str] = f"""Input value of [number={number}] must be > 0""" raise ValueError(__lowerCamelCase ) __UpperCAmelCase : int = 1 for i in range(1 , __lowerCamelCase ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
63
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__ ( _a , _a , unittest.TestCase ): a : Any = IFPipeline a : str = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""} a : Dict = TEXT_TO_IMAGE_BATCH_PARAMS a : int = PipelineTesterMixin.required_optional_params - {"""latents"""} def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return self._get_dummy_components() def SCREAMING_SNAKE_CASE_ ( self : Any , A_ : int , A_ : Dict=0 ): '''simple docstring''' if str(A_ ).startswith("""mps""" ): __lowercase = torch.manual_seed(A_ ) else: __lowercase = torch.Generator(device=A_ ).manual_seed(A_ ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' self._test_save_load_local() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) __lowercase = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=A_ , tokenizer=A_ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) __lowercase , __lowercase = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() __lowercase = None __lowercase = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(A_ , A_ , A_ , A_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img __lowercase = IFImgaImgPipeline(**pipe_a.components ) __lowercase = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(A_ , A_ , A_ , A_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting __lowercase = IFInpaintingPipeline(**pipe_a.components ) __lowercase = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(A_ , A_ , A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , A_ : Any , A_ : int , A_ : str , A_ : Dict ): '''simple docstring''' _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , num_inference_steps=2 , generator=A_ , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(A_ , A_ ) # pipeline 2 _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , generator=A_ , num_inference_steps=2 , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , A_ : Tuple , A_ : List[Any] , A_ : List[Any] , A_ : Any ): '''simple docstring''' _start_torch_memory_measurement() __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , num_inference_steps=2 , generator=A_ , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(A_ , A_ ) # pipeline 2 _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(A_ ) __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , original_image=A_ , generator=A_ , num_inference_steps=2 , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , A_ : List[Any] , A_ : str , A_ : List[Any] , A_ : List[Any] ): '''simple docstring''' _start_torch_memory_measurement() __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(A_ ) __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , mask_image=A_ , num_inference_steps=2 , generator=A_ , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(A_ , A_ ) # pipeline 2 _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(A_ ) __lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(A_ ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , mask_image=A_ , original_image=A_ , generator=A_ , num_inference_steps=2 , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A_ , A_ ) def lowerCAmelCase_ ( ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
616
0
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. snake_case_ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. snake_case_ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. snake_case_ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def lowerCamelCase__ ( snake_case_ : str , snake_case_ : str ) -> Union[str, Any]: '''simple docstring''' __snake_case = len([g for position, g in enumerate(snake_case_ ) if g == main_target[position]] ) return (item, float(snake_case_ )) def lowerCamelCase__ ( snake_case_ : str , snake_case_ : str ) -> List[Any]: '''simple docstring''' __snake_case = random.randint(0 , len(snake_case_ ) - 1 ) __snake_case = parent_a[:random_slice] + parent_a[random_slice:] __snake_case = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowerCamelCase__ ( snake_case_ : str , snake_case_ : list[str] ) -> Optional[Any]: '''simple docstring''' __snake_case = list(snake_case_ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __snake_case = random.choice(snake_case_ ) return "".join(snake_case_ ) def lowerCamelCase__ ( snake_case_ : tuple[str, float] , snake_case_ : list[tuple[str, float]] , snake_case_ : list[str] , ) -> Optional[int]: '''simple docstring''' __snake_case = [] # Generate more children proportionally to the fitness score. __snake_case = int(parent_a[1] * 100 ) + 1 __snake_case = 10 if child_n >= 10 else child_n for _ in range(snake_case_ ): __snake_case = population_score[random.randint(0 , snake_case_ )][0] __snake_case = crossover(parent_a[0] , snake_case_ ) # Append new string to the population list. pop.append(mutate(snake_case_ , snake_case_ ) ) pop.append(mutate(snake_case_ , snake_case_ ) ) return pop def lowerCamelCase__ ( snake_case_ : str , snake_case_ : list[str] , snake_case_ : bool = True ) -> int: '''simple docstring''' if N_POPULATION < N_SELECTED: __snake_case = f"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(snake_case_ ) # Verify that the target contains no genes besides the ones inside genes variable. __snake_case = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __snake_case = f"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(snake_case_ ) # Generate random starting population. __snake_case = [] for _ in range(snake_case_ ): population.append(''''''.join([random.choice(snake_case_ ) for i in range(len(snake_case_ ) )] ) ) # Just some logs to know what the algorithms is doing. __snake_case = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(snake_case_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __snake_case = [evaluate(snake_case_ , snake_case_ ) for item in population] # Check if there is a matching evolution. __snake_case = sorted(snake_case_ , key=lambda snake_case_ : x[1] , reverse=snake_case_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"""\nGeneration: {generation}""" f"""\nTotal Population:{total_population}""" f"""\nBest score: {population_score[0][1]}""" f"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __snake_case = population[: int(N_POPULATION / 3 )] population.clear() population.extend(snake_case_ ) # Normalize population score to be between 0 and 1. __snake_case = [ (item, score / len(snake_case_ )) for item, score in population_score ] # This is selection for i in range(snake_case_ ): population.extend(select(population_score[int(snake_case_ )] , snake_case_ , snake_case_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(snake_case_ ) > N_POPULATION: break if __name__ == "__main__": snake_case_ = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) snake_case_ = list( ' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm' 'nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\' ) snake_case_ = basic(target_str, genes_list) print( F'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
718
class SCREAMING_SNAKE_CASE__ : def __init__(self : Optional[Any] ): """simple docstring""" __snake_case = {} def a (self : str ): """simple docstring""" print(self.vertex ) for i in self.vertex: print(a__ , ''' -> ''' , ''' -> '''.join([str(a__ ) for j in self.vertex[i]] ) ) def a (self : Any , a__ : int , a__ : int ): """simple docstring""" if from_vertex in self.vertex: self.vertex[from_vertex].append(a__ ) else: # else make a new vertex __snake_case = [to_vertex] def a (self : Tuple ): """simple docstring""" __snake_case = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(a__ , a__ ) def a (self : Any , a__ : int , a__ : list ): """simple docstring""" __snake_case = True print(a__ , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(a__ , a__ ) if __name__ == "__main__": snake_case_ = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('DFS:') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
388
0
"""simple docstring""" from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __magic_name__ : List[str] = logging.get_logger(__name__) __magic_name__ : Dict = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } __magic_name__ : Optional[Any] = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } __magic_name__ : Any = { """facebook/blenderbot_small-90M""": 5_1_2, } class lowercase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase : Any = VOCAB_FILES_NAMES __lowerCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : List[str] = BlenderbotSmallTokenizer def __init__( self , _A=None , _A=None , _A="<|endoftext|>" , _A="<|endoftext|>" , _A="<|endoftext|>" , _A=False , _A=True , **_A , ): '''simple docstring''' super().__init__( ByteLevelBPETokenizer( vocab=_A , merges=_A , add_prefix_space=_A , trim_offsets=_A , ) , bos_token=_A , eos_token=_A , unk_token=_A , **_A , ) UpperCamelCase : List[str] = add_prefix_space def _a ( self , _A , _A=None ): '''simple docstring''' UpperCamelCase : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _a ( self , _A , _A = None ): '''simple docstring''' UpperCamelCase : List[Any] = [self.sep_token_id] UpperCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
102
"""simple docstring""" from bisect import bisect from itertools import accumulate def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase : Dict = sorted(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , key=lambda SCREAMING_SNAKE_CASE : x[0] / x[1] , reverse=SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase : int = [i[0] for i in r], [i[1] for i in r] UpperCamelCase : Optional[Any] = list(accumulate(SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Optional[Any] = bisect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
102
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): _lowerCamelCase : str = ["""image_processor""", """tokenizer"""] _lowerCamelCase : Union[str, Any] = """ViltImageProcessor""" _lowerCamelCase : Optional[int] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): a_ = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _SCREAMING_SNAKE_CASE , ) a_ = kwargs.pop("""feature_extractor""" ) a_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a_ = self.image_processor def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): a_ = self.tokenizer( text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_overflowing_tokens=_SCREAMING_SNAKE_CASE , return_special_tokens_mask=_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , return_length=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # add pixel_values + pixel_mask a_ = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) encoding.update(_SCREAMING_SNAKE_CASE ) return encoding def __magic_name__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __magic_name__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def __magic_name__ ( self ): a_ = self.tokenizer.model_input_names a_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __magic_name__ ( self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def __magic_name__ ( self ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , _SCREAMING_SNAKE_CASE , ) return self.image_processor
403
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) _A = logging.getLogger() def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: """simple docstring""" a_ = argparse.ArgumentParser() parser.add_argument("""-f""" ) a_ = parser.parse_args() return args.f def __SCREAMING_SNAKE_CASE ( UpperCamelCase : int ) -> Optional[Any]: """simple docstring""" a_ = {} a_ = os.path.join(UpperCamelCase , """all_results.json""" ) if os.path.exists(UpperCamelCase ): with open(UpperCamelCase , """r""" ) as f: a_ = json.load(UpperCamelCase ) else: raise ValueError(F"""can't find {path}""" ) return results def __SCREAMING_SNAKE_CASE ( ) -> Any: """simple docstring""" a_ = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() _A = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): @classmethod def __magic_name__ ( cls ): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU a_ = tempfile.mkdtemp() a_ = os.path.join(cls.tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) a_ = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def __magic_name__ ( cls ): shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["""perplexity"""] , 100 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["""perplexity"""] , 42 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu a_ = 7 if get_gpu_count() > 1 else 2 a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) self.assertLess(result["""train_loss"""] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] , 28 ) self.assertGreaterEqual(result["""eval_exact"""] , 28 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_rouge1"""] , 10 ) self.assertGreaterEqual(result["""eval_rouge2"""] , 2 ) self.assertGreaterEqual(result["""eval_rougeL"""] , 7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] , 7 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_bleu"""] , 30 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """translation_no_trainer""" ) ) ) @slow def __magic_name__ ( self ): a_ = logging.StreamHandler(sys.stdout ) logger.addHandler(_SCREAMING_SNAKE_CASE ) a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] , 0.1_0 ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ ( self ): a_ = self.get_auto_remove_tmp_dir() a_ = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) a_ = get_results(_SCREAMING_SNAKE_CASE ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , """image_classification_no_trainer""" ) ) )
403
1
"""simple docstring""" from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING A__ : Dict = logging.get_logger(__name__) @add_end_docstrings(snake_case__ ) class lowercase__ ( snake_case__ ): def __init__( self : List[Any] , *snake_case__ : Dict , **snake_case__ : List[str] ): super().__init__(*snake_case__ , **snake_case__ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Tuple=None , snake_case__ : Tuple=None , snake_case__ : Any=None ): lowerCamelCase_ : List[str] ={} lowerCamelCase_ : List[Any] ={} if prompt is not None: lowerCamelCase_ : Union[str, Any] =prompt if generate_kwargs is not None: lowerCamelCase_ : List[str] =generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: lowerCamelCase_ : Optional[int] ={} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) lowerCamelCase_ : Dict =max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Any , snake_case__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **snake_case__ : Optional[Any] ): return super().__call__(snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self : Tuple , snake_case__ : str , snake_case__ : Dict=None ): lowerCamelCase_ : Any =load_image(snake_case__ ) if prompt is not None: if not isinstance(snake_case__ , snake_case__ ): raise ValueError( F"""Received an invalid text input, got - {type(snake_case__ )} - but expected a single string. """ "Note also that one single text can be provided for conditional image to text generation." ) lowerCamelCase_ : Optional[int] =self.model.config.model_type if model_type == "git": lowerCamelCase_ : Optional[int] =self.image_processor(images=snake_case__ , return_tensors=self.framework ) lowerCamelCase_ : Union[str, Any] =self.tokenizer(text=snake_case__ , add_special_tokens=snake_case__ ).input_ids lowerCamelCase_ : str =[self.tokenizer.cls_token_id] + input_ids lowerCamelCase_ : Optional[Any] =torch.tensor(snake_case__ ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": lowerCamelCase_ : Union[str, Any] =self.image_processor(images=snake_case__ , header_text=snake_case__ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation lowerCamelCase_ : Union[str, Any] =self.image_processor(images=snake_case__ , return_tensors=self.framework ) lowerCamelCase_ : Dict =self.tokenizer(snake_case__ , return_tensors=self.framework ) model_inputs.update(snake_case__ ) else: raise ValueError(F"""Model type {model_type} does not support conditional text generation""" ) else: lowerCamelCase_ : Optional[int] =self.image_processor(images=snake_case__ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: lowerCamelCase_ : Union[str, Any] =None return model_inputs def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Any , snake_case__ : Dict=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , snake_case__ ) and all(x is None for x in model_inputs["input_ids"] ) ): lowerCamelCase_ : Tuple =None if generate_kwargs is None: lowerCamelCase_ : List[Any] ={} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. lowerCamelCase_ : str =model_inputs.pop(self.model.main_input_name ) lowerCamelCase_ : List[Any] =self.model.generate(snake_case__ , **snake_case__ , **snake_case__ ) return model_outputs def UpperCAmelCase__ ( self : str , snake_case__ : Any ): lowerCamelCase_ : Optional[Any] =[] for output_ids in model_outputs: lowerCamelCase_ : Tuple ={ "generated_text": self.tokenizer.decode( snake_case__ , skip_special_tokens=snake_case__ , ) } records.append(snake_case__ ) return records
153
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _snake_case ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] ) -> Tuple: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file lowerCamelCase_ : Optional[Any] =TapasConfig.from_json_file(lowerCamelCase__ ) # set absolute/relative position embeddings parameter lowerCamelCase_ : Optional[int] =reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCamelCase_ : Any =TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WTQ": # run_task_main.py hparams lowerCamelCase_ : Optional[Any] =4 lowerCamelCase_ : Optional[int] =True # hparam_utils.py hparams lowerCamelCase_ : Dict =0.66_4694 lowerCamelCase_ : List[Any] =0.20_7951 lowerCamelCase_ : int =0.12_1194 lowerCamelCase_ : Union[str, Any] =True lowerCamelCase_ : List[Any] =True lowerCamelCase_ : str =False lowerCamelCase_ : int =0.035_2513 lowerCamelCase_ : str =TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCamelCase_ : List[Any] =4 lowerCamelCase_ : int =False # hparam_utils.py hparams lowerCamelCase_ : Tuple =36.4519 lowerCamelCase_ : List[str] =0.90_3421 lowerCamelCase_ : Optional[int] =222.088 lowerCamelCase_ : int =True lowerCamelCase_ : Any =True lowerCamelCase_ : List[str] =True lowerCamelCase_ : Any =0.76_3141 lowerCamelCase_ : Dict =TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "TABFACT": lowerCamelCase_ : Dict =TapasForSequenceClassification(config=lowerCamelCase__ ) elif task == "MLM": lowerCamelCase_ : Optional[Any] =TapasForMaskedLM(config=lowerCamelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": lowerCamelCase_ : str =TapasModel(config=lowerCamelCase__ ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase__ ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) lowerCamelCase_ : List[Any] =TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=512 ) tokenizer.save_pretrained(lowerCamelCase__ ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": A__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) A__ : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
153
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = {"vocab_file": "sentencepiece.bpe.model"} __UpperCamelCase : Union[str, Any] = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", } } __UpperCamelCase : Any = { "camembert-base": 512, } __UpperCamelCase : Any = "▁" class _UpperCamelCase ( UpperCamelCase_ ): '''simple docstring''' a_ : Dict = VOCAB_FILES_NAMES a_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP a_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : str = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int]="<s>" , _lowerCamelCase : Any="</s>" , _lowerCamelCase : Optional[int]="</s>" , _lowerCamelCase : Any="<s>" , _lowerCamelCase : Any="<unk>" , _lowerCamelCase : int="<pad>" , _lowerCamelCase : List[str]="<mask>" , _lowerCamelCase : Dict=["<s>NOTUSED", "</s>NOTUSED"] , _lowerCamelCase : List[str] = None , **_lowerCamelCase : str , ): '''simple docstring''' __lowerCamelCase : Tuple = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token __lowerCamelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) __lowerCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) __lowerCamelCase : int = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __lowerCamelCase : Any = {"""<s>NOTUSED""": 0, """<pad>""": 1, """</s>NOTUSED""": 2, """<unk>""": 3} __lowerCamelCase : List[str] = len(self.fairseq_tokens_to_ids ) __lowerCamelCase : List[str] = len(self.sp_model ) + len(self.fairseq_tokens_to_ids ) __lowerCamelCase : str = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _snake_case ( self : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Union[str, Any] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCamelCase : Optional[int] = [self.cls_token_id] __lowerCamelCase : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Dict = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def _snake_case ( self : Optional[int] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] = None ): '''simple docstring''' __lowerCamelCase : Any = [self.sep_token_id] __lowerCamelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _snake_case ( self : Any ): '''simple docstring''' return len(self.fairseq_tokens_to_ids ) + len(self.sp_model ) def _snake_case ( self : Tuple ): '''simple docstring''' __lowerCamelCase : List[str] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self : List[Any] , _lowerCamelCase : List[Any] ): '''simple docstring''' return self.sp_model.encode(_a , out_type=_a ) def _snake_case ( self : int , _lowerCamelCase : Optional[int] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(_a ) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(_a ) def _snake_case ( self : int , _lowerCamelCase : Optional[Any] ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self : int , _lowerCamelCase : Any ): '''simple docstring''' __lowerCamelCase : Optional[int] = [] __lowerCamelCase : Union[str, Any] = """""" __lowerCamelCase : int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token __lowerCamelCase : Union[str, Any] = True __lowerCamelCase : str = [] else: current_sub_tokens.append(_a ) __lowerCamelCase : List[Any] = False out_string += self.sp_model.decode(_a ) return out_string.strip() def __getstate__( self : Optional[int] ): '''simple docstring''' __lowerCamelCase : Optional[int] = self.__dict__.copy() __lowerCamelCase : List[Any] = None return state def __setstate__( self : int , _lowerCamelCase : Optional[Any] ): '''simple docstring''' __lowerCamelCase : str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCamelCase : List[str] = {} __lowerCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[str, Any] = None ): '''simple docstring''' if not os.path.isdir(_a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCamelCase : List[str] = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , """wb""" ) as fi: __lowerCamelCase : str = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,)
712
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Union[str, Any] = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = ['LayoutLMv2FeatureExtractor'] __UpperCamelCase : Union[str, Any] = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
458
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowerCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): lowercase_ : Optional[Any] = ShapEImgaImgPipeline lowercase_ : Optional[Any] = ['''image'''] lowercase_ : List[Any] = ['''image'''] lowercase_ : List[str] = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] lowercase_ : Any = False @property def _a ( self ) -> str: return 32 @property def _a ( self ) -> int: return 32 @property def _a ( self ) -> List[str]: return self.time_input_dim * 4 @property def _a ( self ) -> Union[str, Any]: return 8 @property def _a ( self ) -> Optional[Any]: torch.manual_seed(0 ) _UpperCAmelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _UpperCAmelCase = CLIPVisionModel(__snake_case ) return model @property def _a ( self ) -> int: _UpperCAmelCase = CLIPImageProcessor( crop_size=224 , do_center_crop=__snake_case , do_normalize=__snake_case , do_resize=__snake_case , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor @property def _a ( self ) -> Optional[Any]: torch.manual_seed(0 ) _UpperCAmelCase = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } _UpperCAmelCase = PriorTransformer(**__snake_case ) return model @property def _a ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _UpperCAmelCase = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } _UpperCAmelCase = ShapERenderer(**__snake_case ) return model def _a ( self ) -> List[Any]: _UpperCAmelCase = self.dummy_prior _UpperCAmelCase = self.dummy_image_encoder _UpperCAmelCase = self.dummy_image_processor _UpperCAmelCase = self.dummy_renderer _UpperCAmelCase = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=__snake_case , clip_sample=__snake_case , clip_sample_range=1.0 , ) _UpperCAmelCase = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def _a ( self , a_ , a_=0 ) -> List[str]: _UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(__snake_case ) ).to(__snake_case ) if str(__snake_case ).startswith("mps" ): _UpperCAmelCase = torch.manual_seed(__snake_case ) else: _UpperCAmelCase = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _UpperCAmelCase = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _a ( self ) -> Dict: _UpperCAmelCase = "cpu" _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**__snake_case ) _UpperCAmelCase = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _UpperCAmelCase = pipe(**self.get_dummy_inputs(__snake_case ) ) _UpperCAmelCase = output.images[0] _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _UpperCAmelCase = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _a ( self ) -> Optional[Any]: self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _a ( self ) -> List[str]: _UpperCAmelCase = torch_device == "cpu" _UpperCAmelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__snake_case , relax_max_difference=__snake_case , ) def _a ( self ) -> Dict: _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = self.pipeline_class(**__snake_case ) _UpperCAmelCase = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _UpperCAmelCase = 1 _UpperCAmelCase = 2 _UpperCAmelCase = self.get_dummy_inputs(__snake_case ) for key in inputs.keys(): if key in self.batch_params: _UpperCAmelCase = batch_size * [inputs[key]] _UpperCAmelCase = pipe(**__snake_case , num_images_per_prompt=__snake_case )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): def _a ( self ) -> List[str]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ) -> Any: _UpperCAmelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png" ) _UpperCAmelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_img2img_out.npy" ) _UpperCAmelCase = ShapEImgaImgPipeline.from_pretrained("openai/shap-e-img2img" ) _UpperCAmelCase = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _UpperCAmelCase = torch.Generator(device=__snake_case ).manual_seed(0 ) _UpperCAmelCase = pipe( __snake_case , generator=__snake_case , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
657
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def UpperCamelCase_( _snake_case : Optional[Any] ): """simple docstring""" return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def UpperCamelCase_( _snake_case : List[str] , _snake_case : Optional[int] ): """simple docstring""" __a ={} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue __a =key.replace('heads.cmd.mim_head.cls.predictions' , 'mmm_image_head' ) __a =key.replace('heads.cmd.mlm_head.cls.predictions' , 'mmm_text_head' ) __a =key.replace('heads.cmd.itm_head.cls' , 'itm_head' ) __a =key.replace('heads.cmd.itm_head.pooler' , 'itm_head.pooler' ) __a =key.replace('heads.cmd.clip_head.logit_scale' , 'flava.logit_scale' ) __a =key.replace('heads.fairseq_mlm.cls.predictions' , 'mlm_head' ) __a =key.replace('heads.imagenet.mim_head.cls.predictions' , 'mim_head' ) __a =key.replace('mm_text_projection' , 'flava.text_to_mm_projection' ) __a =key.replace('mm_image_projection' , 'flava.image_to_mm_projection' ) __a =key.replace('image_encoder.module' , 'flava.image_model' ) __a =key.replace('text_encoder.module' , 'flava.text_model' ) __a =key.replace('mm_encoder.module.encoder.cls_token' , 'flava.multimodal_model.cls_token' ) __a =key.replace('mm_encoder.module' , 'flava.multimodal_model' ) __a =key.replace('text_projection' , 'flava.text_projection' ) __a =key.replace('image_projection' , 'flava.image_projection' ) __a =value.float() for key, value in codebook_state_dict.items(): __a =value return upgrade @torch.no_grad() def UpperCamelCase_( _snake_case : int , _snake_case : Tuple , _snake_case : Tuple , _snake_case : int=None ): """simple docstring""" if config_path is not None: __a =FlavaConfig.from_pretrained(_snake_case ) else: __a =FlavaConfig() __a =FlavaForPreTraining(_snake_case ).eval() __a =convert_dalle_checkpoint(_snake_case , _snake_case , save_checkpoint=_snake_case ) if os.path.exists(_snake_case ): __a =torch.load(_snake_case , map_location='cpu' ) else: __a =torch.hub.load_state_dict_from_url(_snake_case , map_location='cpu' ) __a =upgrade_state_dict(_snake_case , _snake_case ) hf_model.load_state_dict(_snake_case ) __a =hf_model.state_dict() __a =count_parameters(_snake_case ) __a =count_parameters(_snake_case ) + count_parameters(_snake_case ) assert torch.allclose(_snake_case , _snake_case , atol=1e-3 ) hf_model.save_pretrained(_snake_case ) if __name__ == "__main__": _lowerCAmelCase : List[str] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") _lowerCAmelCase : List[Any] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
242
0
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) a : List[str] = { """huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""", } class UpperCamelCase__ ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = """autoformer""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , snake_case = None , snake_case = None , snake_case = "student_t" , snake_case = "nll" , snake_case = 1 , snake_case = [1, 2, 3, 4, 5, 6, 7] , snake_case = True , snake_case = 0 , snake_case = 0 , snake_case = 0 , snake_case = 0 , snake_case = None , snake_case = None , snake_case = 6_4 , snake_case = 2 , snake_case = 2 , snake_case = 2 , snake_case = 2 , snake_case = 3_2 , snake_case = 3_2 , snake_case = "gelu" , snake_case = 0.1 , snake_case = 0.1 , snake_case = 0.1 , snake_case = 0.1 , snake_case = 0.1 , snake_case = 1_0_0 , snake_case = 0.02 , snake_case = True , snake_case=True , snake_case = 1_0 , snake_case = 2_5 , snake_case = 3 , **snake_case , ): '''simple docstring''' UpperCAmelCase : List[str] = prediction_length UpperCAmelCase : str = context_length if context_length is not None else prediction_length UpperCAmelCase : Any = distribution_output UpperCAmelCase : List[str] = loss UpperCAmelCase : str = input_size UpperCAmelCase : Any = num_time_features UpperCAmelCase : List[Any] = lags_sequence UpperCAmelCase : List[Any] = scaling UpperCAmelCase : str = num_dynamic_real_features UpperCAmelCase : str = num_static_real_features UpperCAmelCase : Any = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) UpperCAmelCase : Union[str, Any] = cardinality else: UpperCAmelCase : Optional[int] = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(snake_case_ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) UpperCAmelCase : Optional[Any] = embedding_dimension else: UpperCAmelCase : str = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase : Union[str, Any] = num_parallel_samples # Transformer architecture configuration UpperCAmelCase : Union[str, Any] = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase : Dict = d_model UpperCAmelCase : Tuple = encoder_attention_heads UpperCAmelCase : List[str] = decoder_attention_heads UpperCAmelCase : Tuple = encoder_ffn_dim UpperCAmelCase : List[str] = decoder_ffn_dim UpperCAmelCase : Optional[Any] = encoder_layers UpperCAmelCase : Optional[Any] = decoder_layers UpperCAmelCase : Optional[Any] = dropout UpperCAmelCase : Optional[Any] = attention_dropout UpperCAmelCase : Tuple = activation_dropout UpperCAmelCase : Tuple = encoder_layerdrop UpperCAmelCase : Any = decoder_layerdrop UpperCAmelCase : List[Any] = activation_function UpperCAmelCase : Optional[int] = init_std UpperCAmelCase : Any = use_cache # Autoformer UpperCAmelCase : Union[str, Any] = label_length UpperCAmelCase : List[Any] = moving_average UpperCAmelCase : Any = autocorrelation_factor super().__init__(is_encoder_decoder=snake_case_ , **snake_case_ ) @property def A_ ( self ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
720
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger a : Optional[Any] = "<<<<<<< This should probably be modified because it mentions: " a : List[Any] = "=======\n>>>>>>>\n" a : Union[str, Any] = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] a : str = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def lowercase ( __magic_name__ ): '''simple docstring''' return ConvertCommand(args.tfds_path , args.datasets_directory ) class UpperCamelCase__ ( lowercase__ ): """simple docstring""" @staticmethod def A_ ( snake_case ): '''simple docstring''' UpperCAmelCase : Optional[int] = parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=snake_case , required=snake_case , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=snake_case , required=snake_case , help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=snake_case ) def __init__( self , snake_case , snake_case , *snake_case ): '''simple docstring''' UpperCAmelCase : Any = get_logger("datasets-cli/converting" ) UpperCAmelCase : Dict = tfds_path UpperCAmelCase : Optional[int] = datasets_directory def A_ ( self ): '''simple docstring''' if os.path.isdir(self._tfds_path ): UpperCAmelCase : Optional[int] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): UpperCAmelCase : List[Any] = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) UpperCAmelCase : Optional[int] = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) UpperCAmelCase : int = [] UpperCAmelCase : int = [] UpperCAmelCase : Union[str, Any] = {} if os.path.isdir(self._tfds_path ): UpperCAmelCase : List[str] = os.listdir(snake_case ) else: UpperCAmelCase : Union[str, Any] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) UpperCAmelCase : Optional[Any] = os.path.join(snake_case , snake_case ) UpperCAmelCase : Any = os.path.join(snake_case , snake_case ) if not os.path.isfile(snake_case ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(snake_case , encoding="utf-8" ) as f: UpperCAmelCase : str = f.readlines() UpperCAmelCase : List[str] = [] UpperCAmelCase : Optional[Any] = False UpperCAmelCase : Dict = False UpperCAmelCase : Tuple = [] for line in lines: UpperCAmelCase : Any = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: UpperCAmelCase : List[Any] = "import datasets\n" elif "import tensorflow" in out_line: # order is important here UpperCAmelCase : Any = "" continue elif "from absl import logging" in out_line: UpperCAmelCase : List[str] = "from datasets import logging\n" elif "getLogger" in out_line: UpperCAmelCase : Union[str, Any] = out_line.replace("getLogger" , "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): UpperCAmelCase : Dict = True UpperCAmelCase : Optional[Any] = list(filter(lambda snake_case : e in out_line , snake_case ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(snake_case ) + "\n" ) out_lines.append(snake_case ) out_lines.append(snake_case ) continue else: for pattern, replacement in TO_CONVERT: UpperCAmelCase : Any = re.sub(snake_case , snake_case , snake_case ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: UpperCAmelCase : int = re.match(r"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , snake_case ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) UpperCAmelCase : Dict = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: UpperCAmelCase : Dict = True out_lines.append(snake_case ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset UpperCAmelCase : List[str] = f_name.replace(".py" , "" ) UpperCAmelCase : str = os.path.join(snake_case , snake_case ) UpperCAmelCase : str = os.path.join(snake_case , snake_case ) os.makedirs(snake_case , exist_ok=snake_case ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(snake_case ) if needs_manual_update: with_manual_update.append(snake_case ) with open(snake_case , "w" , encoding="utf-8" ) as f: f.writelines(snake_case ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: UpperCAmelCase : Optional[int] = os.path.basename(snake_case ) UpperCAmelCase : int = imports_to_builder_map[f_name.replace(".py" , "" )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(snake_case , snake_case ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
609
0