code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class __lowerCamelCase ( lowerCAmelCase ): a__: Optional[Any] = DistilBertTokenizer a__: Optional[Any] = DistilBertTokenizerFast a__: Optional[Any] = True @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = DistilBertTokenizer.from_pretrained('''distilbert-base-uncased''' ) lowerCamelCase_ = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
29
'''simple docstring''' import numpy as np def _A ( snake_case__ : np.ndarray , snake_case__ : np.ndarray , snake_case__ : float = 1E-12 , snake_case__ : int = 1_00 , ): assert np.shape(snake_case__ )[0] == np.shape(snake_case__ )[1] # Ensure proper dimensionality. assert np.shape(snake_case__ )[0] == np.shape(snake_case__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(snake_case__ ) == np.iscomplexobj(snake_case__ ) snake_case__ : Tuple = np.iscomplexobj(snake_case__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(snake_case__ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. snake_case__ : str = False snake_case__ : Any = 0 snake_case__ : Union[str, Any] = 0 snake_case__ : List[str] = 1E12 while not convergence: # Multiple matrix by the vector. snake_case__ : Any = np.dot(snake_case__ , snake_case__ ) # Normalize the resulting output vector. snake_case__ : Dict = w / np.linalg.norm(snake_case__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) snake_case__ : Tuple = vector.conj().T if is_complex else vector.T snake_case__ : Optional[Any] = np.dot(snake_case__ , np.dot(snake_case__ , snake_case__ ) ) # Check convergence. snake_case__ : Union[str, Any] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: snake_case__ : Optional[int] = True snake_case__ : int = lambda_ if is_complex: snake_case__ : Optional[int] = np.real(lambda_ ) return lambda_, vector def _A ( ): snake_case__ : int = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) snake_case__ : List[Any] = np.array([41, 4, 20] ) snake_case__ : str = real_input_matrix.astype(np.complexaaa ) snake_case__ : str = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T snake_case__ : List[str] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": snake_case__ : Dict = real_input_matrix snake_case__ : str = real_vector elif problem_type == "complex": snake_case__ : Optional[Any] = complex_input_matrix snake_case__ : Any = complex_vector # Our implementation. snake_case__ ,snake_case__ : Optional[Any] = power_iteration(snake_case__ , snake_case__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). snake_case__ ,snake_case__ : int = np.linalg.eigh(snake_case__ ) # Last eigenvalue is the maximum one. snake_case__ : List[str] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. snake_case__ : Dict = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(snake_case__ ) - np.abs(snake_case__ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
261
0
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def A ( ): _snake_case : str = { "repo_name": ["test_repo1", "test_repo2", "test_repo3"], "path": ["test_1.py", "test_2.py", "unit_test.py"], "content": ["a " * 20, "a " * 30, "b " * 7], } _snake_case : int = Dataset.from_dict(UpperCAmelCase ) return dataset class _a( __A ): def lowercase ( self ) -> Optional[int]: '''simple docstring''' _snake_case : int = get_dataset() _snake_case : int = make_duplicate_clusters(__snake_case , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def lowercase ( self ) -> Optional[int]: '''simple docstring''' _snake_case : int = get_dataset() _snake_case , _snake_case : int = deduplicate_dataset(__snake_case ) self.assertEqual(len(__snake_case ) , 2 ) print(__snake_case ) self.assertEqual(duplicate_clusters[0][0]["copies"] , 2 ) self.assertEqual(duplicate_clusters[0][0]["is_extreme"] , __snake_case )
278
import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowerCAmelCase :List[Any] = WebClient(token=os.environ['CI_SLACK_BOT_TOKEN']) def A ( UpperCAmelCase ): _snake_case : List[str] = test_results.split(" " ) _snake_case : Optional[int] = 0 _snake_case : int = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. _snake_case : Optional[Any] = expressions[-2] if "=" in expressions[-1] else expressions[-1] for i, expression in enumerate(UpperCAmelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def A ( UpperCAmelCase ): _snake_case : Union[str, Any] = {} _snake_case : Any = None _snake_case : str = False for line in failures_short_lines.split("\n" ): if re.search(R"_ \[doctest\]" , UpperCAmelCase ): _snake_case : Union[str, Any] = True _snake_case : Tuple = line.split(" " )[2] elif in_error and not line.split(" " )[0].isdigit(): _snake_case : Optional[Any] = line _snake_case : Dict = False return failures class _a: def __init__( self , __snake_case , __snake_case ) -> Tuple: '''simple docstring''' _snake_case : Dict = title _snake_case : Optional[Any] = doc_test_results["time_spent"].split("," )[0] _snake_case : Dict = doc_test_results["success"] _snake_case : Optional[Any] = doc_test_results["failures"] _snake_case : Tuple = self.n_success + self.n_failures # Failures and success of the modeling tests _snake_case : Union[str, Any] = doc_test_results @property def lowercase ( self ) -> str: '''simple docstring''' _snake_case : Dict = [self._time_spent] _snake_case : Tuple = 0 for time in time_spent: _snake_case : str = time.split(":" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(__snake_case ) == 1: _snake_case : List[Any] = [0, 0, time_parts[0]] _snake_case , _snake_case , _snake_case : int = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_6_0_0 + minutes * 6_0 + seconds _snake_case , _snake_case , _snake_case : List[str] = total_secs // 3_6_0_0, (total_secs % 3_6_0_0) // 6_0, total_secs % 6_0 return f"""{int(__snake_case )}h{int(__snake_case )}m{int(__snake_case )}s""" @property def lowercase ( self ) -> Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def lowercase ( self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def lowercase ( self ) -> Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" f""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def lowercase ( self ) -> Dict: '''simple docstring''' _snake_case : List[str] = 4_0 _snake_case : Any = {k: v["failed"] for k, v in doc_test_results.items() if isinstance(__snake_case , __snake_case )} _snake_case : int = "" for category, failures in category_failures.items(): if len(__snake_case ) == 0: continue if report != "": report += "\n\n" report += f"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(__snake_case ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"""The following examples had failures:\n\n\n{report}\n""", }, } @property def lowercase ( self ) -> str: '''simple docstring''' _snake_case : Optional[Any] = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(__snake_case ) @staticmethod def lowercase ( ) -> Dict: '''simple docstring''' _snake_case : Dict = [ { "type": "section", "text": { "type": "plain_text", "text": "There was an issue running the tests.", }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } ] print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(__snake_case )} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text="There was an issue running the tests." , blocks=__snake_case , ) def lowercase ( self ) -> Optional[Any]: '''simple docstring''' print("Sending the following payload" ) print(json.dumps({"blocks": json.loads(self.payload )} ) ) _snake_case : List[str] = f"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else "All tests passed." _snake_case : Tuple = client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , blocks=self.payload , text=__snake_case , ) def lowercase ( self , __snake_case , __snake_case , __snake_case , __snake_case ) -> Any: '''simple docstring''' _snake_case : str = "" for key, value in failures.items(): _snake_case : Any = value[:2_0_0] + " [Truncated]" if len(__snake_case ) > 2_5_0 else value failures_text += f"""*{key}*\n_{value}_\n\n""" _snake_case : str = job_name _snake_case : List[str] = {"type": "section", "text": {"type": "mrkdwn", "text": text}} if job_link is not None: _snake_case : Union[str, Any] = { "type": "button", "text": {"type": "plain_text", "text": "GitHub Action job", "emoji": True}, "url": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def lowercase ( self ) -> Optional[Any]: '''simple docstring''' if self.thread_ts is None: raise ValueError("Can only post reply if a post has been made." ) _snake_case : Optional[int] = self.doc_test_results.pop("job_link" ) self.doc_test_results.pop("failures" ) self.doc_test_results.pop("success" ) self.doc_test_results.pop("time_spent" ) _snake_case : Tuple = sorted(self.doc_test_results.items() , key=lambda __snake_case : t[0] ) for job, job_result in sorted_dict: if len(job_result["failures"] ): _snake_case : Tuple = f"""*Num failures* :{len(job_result['failed'] )} \n""" _snake_case : Tuple = job_result["failures"] _snake_case : Tuple = self.get_reply_blocks(__snake_case , __snake_case , __snake_case , text=__snake_case ) print("Sending the following reply" ) print(json.dumps({"blocks": blocks} ) ) client.chat_postMessage( channel=os.environ["CI_SLACK_CHANNEL_ID_DAILY"] , text=f"""Results for {job}""" , blocks=__snake_case , thread_ts=self.thread_ts["ts"] , ) time.sleep(1 ) def A ( ): _snake_case : Optional[Any] = os.environ["GITHUB_RUN_ID"] _snake_case : Union[str, Any] = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" _snake_case : List[Any] = requests.get(UpperCAmelCase ).json() _snake_case : str = {} try: jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) _snake_case : Union[str, Any] = math.ceil((result["total_count"] - 100) / 100 ) for i in range(UpperCAmelCase ): _snake_case : Any = requests.get(url + F"""&page={i + 2}""" ).json() jobs.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return jobs except Exception as e: print("Unknown error, could not fetch links." , UpperCAmelCase ) return {} def A ( UpperCAmelCase ): _snake_case : Optional[int] = {} if os.path.exists(UpperCAmelCase ): _snake_case : Optional[Any] = os.listdir(UpperCAmelCase ) for file in files: try: with open(os.path.join(UpperCAmelCase , UpperCAmelCase ) , encoding="utf-8" ) as f: _snake_case : Optional[Any] = f.read() except UnicodeDecodeError as e: raise ValueError(F"""Could not open {os.path.join(UpperCAmelCase , UpperCAmelCase )}.""" ) from e return _artifact def A ( ): class _a: def __init__( self , __snake_case ) -> List[Any]: '''simple docstring''' _snake_case : Any = name _snake_case : Any = [] def __str__( self ) -> Tuple: '''simple docstring''' return self.name def lowercase ( self , __snake_case ) -> List[Any]: '''simple docstring''' self.paths.append({"name": self.name, "path": path} ) _snake_case : Dict[str, Artifact] = {} _snake_case : Any = filter(os.path.isdir , os.listdir() ) for directory in directories: _snake_case : Optional[int] = directory if artifact_name not in _available_artifacts: _snake_case : Optional[Any] = Artifact(UpperCAmelCase ) _available_artifacts[artifact_name].add_path(UpperCAmelCase ) return _available_artifacts if __name__ == "__main__": __lowerCAmelCase :str = get_job_links() __lowerCAmelCase :Optional[int] = retrieve_available_artifacts() __lowerCAmelCase :Dict = collections.OrderedDict( [ ('*.py', 'API Examples'), ('*.md', 'MD Examples'), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowerCAmelCase :Any = { v: { 'failed': [], 'failures': {}, } for v in docs.values() } # Link to the GitHub Action job __lowerCAmelCase :str = github_actions_job_links.get('run_doctests') __lowerCAmelCase :List[Any] = available_artifacts['doc_tests_gpu_test_reports'].paths[0] __lowerCAmelCase :Optional[Any] = retrieve_artifact(artifact_path['name']) if "stats" in artifact: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase :Dict = handle_test_results(artifact['stats']) __lowerCAmelCase :List[Any] = failed __lowerCAmelCase :Optional[int] = success __lowerCAmelCase :str = time_spent[1:-1] + ', ' __lowerCAmelCase :Optional[Any] = extract_first_line_failure(artifact['failures_short']) for line in artifact["summary_short"].split('\n'): if re.search('FAILED', line): __lowerCAmelCase :Any = line.replace('FAILED ', '') __lowerCAmelCase :int = line.split()[0].replace('\n', '') if "::" in line: __lowerCAmelCase , __lowerCAmelCase :List[str] = line.split('::') else: __lowerCAmelCase , __lowerCAmelCase :int = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowerCAmelCase :Any = docs[file_regex] doc_test_results[category]["failed"].append(test) __lowerCAmelCase :Union[str, Any] = all_failures[test] if test in all_failures else 'N/A' __lowerCAmelCase :Optional[Any] = failure break __lowerCAmelCase :Optional[int] = Message('🤗 Results of the doc tests.', doc_test_results) message.post() message.post_reply()
278
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available a__ : str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys a__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[int] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' _lowerCamelCase ="megatron-bert" def __init__( self : Dict , a__ : Union[str, Any]=29056 , a__ : Dict=1024 , a__ : str=24 , a__ : Any=16 , a__ : Tuple=4096 , a__ : Optional[int]="gelu" , a__ : Tuple=0.1 , a__ : Tuple=0.1 , a__ : Any=512 , a__ : Optional[Any]=2 , a__ : str=0.02 , a__ : Optional[int]=1e-1_2 , a__ : Union[str, Any]=0 , a__ : Optional[Any]="absolute" , a__ : Dict=True , **a__ : Dict , ): super().__init__(pad_token_id=a__ , **a__ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = use_cache
51
1
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__UpperCamelCase , __UpperCamelCase ): return 0 elif n == 2: return 1 else: A__ : Any = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> int: """simple docstring""" A__ : Dict = 0 A__ : Optional[int] = 2 while digits < n: index += 1 A__ : Dict = len(str(fibonacci(__UpperCamelCase ) ) ) return index def SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10_00 ) -> int: """simple docstring""" return fibonacci_digits_index(__UpperCamelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
55
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=1024 , UpperCamelCase__=1024 , UpperCamelCase__=3.6 ): A__ : str = tokenizer A__ : int = tokenizer.bos_token_id A__ : List[Any] = dataset A__ : Tuple = seq_length A__ : Any = seq_length * chars_per_token * num_of_sequences def __iter__( self ): A__ : Dict = iter(self.dataset ) A__ : Tuple = True while more_examples: A__ , A__ : Optional[Any] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(UpperCamelCase__ )['''content'''] ) buffer_len += len(buffer[-1] ) except StopIteration: A__ : Dict = False break A__ : str = tokenizer(UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] A__ : Optional[int] = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(UpperCamelCase__ ) , self.seq_length ): A__ : Optional[int] = all_token_ids[i : i + self.seq_length] if len(UpperCamelCase__ ) == self.seq_length: yield torch.tensor(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[Any] ) -> Any: """simple docstring""" A__ : Any = {'''streaming''': True} A__ : List[str] = load_dataset(args.dataset_name , split='''train''' , **__UpperCamelCase ) A__ : List[str] = ConstantLengthDataset(__UpperCamelCase , __UpperCamelCase , seq_length=args.seq_length ) A__ : int = DataLoader(__UpperCamelCase , batch_size=args.batch_size ) return eval_dataloader def SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> Dict: """simple docstring""" model.eval() A__ : Dict = [] for step, batch in enumerate(__UpperCamelCase ): with torch.no_grad(): A__ : Any = model(__UpperCamelCase , labels=__UpperCamelCase ) A__ : Tuple = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(__UpperCamelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break A__ : Tuple = torch.mean(torch.cat(__UpperCamelCase ) ) try: A__ : Optional[Any] = torch.exp(__UpperCamelCase ) except OverflowError: A__ : Union[str, Any] = float('''inf''' ) return loss.item(), perplexity.item() # Setup Accelerator _SCREAMING_SNAKE_CASE : List[Any] = Accelerator() # Parse configuration _SCREAMING_SNAKE_CASE : Optional[int] = HfArgumentParser(EvaluationArguments) _SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args() set_seed(args.seed) # Logging _SCREAMING_SNAKE_CASE : Dict = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _SCREAMING_SNAKE_CASE : Optional[Any] = create_dataloader(args) # Prepare everything with our `accelerator`. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
55
1
'''simple docstring''' from __future__ import annotations from fractions import Fraction def _a ( _lowerCamelCase , _lowerCamelCase ) -> bool: """simple docstring""" return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _a ( _lowerCamelCase ) -> list[str]: """simple docstring""" __snake_case : Union[str, Any] = [] __snake_case : Dict = 11 __snake_case : List[Any] = int("""1""" + """0""" * digit_len ) for num in range(_lowerCamelCase , _lowerCamelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowerCamelCase , _lowerCamelCase ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 __snake_case : str = 10 return solutions def _a ( _lowerCamelCase = 2 ) -> int: """simple docstring""" __snake_case : List[Any] = 1.0 for fraction in fraction_list(_lowerCamelCase ): __snake_case : List[Any] = Fraction(_lowerCamelCase ) result *= frac.denominator / frac.numerator return int(_lowerCamelCase ) if __name__ == "__main__": print(solution())
26
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem A__ : int = importlib.util.find_spec('s3fs') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 A__ : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def a ( lowerCamelCase_ ): '''simple docstring''' if "://" in dataset_path: lowercase__ = dataset_path.split('''://''' )[1] return dataset_path def a ( lowerCamelCase_ ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = not is_remote_filesystem(lowerCamelCase_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowerCamelCase_ ) , fs._strip_protocol(lowerCamelCase_ ) ) else: fs.mv(lowerCamelCase_ , lowerCamelCase_ , recursive=lowerCamelCase_ ) def a ( ): '''simple docstring''' if hasattr(fsspec.asyn , '''reset_lock''' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowercase__ = None lowercase__ = None lowercase__ = threading.Lock()
183
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class _UpperCamelCase : '''simple docstring''' def __init__( self : Tuple , snake_case_ : str , snake_case_ : int=13 , snake_case_ : str=7 , snake_case_ : Any=True , snake_case_ : List[Any]=True , snake_case_ : str=True , snake_case_ : int=True , snake_case_ : Any=99 , snake_case_ : List[Any]=64 , snake_case_ : List[str]=32 , snake_case_ : Any=5 , snake_case_ : List[str]=4 , snake_case_ : List[Any]=37 , snake_case_ : Dict="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Optional[Any]=0.1 , snake_case_ : List[Any]=512 , snake_case_ : Optional[Any]=16 , snake_case_ : str=2 , snake_case_ : str=0.02 , snake_case_ : List[str]=3 , snake_case_ : List[Any]=4 , snake_case_ : Optional[int]=None , ): UpperCamelCase_: Optional[Any] = parent UpperCamelCase_: str = batch_size UpperCamelCase_: Optional[Any] = seq_length UpperCamelCase_: str = is_training UpperCamelCase_: Any = use_input_mask UpperCamelCase_: int = use_token_type_ids UpperCamelCase_: Optional[int] = use_labels UpperCamelCase_: Optional[int] = vocab_size UpperCamelCase_: List[str] = hidden_size UpperCamelCase_: Union[str, Any] = embedding_size UpperCamelCase_: Any = num_hidden_layers UpperCamelCase_: Any = num_attention_heads UpperCamelCase_: str = intermediate_size UpperCamelCase_: Dict = hidden_act UpperCamelCase_: List[Any] = hidden_dropout_prob UpperCamelCase_: Optional[int] = attention_probs_dropout_prob UpperCamelCase_: str = max_position_embeddings UpperCamelCase_: Optional[Any] = type_vocab_size UpperCamelCase_: List[Any] = type_sequence_label_size UpperCamelCase_: Dict = initializer_range UpperCamelCase_: int = num_labels UpperCamelCase_: Tuple = num_choices UpperCamelCase_: List[Any] = scope def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: Tuple = None if self.use_input_mask: UpperCamelCase_: Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_: int = None if self.use_token_type_ids: UpperCamelCase_: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_: Any = None UpperCamelCase_: Dict = None UpperCamelCase_: List[str] = None if self.use_labels: UpperCamelCase_: Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_: str = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_: List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self : Tuple ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Dict , snake_case_ : List[str] , snake_case_ : Optional[Any] ): UpperCamelCase_: Optional[Any] = MegatronBertModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) UpperCamelCase_: Optional[int] = model(snake_case_ , token_type_ids=snake_case_ ) UpperCamelCase_: Optional[int] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase__ ( self : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : Optional[Any] ): UpperCamelCase_: Optional[Any] = MegatronBertForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: Optional[int] = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self : List[Any] , snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Optional[Any] ): UpperCamelCase_: List[str] = MegatronBertForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: Any = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : int , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : List[Any] ): UpperCamelCase_: Tuple = MegatronBertForNextSentencePrediction(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: int = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase__ ( self : str , snake_case_ : Any , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : List[Any] , snake_case_ : List[str] ): UpperCamelCase_: List[Any] = MegatronBertForPreTraining(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: Optional[Any] = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , next_sentence_label=snake_case_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase__ ( self : Tuple , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : str , snake_case_ : int , snake_case_ : Optional[int] ): UpperCamelCase_: List[Any] = MegatronBertForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: List[str] = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self : Any , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : int ): UpperCamelCase_: List[Any] = self.num_labels UpperCamelCase_: List[Any] = MegatronBertForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: int = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self : str , snake_case_ : Optional[int] , snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Any ): UpperCamelCase_: Optional[Any] = self.num_labels UpperCamelCase_: Any = MegatronBertForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: List[str] = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self : List[str] , snake_case_ : Tuple , snake_case_ : int , snake_case_ : str , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : str ): UpperCamelCase_: Tuple = self.num_choices UpperCamelCase_: Any = MegatronBertForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase_: Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_: List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_: Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_: Any = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: int = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ): List[str] = config_and_inputs UpperCamelCase_: Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( _A , _A , unittest.TestCase ): '''simple docstring''' __UpperCamelCase : List[str] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) __UpperCamelCase : int = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase : int = True # test_resize_embeddings = False __UpperCamelCase : str = False def lowerCAmelCase__ ( self : int , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Any=False ): UpperCamelCase_: int = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class in get_values(snake_case_ ): UpperCamelCase_: str = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case_ ) UpperCamelCase_: List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Dict = MegatronBertModelTester(self ) UpperCamelCase_: int = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def lowerCAmelCase__ ( self : str ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : List[Any] ): UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*snake_case_ ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*snake_case_ ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*snake_case_ ) def A__ ( lowerCamelCase ) -> List[Any]: return torch.tensor( lowerCamelCase , dtype=torch.long , device=lowerCamelCase , ) lowerCamelCase_ : str = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip("""Model is not available.""" ) def lowerCAmelCase__ ( self : int ): UpperCamelCase_: Dict = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: UpperCamelCase_: Optional[int] = os.path.join(os.environ["""MYDIR"""] , snake_case_ ) UpperCamelCase_: Tuple = MegatronBertModel.from_pretrained(snake_case_ ) model.to(snake_case_ ) model.half() UpperCamelCase_: Optional[int] = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): UpperCamelCase_: Optional[int] = model(snake_case_ )[0] UpperCamelCase_: Tuple = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , snake_case_ ) UpperCamelCase_: Optional[int] = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): UpperCamelCase_: Optional[Any] = output[0, ii, jj] UpperCamelCase_: Dict = expected[3 * ii + jj] UpperCamelCase_: Optional[int] = """ii={} jj={} a={} b={}""".format(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) self.assertTrue(math.isclose(snake_case_ , snake_case_ , rel_tol=snake_case_ , abs_tol=snake_case_ ) , msg=snake_case_ )
670
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Union[str, Any] = """laion/clap-htsat-unfused""" UpperCamelCase_: List[str] = tempfile.mkdtemp() def lowerCAmelCase__ ( self : Tuple , **snake_case_ : Optional[Any] ): return RobertaTokenizer.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : str , **snake_case_ : Any ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self : str ): UpperCamelCase_: Union[str, Any] = self.get_tokenizer() UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Any = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Optional[Any] ): UpperCamelCase_: Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase_: Dict = self.get_feature_extractor(do_normalize=snake_case_ , padding_value=1.0 ) UpperCamelCase_: List[str] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , snake_case_ ) def lowerCAmelCase__ ( self : Tuple ): UpperCamelCase_: int = self.get_feature_extractor() UpperCamelCase_: Optional[Any] = self.get_tokenizer() UpperCamelCase_: Dict = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Optional[Any] = floats_list((3, 1000) ) UpperCamelCase_: List[str] = feature_extractor(snake_case_ , return_tensors="""np""" ) UpperCamelCase_: int = processor(audios=snake_case_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self : Union[str, Any] ): UpperCamelCase_: List[Any] = self.get_feature_extractor() UpperCamelCase_: List[str] = self.get_tokenizer() UpperCamelCase_: List[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: Dict = """This is a test string""" UpperCamelCase_: Tuple = processor(text=snake_case_ ) UpperCamelCase_: Optional[int] = tokenizer(snake_case_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self : Any ): UpperCamelCase_: List[str] = self.get_feature_extractor() UpperCamelCase_: Any = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) UpperCamelCase_: str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_: Tuple = processor.batch_decode(snake_case_ ) UpperCamelCase_: str = tokenizer.batch_decode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self : List[str] ): UpperCamelCase_: Any = self.get_feature_extractor() UpperCamelCase_: str = self.get_tokenizer() UpperCamelCase_: Optional[Any] = ClapProcessor(tokenizer=snake_case_ , feature_extractor=snake_case_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="""`processor` and `feature_extractor` model input names do not match""" , )
670
1
import math def a ( snake_case__: int ): '''simple docstring''' lowercase_ = [True] * n lowercase_ = False lowercase_ = False lowercase_ = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): lowercase_ = i * 2 while index < n: lowercase_ = False lowercase_ = index + i lowercase_ = [2] for i in range(3 , snake_case__ , 2 ): if is_prime[i]: primes.append(snake_case__ ) return primes def a ( snake_case__: int = 999_966_663_333 ): '''simple docstring''' lowercase_ = math.floor(math.sqrt(snake_case__ ) ) + 100 lowercase_ = prime_sieve(snake_case__ ) lowercase_ = 0 lowercase_ = 0 lowercase_ = primes[prime_index] while (last_prime**2) <= limit: lowercase_ = primes[prime_index + 1] lowercase_ = last_prime**2 lowercase_ = next_prime**2 # Get numbers divisible by lps(current) lowercase_ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) lowercase_ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps lowercase_ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair lowercase_ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
97
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase_ : def __init__( self : Any , __A : Optional[int] , __A : Optional[int]=2 , __A : int=3 , __A : Union[str, Any]=4 , __A : Tuple=2 , __A : Union[str, Any]=7 , __A : Any=True , __A : List[str]=True , __A : Tuple=True , __A : Tuple=True , __A : List[str]=99 , __A : Tuple=36 , __A : Union[str, Any]=3 , __A : str=4 , __A : str=37 , __A : int="gelu" , __A : Union[str, Any]=0.1 , __A : str=0.1 , __A : List[Any]=512 , __A : Optional[int]=16 , __A : int=2 , __A : List[Any]=0.02 , __A : Optional[Any]=6 , __A : int=6 , __A : str=3 , __A : Optional[int]=4 , __A : Union[str, Any]=None , __A : Tuple=1000 , ) ->Any: """simple docstring""" a__ :Any = parent a__ :Optional[int] = batch_size a__ :Union[str, Any] = num_channels a__ :Any = image_size a__ :Optional[Any] = patch_size a__ :Optional[Any] = text_seq_length a__ :int = is_training a__ :Tuple = use_input_mask a__ :Any = use_token_type_ids a__ :int = use_labels a__ :str = vocab_size a__ :List[str] = hidden_size a__ :Optional[int] = num_hidden_layers a__ :List[str] = num_attention_heads a__ :List[str] = intermediate_size a__ :int = hidden_act a__ :Optional[Any] = hidden_dropout_prob a__ :Union[str, Any] = attention_probs_dropout_prob a__ :int = max_position_embeddings a__ :Tuple = type_vocab_size a__ :Union[str, Any] = type_sequence_label_size a__ :List[Any] = initializer_range a__ :str = coordinate_size a__ :Union[str, Any] = shape_size a__ :int = num_labels a__ :Optional[int] = num_choices a__ :str = scope a__ :int = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) a__ :str = text_seq_length a__ :Tuple = (image_size // patch_size) ** 2 + 1 a__ :Optional[int] = self.text_seq_length + self.image_seq_length def _snake_case ( self : Optional[Any] ) ->Dict: """simple docstring""" a__ :str = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) a__ :Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: a__ :Optional[Any] = bbox[i, j, 3] a__ :List[str] = bbox[i, j, 1] a__ :str = t if bbox[i, j, 2] < bbox[i, j, 0]: a__ :Any = bbox[i, j, 2] a__ :int = bbox[i, j, 0] a__ :Optional[Any] = t a__ :int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ :List[Any] = None if self.use_input_mask: a__ :str = random_attention_mask([self.batch_size, self.text_seq_length] ) a__ :Optional[Any] = None if self.use_token_type_ids: a__ :str = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) a__ :List[str] = None a__ :List[str] = None if self.use_labels: a__ :str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ :List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) a__ :Tuple = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _snake_case ( self : Tuple , __A : Any , __A : Union[str, Any] , __A : List[str] , __A : Dict , __A : int , __A : Union[str, Any] , __A : Union[str, Any] , __A : Any ) ->Dict: """simple docstring""" a__ :Optional[int] = LayoutLMvaModel(config=__A ) model.to(__A ) model.eval() # text + image a__ :List[Any] = model(__A , pixel_values=__A ) a__ :int = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A ) a__ :Union[str, Any] = model(__A , bbox=__A , pixel_values=__A , token_type_ids=__A ) a__ :Optional[Any] = model(__A , bbox=__A , pixel_values=__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only a__ :Dict = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only a__ :Dict = model(pixel_values=__A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _snake_case ( self : Tuple , __A : List[str] , __A : str , __A : Union[str, Any] , __A : str , __A : Any , __A : List[Any] , __A : str , __A : Tuple ) ->Tuple: """simple docstring""" a__ :Optional[Any] = self.num_labels a__ :Tuple = LayoutLMvaForSequenceClassification(__A ) model.to(__A ) model.eval() a__ :str = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Optional[int] , __A : str , __A : Tuple , __A : Union[str, Any] , __A : Union[str, Any] , __A : Dict , __A : int , __A : Optional[int] , __A : int ) ->List[str]: """simple docstring""" a__ :Dict = self.num_labels a__ :Dict = LayoutLMvaForTokenClassification(config=__A ) model.to(__A ) model.eval() a__ :Tuple = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _snake_case ( self : str , __A : Optional[Any] , __A : Optional[Any] , __A : List[str] , __A : Union[str, Any] , __A : int , __A : Optional[int] , __A : Union[str, Any] , __A : str ) ->Dict: """simple docstring""" a__ :List[str] = LayoutLMvaForQuestionAnswering(config=__A ) model.to(__A ) model.eval() a__ :List[str] = model( __A , bbox=__A , pixel_values=__A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self : List[Any] ) ->Dict: """simple docstring""" a__ :str = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) :str = config_and_inputs a__ :Tuple = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase_ ( _a ,_a ,unittest.TestCase): lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase_ = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def _snake_case ( self : List[str] , __A : Union[str, Any] , __A : Optional[Any] , __A : Optional[int] , __A : List[str] , __A : Dict ) ->Dict: """simple docstring""" return True def _snake_case ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" a__ :int = LayoutLMvaModelTester(self ) a__ :Union[str, Any] = ConfigTester(self , config_class=__A , hidden_size=37 ) def _snake_case ( self : int , __A : int , __A : List[Any] , __A : Optional[int]=False ) ->Optional[Any]: """simple docstring""" a__ :Union[str, Any] = copy.deepcopy(__A ) if model_class in get_values(__A ): a__ :Dict = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(__A , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__A ): a__ :List[str] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__A ) elif model_class in get_values(__A ): a__ :int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) a__ :Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) elif model_class in [ *get_values(__A ), ]: a__ :List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) elif model_class in [ *get_values(__A ), ]: a__ :List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__A , ) return inputs_dict def _snake_case ( self : Optional[Any] ) ->List[Any]: """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self : List[Any] ) ->List[Any]: """simple docstring""" a__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _snake_case ( self : int ) ->Optional[Any]: """simple docstring""" a__ :str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a__ :List[Any] = type self.model_tester.create_and_check_model(*__A ) def _snake_case ( self : Tuple ) ->str: """simple docstring""" a__ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def _snake_case ( self : List[Any] ) ->List[str]: """simple docstring""" a__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) def _snake_case ( self : Optional[int] ) ->Dict: """simple docstring""" a__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) @slow def _snake_case ( self : Union[str, Any] ) ->str: """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ :int = LayoutLMvaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" a__ :List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class lowerCAmelCase_ ( unittest.TestCase): @cached_property def _snake_case ( self : Union[str, Any] ) ->Dict: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__A ) if is_vision_available() else None @slow def _snake_case ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" a__ :Optional[Any] = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(__A ) a__ :str = self.default_image_processor a__ :List[str] = prepare_img() a__ :Tuple = image_processor(images=__A , return_tensors="pt" ).pixel_values.to(__A ) a__ :Dict = torch.tensor([[1, 2]] ) a__ :Optional[Any] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass a__ :int = model( input_ids=input_ids.to(__A ) , bbox=bbox.to(__A ) , pixel_values=pixel_values.to(__A ) , ) # verify the logits a__ :int = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , __A ) a__ :Any = torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(__A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __A , atol=1E-4 ) )
395
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __A ( UpperCamelCase__ , unittest.TestCase ): a__ : Tuple = KandinskyVaaPipeline a__ : List[Any] = [ """image_embeds""", """negative_image_embeds""", ] a__ : Union[str, Any] = ["""image_embeds""", """negative_image_embeds"""] a__ : Dict = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a__ : str = False @property def _lowercase (self : Optional[Any] ): return 32 @property def _lowercase (self : Tuple ): return 32 @property def _lowercase (self : Tuple ): return self.time_input_dim @property def _lowercase (self : Optional[int] ): return self.time_input_dim * 4 @property def _lowercase (self : Union[str, Any] ): return 100 @property def _lowercase (self : Union[str, Any] ): torch.manual_seed(0 ) UpperCAmelCase_ = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase_ = UNetaDConditionModel(**__a ) return model @property def _lowercase (self : Optional[int] ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowercase (self : Union[str, Any] ): torch.manual_seed(0 ) UpperCAmelCase_ = VQModel(**self.dummy_movq_kwargs ) return model def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.dummy_unet UpperCAmelCase_ = self.dummy_movq UpperCAmelCase_ = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=__a , set_alpha_to_one=__a , steps_offset=1 , prediction_type="epsilon" , thresholding=__a , ) UpperCAmelCase_ = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _lowercase (self : List[Any] , __a : int , __a : Tuple=0 ): UpperCAmelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__a ) ).to(__a ) UpperCAmelCase_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __a ) if str(__a ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(__a ) else: UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(__a ) UpperCAmelCase_ = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def _lowercase (self : Optional[int] ): UpperCAmelCase_ = "cpu" UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**__a ) UpperCAmelCase_ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = pipe(**self.get_dummy_inputs(__a ) ) UpperCAmelCase_ = output.images UpperCAmelCase_ = pipe( **self.get_dummy_inputs(__a ) , return_dict=__a , )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ = np.array( [0.6_23_79_76, 1.0, 0.36_44_13_32, 1.0, 0.70_63_96_34, 0.29_87_71_86, 0.85_65_21_25, 0.5_21_68_43, 0.54_45_40_46] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class __A ( unittest.TestCase ): def _lowercase (self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : Any ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy" ) UpperCAmelCase_ = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__a ) UpperCAmelCase_ = KandinskyVaaPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) UpperCAmelCase_ = pipeline.to(__a ) pipeline.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = "red cat, 4k photo" UpperCAmelCase_ = torch.Generator(device="cuda" ).manual_seed(0 ) UpperCAmelCase_ , UpperCAmelCase_ = pipe_prior( __a , generator=__a , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase_ = torch.Generator(device="cuda" ).manual_seed(0 ) UpperCAmelCase_ = pipeline( image_embeds=__a , negative_image_embeds=__a , generator=__a , num_inference_steps=100 , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__a , __a )
415
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_: Tuple ={'configuration_van': ['VAN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VanConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: List[str] =[ 'VAN_PRETRAINED_MODEL_ARCHIVE_LIST', 'VanForImageClassification', 'VanModel', 'VanPreTrainedModel', ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: List[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure)
415
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A : List[Any] = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = ['GLPNFeatureExtractor'] A : Tuple = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
287
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ : List[Any] = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] lowerCAmelCase_ : Optional[int] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] lowerCAmelCase_ : Any = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Tuple = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Optional[int] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]: for tf_name, hf_name in patterns: _a = k.replace(lowercase , lowercase ) return k def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration: _a = BigBirdPegasusConfig(**lowercase ) _a = BigBirdPegasusForConditionalGeneration(lowercase ) _a = torch_model.state_dict() _a = {} # separating decoder weights _a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = DECODER_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = REMAINING_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _a = mapping["model.embed_positions.weight"] _a = mapping.pop("model.embed_positions.weight" ) _a , _a = torch_model.load_state_dict(lowercase , strict=lowercase ) _a = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _lowerCamelCase ( lowercase : List[Any] ) -> Dict: _a = tf.train.list_variables(lowercase ) _a = {} _a = ["global_step"] for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ): _a = any(pat in name for pat in ignore_name ) if skip_key: continue _a = tf.train.load_variable(lowercase , lowercase ) _a = array return tf_weights def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]: _a = get_tf_weights_as_numpy(lowercase ) _a = convert_bigbird_pegasus(lowercase , lowercase ) torch_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ : Optional[Any] = parser.parse_args() lowerCAmelCase_ : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _snake_case ( unittest.TestCase ): @property def lowerCamelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) __lowerCamelCase : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def lowerCamelCase__ ( self : Optional[Any] ): __lowerCamelCase : Tuple = self.dummy_uncond_unet __lowerCamelCase : Any = ScoreSdeVeScheduler() __lowerCamelCase : Tuple = ScoreSdeVePipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) sde_ve.to(UpperCAmelCase ) sde_ve.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : int = torch.manual_seed(0 ) __lowerCamelCase : Tuple = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=UpperCAmelCase ).images __lowerCamelCase : Tuple = torch.manual_seed(0 ) __lowerCamelCase : Optional[Any] = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=UpperCAmelCase , return_dict=UpperCAmelCase )[ 0 ] __lowerCamelCase : Any = image[0, -3:, -3:, -1] __lowerCamelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase : Optional[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _snake_case ( unittest.TestCase ): def lowerCamelCase__ ( self : str ): __lowerCamelCase : Dict = "google/ncsnpp-church-256" __lowerCamelCase : Optional[Any] = UNetaDModel.from_pretrained(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = ScoreSdeVeScheduler.from_pretrained(UpperCAmelCase ) __lowerCamelCase : Optional[Any] = ScoreSdeVePipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) sde_ve.to(UpperCAmelCase ) sde_ve.set_progress_bar_config(disable=UpperCAmelCase ) __lowerCamelCase : int = torch.manual_seed(0 ) __lowerCamelCase : Any = sde_ve(num_inference_steps=10 , output_type="numpy" , generator=UpperCAmelCase ).images __lowerCamelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __lowerCamelCase : Tuple = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
366
"""simple docstring""" import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _snake_case : snake_case__ = None snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = None snake_case__ = None snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = True snake_case__ = None snake_case__ = 1 snake_case__ = None snake_case__ = False snake_case__ = None snake_case__ = None def lowerCamelCase__ ( self : Any ): return self.__class__(**{k: copy.deepcopy(UpperCAmelCase ) for k, v in self.__dict__.items()} )
366
1
"""simple docstring""" def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : int = 3 , SCREAMING_SNAKE_CASE : int = 7 , SCREAMING_SNAKE_CASE : int = 1000000 ): '''simple docstring''' __lowerCamelCase : Optional[int] =0 __lowerCamelCase : str =1 for current_denominator in range(1 , limit + 1 ): __lowerCamelCase : Any =current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __lowerCamelCase : Any =current_numerator __lowerCamelCase : int =current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
179
"""simple docstring""" import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging _UpperCamelCase = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: __lowerCamelCase : Optional[Any] =XLMProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE ) __lowerCamelCase , __lowerCamelCase : List[Any] =XLMProphetNetForConditionalGeneration.from_pretrained( SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE ) else: __lowerCamelCase : int =ProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE ) __lowerCamelCase , __lowerCamelCase : int =ProphetNetForConditionalGeneration.from_pretrained( SCREAMING_SNAKE_CASE , output_loading_info=SCREAMING_SNAKE_CASE ) __lowerCamelCase : Optional[Any] =['''key_proj''', '''value_proj''', '''query_proj'''] __lowerCamelCase : Tuple ={ '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: __lowerCamelCase : int =key.split('''.''' ) if attributes[0] == "lm_head": __lowerCamelCase : int =prophet __lowerCamelCase : Optional[int] =prophet_old else: __lowerCamelCase : Any =prophet.prophetnet __lowerCamelCase : Union[str, Any] =prophet_old.model __lowerCamelCase : Optional[Any] =False for attribute in attributes: if attribute in mapping: __lowerCamelCase : Optional[Any] =mapping[attribute] if not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(SCREAMING_SNAKE_CASE ) > 0: __lowerCamelCase : Any =attribute elif hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowerCamelCase : Any =attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __lowerCamelCase : str =old_model.weight logger.info(F'{attribute} is initialized.' ) __lowerCamelCase : Any =True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __lowerCamelCase : Union[str, Any] =old_model.bias logger.info(F'{attribute} is initialized' ) __lowerCamelCase : str =True break elif attribute in special_keys and hasattr(SCREAMING_SNAKE_CASE , '''in_proj_weight''' ): __lowerCamelCase : int =old_model.in_proj_weight.shape[0] // 3 __lowerCamelCase : Union[str, Any] =getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __lowerCamelCase : List[str] =nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __lowerCamelCase : str =nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __lowerCamelCase : List[str] =nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __lowerCamelCase : Tuple =nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __lowerCamelCase : Optional[Any] =nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __lowerCamelCase : int =nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __lowerCamelCase : Dict =True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." __lowerCamelCase : str =nn.Parameter(old_model.embed_positions.weight[:512, :] ) __lowerCamelCase : Dict =True break if attribute.isdigit(): __lowerCamelCase : List[str] =model[int(SCREAMING_SNAKE_CASE )] __lowerCamelCase : Optional[Any] =old_model[int(SCREAMING_SNAKE_CASE )] else: __lowerCamelCase : int =getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if old_attribute == "": __lowerCamelCase : Dict =old_model else: if not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError(F'{old_model} does not have {old_attribute}' ) __lowerCamelCase : Tuple =getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCamelCase = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
179
1
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCAmelCase__ = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" lowercase__ : List[str] = XLNetConfig.from_json_file(lowerCamelCase__ ) lowercase__ : Optional[int] = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) lowercase__ : Any = finetuning_task lowercase__ : Optional[int] = GLUE_TASKS_NUM_LABELS[finetuning_task] lowercase__ : str = XLNetForSequenceClassification(lowerCamelCase__ ) elif "squad" in finetuning_task: lowercase__ : Optional[Any] = finetuning_task lowercase__ : Tuple = XLNetForQuestionAnswering(lowerCamelCase__ ) else: lowercase__ : int = XLNetLMHeadModel(lowerCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model lowercase__ : Optional[int] = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : int = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) print(F"""Save PyTorch model to {os.path.abspath(lowerCamelCase__ )}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) print(F"""Save configuration file to {os.path.abspath(lowerCamelCase__ )}""" ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) lowerCAmelCase__ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
81
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class snake_case__(_UpperCamelCase ): """simple docstring""" lowercase_ = 42 class snake_case__(nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict=3 , SCREAMING_SNAKE_CASE : Optional[int]=3 , SCREAMING_SNAKE_CASE : List[Any]=("DownEncoderBlock2D",) , SCREAMING_SNAKE_CASE : Dict=(64,) , SCREAMING_SNAKE_CASE : Optional[Any]=2 , SCREAMING_SNAKE_CASE : Optional[int]=32 , SCREAMING_SNAKE_CASE : List[str]="silu" , SCREAMING_SNAKE_CASE : str=True , ): super().__init__() lowercase__ : str = layers_per_block lowercase__ : int = torch.nn.Convad( SCREAMING_SNAKE_CASE , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) lowercase__ : Union[str, Any] = None lowercase__ : Optional[int] = nn.ModuleList([] ) # down lowercase__ : Dict = block_out_channels[0] for i, down_block_type in enumerate(SCREAMING_SNAKE_CASE ): lowercase__ : List[str] = output_channel lowercase__ : Dict = block_out_channels[i] lowercase__ : List[str] = i == len(SCREAMING_SNAKE_CASE ) - 1 lowercase__ : Union[str, Any] = get_down_block( SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block , in_channels=SCREAMING_SNAKE_CASE , out_channels=SCREAMING_SNAKE_CASE , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=SCREAMING_SNAKE_CASE , resnet_groups=SCREAMING_SNAKE_CASE , attention_head_dim=SCREAMING_SNAKE_CASE , temb_channels=SCREAMING_SNAKE_CASE , ) self.down_blocks.append(SCREAMING_SNAKE_CASE ) # mid lowercase__ : Optional[int] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=SCREAMING_SNAKE_CASE , temb_channels=SCREAMING_SNAKE_CASE , ) # out lowercase__ : int = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=SCREAMING_SNAKE_CASE , eps=1E-6 ) lowercase__ : Union[str, Any] = nn.SiLU() lowercase__ : Tuple = 2 * out_channels if double_z else out_channels lowercase__ : Tuple = nn.Convad(block_out_channels[-1] , SCREAMING_SNAKE_CASE , 3 , padding=1 ) lowercase__ : Tuple = False def snake_case ( self : int , SCREAMING_SNAKE_CASE : Tuple ): lowercase__ : List[str] = x lowercase__ : Tuple = self.conv_in(SCREAMING_SNAKE_CASE ) if self.training and self.gradient_checkpointing: def create_custom_forward(SCREAMING_SNAKE_CASE : Union[str, Any] ): def custom_forward(*SCREAMING_SNAKE_CASE : Dict ): return module(*SCREAMING_SNAKE_CASE ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: lowercase__ : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , use_reentrant=SCREAMING_SNAKE_CASE ) # middle lowercase__ : int = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE , use_reentrant=SCREAMING_SNAKE_CASE ) else: for down_block in self.down_blocks: lowercase__ : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) # middle lowercase__ : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE ) else: # down for down_block in self.down_blocks: lowercase__ : Any = down_block(SCREAMING_SNAKE_CASE ) # middle lowercase__ : List[str] = self.mid_block(SCREAMING_SNAKE_CASE ) # post-process lowercase__ : Union[str, Any] = self.conv_norm_out(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = self.conv_act(SCREAMING_SNAKE_CASE ) lowercase__ : Any = self.conv_out(SCREAMING_SNAKE_CASE ) return sample class snake_case__(nn.Module ): """simple docstring""" def __init__( self : Dict , SCREAMING_SNAKE_CASE : Tuple=3 , SCREAMING_SNAKE_CASE : int=3 , SCREAMING_SNAKE_CASE : Optional[int]=("UpDecoderBlock2D",) , SCREAMING_SNAKE_CASE : int=(64,) , SCREAMING_SNAKE_CASE : Any=2 , SCREAMING_SNAKE_CASE : int=32 , SCREAMING_SNAKE_CASE : str="silu" , SCREAMING_SNAKE_CASE : Any="group" , ): super().__init__() lowercase__ : List[str] = layers_per_block lowercase__ : int = nn.Convad( SCREAMING_SNAKE_CASE , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) lowercase__ : Optional[Any] = None lowercase__ : Dict = nn.ModuleList([] ) lowercase__ : List[str] = in_channels if norm_type == "spatial" else None # mid lowercase__ : str = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=SCREAMING_SNAKE_CASE , temb_channels=SCREAMING_SNAKE_CASE , ) # up lowercase__ : Tuple = list(reversed(SCREAMING_SNAKE_CASE ) ) lowercase__ : Dict = reversed_block_out_channels[0] for i, up_block_type in enumerate(SCREAMING_SNAKE_CASE ): lowercase__ : Tuple = output_channel lowercase__ : List[Any] = reversed_block_out_channels[i] lowercase__ : List[Any] = i == len(SCREAMING_SNAKE_CASE ) - 1 lowercase__ : Dict = get_up_block( SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block + 1 , in_channels=SCREAMING_SNAKE_CASE , out_channels=SCREAMING_SNAKE_CASE , prev_output_channel=SCREAMING_SNAKE_CASE , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=SCREAMING_SNAKE_CASE , resnet_groups=SCREAMING_SNAKE_CASE , attention_head_dim=SCREAMING_SNAKE_CASE , temb_channels=SCREAMING_SNAKE_CASE , resnet_time_scale_shift=SCREAMING_SNAKE_CASE , ) self.up_blocks.append(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = output_channel # out if norm_type == "spatial": lowercase__ : Any = SpatialNorm(block_out_channels[0] , SCREAMING_SNAKE_CASE ) else: lowercase__ : Tuple = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=SCREAMING_SNAKE_CASE , eps=1E-6 ) lowercase__ : Union[str, Any] = nn.SiLU() lowercase__ : Any = nn.Convad(block_out_channels[0] , SCREAMING_SNAKE_CASE , 3 , padding=1 ) lowercase__ : List[Any] = False def snake_case ( self : Any , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str=None ): lowercase__ : Tuple = z lowercase__ : List[str] = self.conv_in(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(SCREAMING_SNAKE_CASE : List[str] ): def custom_forward(*SCREAMING_SNAKE_CASE : Optional[int] ): return module(*SCREAMING_SNAKE_CASE ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle lowercase__ : List[str] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , use_reentrant=SCREAMING_SNAKE_CASE ) lowercase__ : str = sample.to(SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: lowercase__ : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , use_reentrant=SCREAMING_SNAKE_CASE ) else: # middle lowercase__ : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = sample.to(SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: lowercase__ : Optional[int] = torch.utils.checkpoint.checkpoint(create_custom_forward(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: # middle lowercase__ : Optional[int] = self.mid_block(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = sample.to(SCREAMING_SNAKE_CASE ) # up for up_block in self.up_blocks: lowercase__ : Optional[Any] = up_block(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # post-process if latent_embeds is None: lowercase__ : Union[str, Any] = self.conv_norm_out(SCREAMING_SNAKE_CASE ) else: lowercase__ : Dict = self.conv_norm_out(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = self.conv_act(SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = self.conv_out(SCREAMING_SNAKE_CASE ) return sample class snake_case__(nn.Module ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : List[Any]="random" , SCREAMING_SNAKE_CASE : Union[str, Any]=False , SCREAMING_SNAKE_CASE : int=True ): super().__init__() lowercase__ : List[Any] = n_e lowercase__ : List[str] = vq_embed_dim lowercase__ : Optional[Any] = beta lowercase__ : List[str] = legacy lowercase__ : Tuple = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) lowercase__ : Union[str, Any] = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) lowercase__ : Tuple = self.used.shape[0] lowercase__ : Any = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": lowercase__ : Any = self.re_embed lowercase__ : Tuple = self.re_embed + 1 print( f"""Remapping {self.n_e} indices to {self.re_embed} indices. """ f"""Using {self.unknown_index} for unknown indices.""" ) else: lowercase__ : str = n_e lowercase__ : Union[str, Any] = sane_index_shape def snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict ): lowercase__ : Any = inds.shape assert len(SCREAMING_SNAKE_CASE ) > 1 lowercase__ : List[str] = inds.reshape(ishape[0] , -1 ) lowercase__ : str = self.used.to(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = (inds[:, :, None] == used[None, None, ...]).long() lowercase__ : Dict = match.argmax(-1 ) lowercase__ : Dict = match.sum(2 ) < 1 if self.unknown_index == "random": lowercase__ : Optional[Any] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: lowercase__ : List[Any] = self.unknown_index return new.reshape(SCREAMING_SNAKE_CASE ) def snake_case ( self : int , SCREAMING_SNAKE_CASE : int ): lowercase__ : List[Any] = inds.shape assert len(SCREAMING_SNAKE_CASE ) > 1 lowercase__ : Optional[int] = inds.reshape(ishape[0] , -1 ) lowercase__ : str = self.used.to(SCREAMING_SNAKE_CASE ) if self.re_embed > self.used.shape[0]: # extra token lowercase__ : int = 0 # simply set to zero lowercase__ : Optional[Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , SCREAMING_SNAKE_CASE ) return back.reshape(SCREAMING_SNAKE_CASE ) def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : List[Any] ): # reshape z -> (batch, height, width, channel) and flatten lowercase__ : Union[str, Any] = z.permute(0 , 2 , 3 , 1 ).contiguous() lowercase__ : Optional[Any] = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z lowercase__ : Optional[Any] = torch.argmin(torch.cdist(SCREAMING_SNAKE_CASE , self.embedding.weight ) , dim=1 ) lowercase__ : List[str] = self.embedding(SCREAMING_SNAKE_CASE ).view(z.shape ) lowercase__ : Dict = None lowercase__ : int = None # compute loss for embedding if not self.legacy: lowercase__ : Optional[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: lowercase__ : List[str] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients lowercase__ : Union[str, Any] = z + (z_q - z).detach() # reshape back to match original input shape lowercase__ : Optional[int] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: lowercase__ : Dict = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis lowercase__ : int = self.remap_to_used(SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: lowercase__ : List[str] = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] ): # shape specifying (batch, height, width, channel) if self.remap is not None: lowercase__ : Union[str, Any] = indices.reshape(shape[0] , -1 ) # add batch axis lowercase__ : Union[str, Any] = self.unmap_to_all(SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = indices.reshape(-1 ) # flatten again # get quantized latent vectors lowercase__ : List[Any] = self.embedding(SCREAMING_SNAKE_CASE ) if shape is not None: lowercase__ : Any = z_q.view(SCREAMING_SNAKE_CASE ) # reshape back to match original input shape lowercase__ : int = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class snake_case__(_UpperCamelCase ): """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str=False ): lowercase__ : Dict = parameters lowercase__ , lowercase__ : Optional[int] = torch.chunk(SCREAMING_SNAKE_CASE , 2 , dim=1 ) lowercase__ : Optional[Any] = torch.clamp(self.logvar , -30.0 , 20.0 ) lowercase__ : Optional[int] = deterministic lowercase__ : Tuple = torch.exp(0.5 * self.logvar ) lowercase__ : Optional[int] = torch.exp(self.logvar ) if self.deterministic: lowercase__ : Any = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[torch.Generator] = None ): # make sure sample is on the same device as the parameters and has same dtype lowercase__ : Tuple = randn_tensor( self.mean.shape , generator=SCREAMING_SNAKE_CASE , device=self.parameters.device , dtype=self.parameters.dtype ) lowercase__ : str = self.mean + self.std * sample return x def snake_case ( self : str , SCREAMING_SNAKE_CASE : List[str]=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) lowercase__ : Any = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=SCREAMING_SNAKE_CASE ) def snake_case ( self : Tuple ): return self.mean
81
1
from itertools import count def UpperCamelCase ( __lowercase : Dict = 50 ): '''simple docstring''' A_ : Union[str, Any] = [1] * min_block_length for n in count(__lowercase ): fill_count_functions.append(1 ) for block_length in range(__lowercase ,n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_00_00_00: break return n if __name__ == "__main__": print(F"""{solution() = }""")
558
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __magic_name__ ={ '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ =['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ =[ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ =[ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ =[ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __magic_name__ =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
415
0
'''simple docstring''' from PIL import Image def UpperCamelCase__ ( a__ , a__ ): '''simple docstring''' def brightness(a__ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(a__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 lowercase_ = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
58
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
1
"""simple docstring""" from __future__ import annotations from scipy.special import comb # type: ignore class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. UpperCamelCase = len(lowerCamelCase_) - 1 def UpperCAmelCase__ ( self , lowerCamelCase_) -> list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." UpperCamelCase = [] for i in range(len(self.list_of_points)): # basis function for each i output_values.append( comb(self.degree , lowerCamelCase_) * ((1 - t) ** (self.degree - i)) * (t**i)) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(lowerCamelCase_) , 5) == 1 return output_values def UpperCAmelCase__ ( self , lowerCamelCase_) -> tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." UpperCamelCase = self.basis_function(lowerCamelCase_) UpperCamelCase = 0.0 UpperCamelCase = 0.0 for i in range(len(self.list_of_points)): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def UpperCAmelCase__ ( self , lowerCamelCase_ = 0.01) -> List[Any]: from matplotlib import pyplot as plt # type: ignore UpperCamelCase = [] # x coordinates of points to plot UpperCamelCase = [] # y coordinates of points to plot UpperCamelCase = 0.0 while t <= 1: UpperCamelCase = self.bezier_curve_function(lowerCamelCase_) to_plot_x.append(value[0]) to_plot_y.append(value[1]) t += step_size UpperCamelCase = [i[0] for i in self.list_of_points] UpperCamelCase = [i[1] for i in self.list_of_points] plt.plot( lowerCamelCase_ , lowerCamelCase_ , color='''blue''' , label='''Curve of Degree ''' + str(self.degree) , ) plt.scatter(lowerCamelCase_ , lowerCamelCase_ , color='''red''' , label='''Control Points''') plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
34
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'microsoft/conditional-detr-resnet-50': ( 'https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json' ), } class a ( UpperCAmelCase ): _lowercase = "conditional_detr" _lowercase = ["past_key_values"] _lowercase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , A_=True , A_=None , A_=3 , A_=300 , A_=6 , A_=2048 , A_=8 , A_=6 , A_=2048 , A_=8 , A_=0.0 , A_=0.0 , A_=True , A_="relu" , A_=256 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=1.0 , A_=False , A_="sine" , A_="resnet50" , A_=True , A_=False , A_=2 , A_=5 , A_=2 , A_=1 , A_=1 , A_=2 , A_=5 , A_=2 , A_=0.25 , **A_ , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) _UpperCAmelCase : Tuple = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(A_ , A_ ): _UpperCAmelCase : Optional[Any] = backbone_config.get("model_type" ) _UpperCAmelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase : Dict = config_class.from_dict(A_ ) _UpperCAmelCase : Any = use_timm_backbone _UpperCAmelCase : List[Any] = backbone_config _UpperCAmelCase : Dict = num_channels _UpperCAmelCase : int = num_queries _UpperCAmelCase : Union[str, Any] = d_model _UpperCAmelCase : Dict = encoder_ffn_dim _UpperCAmelCase : Any = encoder_layers _UpperCAmelCase : List[str] = encoder_attention_heads _UpperCAmelCase : Optional[int] = decoder_ffn_dim _UpperCAmelCase : str = decoder_layers _UpperCAmelCase : Optional[Any] = decoder_attention_heads _UpperCAmelCase : Optional[int] = dropout _UpperCAmelCase : List[Any] = attention_dropout _UpperCAmelCase : List[Any] = activation_dropout _UpperCAmelCase : List[str] = activation_function _UpperCAmelCase : Optional[int] = init_std _UpperCAmelCase : List[Any] = init_xavier_std _UpperCAmelCase : Optional[int] = encoder_layerdrop _UpperCAmelCase : List[str] = decoder_layerdrop _UpperCAmelCase : Optional[int] = encoder_layers _UpperCAmelCase : Union[str, Any] = auxiliary_loss _UpperCAmelCase : str = position_embedding_type _UpperCAmelCase : str = backbone _UpperCAmelCase : int = use_pretrained_backbone _UpperCAmelCase : Optional[int] = dilation # Hungarian matcher _UpperCAmelCase : Optional[int] = class_cost _UpperCAmelCase : Tuple = bbox_cost _UpperCAmelCase : Dict = giou_cost # Loss coefficients _UpperCAmelCase : Any = mask_loss_coefficient _UpperCAmelCase : int = dice_loss_coefficient _UpperCAmelCase : Any = cls_loss_coefficient _UpperCAmelCase : Any = bbox_loss_coefficient _UpperCAmelCase : Optional[int] = giou_loss_coefficient _UpperCAmelCase : List[Any] = focal_alpha super().__init__(is_encoder_decoder=A_ , **A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return self.encoder_attention_heads @property def _UpperCAmelCase ( self ): '''simple docstring''' return self.d_model def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _UpperCAmelCase : Tuple = self.backbone_config.to_dict() _UpperCAmelCase : Tuple = self.__class__.model_type return output class a ( UpperCAmelCase ): _lowercase = version.parse("1.11" ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return 1e-5 @property def _UpperCAmelCase ( self ): '''simple docstring''' return 12
300
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint a__ = { """169M""": 12, """430M""": 24, """1B5""": 24, """3B""": 32, """7B""": 32, """14B""": 40, } a__ = { """169M""": 7_68, """430M""": 10_24, """1B5""": 20_48, """3B""": 25_60, """7B""": 40_96, """14B""": 51_20, } def lowercase ( SCREAMING_SNAKE_CASE__ : Any ) -> int: _snake_case : Dict = list(state_dict.keys() ) for name in state_dict_keys: _snake_case : Any = state_dict.pop(SCREAMING_SNAKE_CASE__ ) # emb -> embedding if name.startswith("""emb.""" ): _snake_case : List[str] = name.replace("""emb.""" , """embeddings.""" ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("""blocks.0.ln0""" ): _snake_case : List[str] = name.replace("""blocks.0.ln0""" , """blocks.0.pre_ln""" ) # att -> attention _snake_case : List[str] = re.sub(R"""blocks\.(\d+)\.att""" , R"""blocks.\1.attention""" , SCREAMING_SNAKE_CASE__ ) # ffn -> feed_forward _snake_case : int = re.sub(R"""blocks\.(\d+)\.ffn""" , R"""blocks.\1.feed_forward""" , SCREAMING_SNAKE_CASE__ ) # time_mix_k -> time_mix_key and reshape if name.endswith(""".time_mix_k""" ): _snake_case : Union[str, Any] = name.replace(""".time_mix_k""" , """.time_mix_key""" ) # time_mix_v -> time_mix_value and reshape if name.endswith(""".time_mix_v""" ): _snake_case : str = name.replace(""".time_mix_v""" , """.time_mix_value""" ) # time_mix_r -> time_mix_key and reshape if name.endswith(""".time_mix_r""" ): _snake_case : Optional[int] = name.replace(""".time_mix_r""" , """.time_mix_receptance""" ) if name != "head.weight": _snake_case : List[str] = """rwkv.""" + name _snake_case : Optional[Any] = weight return state_dict def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : int=None ) -> str: # 1. If possible, build the tokenizer. if tokenizer_file is None: print("""No `--tokenizer_file` provided, we will use the default tokenizer.""" ) _snake_case : Dict = 50_277 _snake_case : Optional[int] = AutoTokenizer.from_pretrained("""EleutherAI/gpt-neox-20b""" ) else: _snake_case : Any = PreTrainedTokenizerFast(tokenizer_file=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) # 2. Build the config _snake_case : Optional[int] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _snake_case : int = candidate break if size is None: raise ValueError("""Could not infer the size, please provide it with the `--size` argument.""" ) if size not in possible_sizes: raise ValueError(F'''`size` should be one of {possible_sizes}, got {size}.''' ) _snake_case : Union[str, Any] = RwkvConfig( vocab_size=SCREAMING_SNAKE_CASE__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(SCREAMING_SNAKE_CASE__ ) # 3. Download model file then convert state_dict _snake_case : Any = hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : Dict = convert_state_dict(SCREAMING_SNAKE_CASE__ ) # 4. Split in shards and save _snake_case : int = shard_checkpoint(SCREAMING_SNAKE_CASE__ ) for shard_file, shard in shards.items(): torch.save(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if index is not None: _snake_case : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save the index as well with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: _snake_case : Union[str, Any] = json.dumps(SCREAMING_SNAKE_CASE__ , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ ) + """\n""" f.write(SCREAMING_SNAKE_CASE__ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( """Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model.""" ) _snake_case : Tuple = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _snake_case : List[str] = torch.load(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("""Please provide a `model_name` to push the model to the Hub.""" ) _snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ ) model.push_to_hub(SCREAMING_SNAKE_CASE__ , max_shard_size="""2GB""" ) tokenizer.push_to_hub(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) a__ = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
710
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a__ = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a__ = { # fairseq: """wmt19-ru-en""": {"""length_penalty""": 1.1}, """wmt19-en-ru""": {"""length_penalty""": 1.15}, """wmt19-en-de""": {"""length_penalty""": 1.0}, """wmt19-de-en""": {"""length_penalty""": 1.1}, # allenai: """wmt16-en-de-dist-12-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-dist-6-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-12-1""": {"""length_penalty""": 0.8}, """wmt19-de-en-6-6-base""": {"""length_penalty""": 0.6}, """wmt19-de-en-6-6-big""": {"""length_penalty""": 0.6}, } # this remaps the different models to their organization names a__ = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a__ = """facebook""" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a__ = """allenai""" def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} _snake_case : Union[str, Any] = dict((re.sub(R"""@@$""" , """""" , SCREAMING_SNAKE_CASE__ ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , SCREAMING_SNAKE_CASE__ ), v) for k, v in d.items() ) _snake_case : int = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] _snake_case : Tuple = d[k] # restore return da def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str ) -> str: # prep assert os.path.exists(SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models _snake_case : Optional[Any] = basename(SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = dirname(SCREAMING_SNAKE_CASE__ ) _snake_case : int = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel _snake_case : List[str] = cls.hub_models() _snake_case : Tuple = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} _snake_case : Dict = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F'''using checkpoint {checkpoint_file}''' ) _snake_case : List[Any] = hub_utils.from_pretrained( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , archive_map=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = vars(chkpt["""args"""]["""model"""] ) _snake_case : Union[str, Any] = args["""source_lang"""] _snake_case : Tuple = args["""target_lang"""] _snake_case : Any = dirname(SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = basename(SCREAMING_SNAKE_CASE__ ) # dicts _snake_case : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dict.{src_lang}.txt''' ) _snake_case : Any = os.path.join(SCREAMING_SNAKE_CASE__ , F'''dict.{tgt_lang}.txt''' ) _snake_case : List[Any] = Dictionary.load(SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[Any] = rewrite_dict_keys(src_dict.indices ) _snake_case : Dict = len(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab-src.json""" ) print(F'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab _snake_case : str = True for k in src_vocab.keys(): if not k.islower(): _snake_case : Any = False break _snake_case : Union[str, Any] = Dictionary.load(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) _snake_case : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , """vocab-tgt.json""" ) print(F'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # merges_file (bpecodes) _snake_case : str = os.path.join(SCREAMING_SNAKE_CASE__ , VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" _snake_case : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): break with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""" ) as fin: _snake_case : Dict = fin.read() _snake_case : Optional[Any] = re.sub(R""" \d+$""" , """""" , SCREAMING_SNAKE_CASE__ , 0 , re.M ) # remove frequency number print(F'''Generating {merges_file}''' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as fout: fout.write(SCREAMING_SNAKE_CASE__ ) # model config _snake_case : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", F'''need to extend tokenizer to support bpe={args['tokenizer']}''' _snake_case : Optional[int] = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.0_2, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with _snake_case : Tuple = 5 _snake_case : int = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: _snake_case : List[str] = best_score_hparams[model_dir]["""length_penalty"""] else: _snake_case : Optional[Any] = 1.0 print(F'''Generating {fsmt_model_config_file}''' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # tokenizer config _snake_case : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : str = { """langs""": [src_lang, tgt_lang], """model_max_length""": 1_024, """do_lower_case""": do_lower_case, } print(F'''Generating {fsmt_tokenizer_config_file}''' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # model _snake_case : Optional[Any] = chkpt["""models"""][0] _snake_case : List[str] = model.state_dict() # rename keys to start with 'model.' _snake_case : Any = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys _snake_case : Union[str, Any] = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = FSMTConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = FSMTForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) # check that it loads ok model_new.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) # save _snake_case : int = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(F'''cd {data_root}''' ) print(F'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fsmt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) a__ = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
198
0
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : int ) -> list: UpperCAmelCase : Union[str, Any] = int(_lowerCAmelCase ) if n_element < 1: UpperCAmelCase : int = ValueError('''a should be a positive number''' ) raise my_error UpperCAmelCase : str = [1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = (0, 0, 0) UpperCAmelCase : Any = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": UpperCamelCase__: List[str] = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") UpperCamelCase__: str = hamming(int(n)) print("-----------------------------------------------------") print(F"The list with nth numbers is: {hamming_numbers}") print("-----------------------------------------------------")
127
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : int ) -> list: UpperCAmelCase : Union[str, Any] = int(_lowerCAmelCase ) if n_element < 1: UpperCAmelCase : int = ValueError('''a should be a positive number''' ) raise my_error UpperCAmelCase : str = [1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = (0, 0, 0) UpperCAmelCase : Any = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": UpperCamelCase__: List[str] = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") UpperCamelCase__: str = hamming(int(n)) print("-----------------------------------------------------") print(F"The list with nth numbers is: {hamming_numbers}") print("-----------------------------------------------------")
127
1
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} SCREAMING_SNAKE_CASE__ = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } SCREAMING_SNAKE_CASE__ = { 'abeja/gpt-neox-japanese-2.7b': 2_0_4_8, } def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> int: with open(__UpperCamelCase , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase = json.loads(f.read() ) UpperCamelCase = collections.OrderedDict() UpperCamelCase = collections.OrderedDict() UpperCamelCase = collections.OrderedDict() with open(__UpperCamelCase , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase = f.readlines() UpperCamelCase = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token] for idx, b in enumerate(__UpperCamelCase ): UpperCamelCase = b UpperCamelCase = idx for wd in b: UpperCamelCase = idx return vocab, raw_vocab, ids_to_tokens, emoji class a_ ( lowerCamelCase ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["""input_ids""", """attention_mask"""] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<|endoftext|>" , _SCREAMING_SNAKE_CASE="<|endoftext|>" , _SCREAMING_SNAKE_CASE="<|startoftext|>" , _SCREAMING_SNAKE_CASE="<|endoftext|>" , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: """simple docstring""" super().__init__( unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , do_clean_text=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) if not os.path.isfile(_SCREAMING_SNAKE_CASE ): raise ValueError( F"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" """ model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) if not os.path.isfile(_SCREAMING_SNAKE_CASE ): raise ValueError( F"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" """ pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) UpperCamelCase = do_clean_text UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = load_vocab_and_emoji(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def A__ ( self ) -> List[str]: """simple docstring""" return len(self.raw_vocab ) def A__ ( self ) -> Any: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" return self.subword_tokenizer.tokenize(_SCREAMING_SNAKE_CASE , clean=self.do_clean_text ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return self.vocab.get(_SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" UpperCamelCase = """""".join(_SCREAMING_SNAKE_CASE ).strip() return out_string def A__ ( self , _SCREAMING_SNAKE_CASE ) -> List[int]: """simple docstring""" UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) + [self.eos_token_id] ) if len(_SCREAMING_SNAKE_CASE ) > self.model_max_length: UpperCamelCase = input_ids[-self.model_max_length :] return input_ids def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" UpperCamelCase = 0 if os.path.isdir(_SCREAMING_SNAKE_CASE ): UpperCamelCase = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] ) else: UpperCamelCase = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""] ) with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." """ Please check that the vocabulary is not corrupted!""" ) UpperCamelCase = token_index writer.write(""",""".join(_SCREAMING_SNAKE_CASE ) + """\n""" ) index += 1 with open(_SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as writer: json.dump(self.emoji , _SCREAMING_SNAKE_CASE ) return vocab_file, emoji_file class a_ ( lowerCamelCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase = vocab # same as swe UpperCamelCase = ids_to_tokens # same as bpe UpperCamelCase = emoji UpperCamelCase = np.max([len(_SCREAMING_SNAKE_CASE ) for w in self.vocab.keys()] ) UpperCamelCase = re.compile(R"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" ) UpperCamelCase = re.compile(R"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" ) UpperCamelCase = re.compile(R"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" ) UpperCamelCase = re.compile( R"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) UpperCamelCase = re.compile( R"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) UpperCamelCase = re.compile( R"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" ) UpperCamelCase = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿""" UpperCamelCase = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟""" UpperCamelCase = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} ) def __len__( self ) -> List[Any]: """simple docstring""" return len(self.ids_to_tokens ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase = self.content_repattera.sub("""<URL>""" , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self.content_repattera.sub("""<EMAIL>""" , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self.content_repattera.sub("""<TEL>""" , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self.content_repattera.sub("""<DATE>""" , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self.content_repattera.sub("""<DATE>""" , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self.content_repattera.sub("""<PRICE>""" , _SCREAMING_SNAKE_CASE ) UpperCamelCase = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCamelCase = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" ) return content def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> int: """simple docstring""" UpperCamelCase = text.replace(""" """ , """<SP>""" ) UpperCamelCase = text.replace(""" """ , """<SP>""" ) UpperCamelCase = text.replace("""\r\n""" , """<BR>""" ) UpperCamelCase = text.replace("""\n""" , """<BR>""" ) UpperCamelCase = text.replace("""\r""" , """<BR>""" ) UpperCamelCase = text.replace("""\t""" , """<TAB>""" ) UpperCamelCase = text.replace("""—""" , """ー""" ) UpperCamelCase = text.replace("""−""" , """ー""" ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCamelCase = text.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if clean: UpperCamelCase = self.clean_text(_SCREAMING_SNAKE_CASE ) def check_simbol(_SCREAMING_SNAKE_CASE ): UpperCamelCase = x.encode() if len(_SCREAMING_SNAKE_CASE ) == 1 and len(_SCREAMING_SNAKE_CASE ) == 2: UpperCamelCase = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xC2_A1 and c <= 0xC2_BF) or (c >= 0xC7_80 and c <= 0xC7_83) or (c >= 0xCA_B9 and c <= 0xCB_BF) or (c >= 0xCC_80 and c <= 0xCD_A2) ): return True return False def checkuae(_SCREAMING_SNAKE_CASE ): UpperCamelCase = x.encode() if len(_SCREAMING_SNAKE_CASE ) == 1 and len(_SCREAMING_SNAKE_CASE ) == 3: UpperCamelCase = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xE2_80_80 and c <= 0xE2_B0_7F: return True return False UpperCamelCase = 0 UpperCamelCase = [] while pos < len(_SCREAMING_SNAKE_CASE ): UpperCamelCase = min(len(_SCREAMING_SNAKE_CASE ) , pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3 UpperCamelCase = [] # (token_id, token, pos) for e in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , -1 ): UpperCamelCase = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_SCREAMING_SNAKE_CASE ) > 2: UpperCamelCase = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_SCREAMING_SNAKE_CASE ) > 0: # the smallest token_id is adopted UpperCamelCase ,UpperCamelCase ,UpperCamelCase = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x[0] )[0] result.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = e else: UpperCamelCase = pos + 1 UpperCamelCase = text[pos:end] if check_simbol(_SCREAMING_SNAKE_CASE ): result.append("""<KIGOU>""" ) elif checkuae(_SCREAMING_SNAKE_CASE ): result.append("""<U2000U2BFF>""" ) else: for i in wd.encode("""utf-8""" ): result.append("""<|byte%d|>""" % i ) UpperCamelCase = end return result def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="\n" ) -> List[Any]: """simple docstring""" UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_SCREAMING_SNAKE_CASE ) > 0: words.append(bytearray(_SCREAMING_SNAKE_CASE ).decode("""utf-8""" , errors="""replace""" ) ) UpperCamelCase = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["""emoji_inv"""][word] ) elif word == "<SP>": words.append(""" """ ) elif word == "<BR>": words.append(_SCREAMING_SNAKE_CASE ) elif word == "<TAB>": words.append("""\t""" ) elif word == "<BLOCK>": words.append("""▀""" ) elif word == "<KIGOU>": words.append("""ǀ""" ) elif word == "<U2000U2BFF>": words.append("""‖""" ) else: words.append(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: words.append(bytearray(_SCREAMING_SNAKE_CASE ).decode("""utf-8""" , errors="""replace""" ) ) UpperCamelCase = """""".join(_SCREAMING_SNAKE_CASE ) return text
35
'''simple docstring''' from __future__ import annotations def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> tuple[float, list[float]]: UpperCamelCase = list(range(len(__UpperCamelCase ) ) ) UpperCamelCase = [v / w for v, w in zip(__UpperCamelCase , __UpperCamelCase )] index.sort(key=lambda __UpperCamelCase : ratio[i] , reverse=__UpperCamelCase ) UpperCamelCase = 0 UpperCamelCase = [0] * len(__UpperCamelCase ) for i in index: if weight[i] <= capacity: UpperCamelCase = 1 max_value += value[i] capacity -= weight[i] else: UpperCamelCase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
35
1
"""simple docstring""" from __future__ import annotations class __a : """simple docstring""" def __init__( self , snake_case = 0 ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = key def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case ): """simple docstring""" assert isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case ) lowerCAmelCase__ : str = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(snake_case ) ^ key ) for ch in content] def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case ): """simple docstring""" assert isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case ) lowerCAmelCase__ : List[str] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(snake_case ) ^ key ) for ch in content] def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case = 0 ): """simple docstring""" assert isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case ) lowerCAmelCase__ : Optional[int] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCAmelCase__ : List[Any] = "" for ch in content: ans += chr(ord(snake_case ) ^ key ) return ans def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case = 0 ): """simple docstring""" assert isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case ) lowerCAmelCase__ : str = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned lowerCAmelCase__ : Any = "" for ch in content: ans += chr(ord(snake_case ) ^ key ) return ans def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case = 0 ): """simple docstring""" assert isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case ) try: with open(snake_case ) as fin, open("encrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(snake_case , snake_case ) ) except OSError: return False return True def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case ): """simple docstring""" assert isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case ) try: with open(snake_case ) as fin, open("decrypt.out" , "w+" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(snake_case , snake_case ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
453
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __a ( __magic_name__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] = 'beit' def __init__( self , snake_case=8_192 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3_072 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1e-12 , snake_case=224 , snake_case=16 , snake_case=3 , snake_case=False , snake_case=False , snake_case=False , snake_case=False , snake_case=0.1 , snake_case=0.1 , snake_case=True , snake_case=[3, 5, 7, 11] , snake_case=[1, 2, 3, 6] , snake_case=True , snake_case=0.4 , snake_case=256 , snake_case=1 , snake_case=False , snake_case=255 , **snake_case , ): """simple docstring""" super().__init__(**snake_case ) lowerCAmelCase__ : Union[str, Any] = vocab_size lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : str = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : List[str] = intermediate_size lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : Optional[Any] = hidden_dropout_prob lowerCAmelCase__ : str = attention_probs_dropout_prob lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : Dict = layer_norm_eps lowerCAmelCase__ : int = image_size lowerCAmelCase__ : Union[str, Any] = patch_size lowerCAmelCase__ : Dict = num_channels lowerCAmelCase__ : Optional[Any] = use_mask_token lowerCAmelCase__ : Dict = use_absolute_position_embeddings lowerCAmelCase__ : Any = use_relative_position_bias lowerCAmelCase__ : List[Any] = use_shared_relative_position_bias lowerCAmelCase__ : Dict = layer_scale_init_value lowerCAmelCase__ : Optional[int] = drop_path_rate lowerCAmelCase__ : Optional[Any] = use_mean_pooling # decode head attributes (semantic segmentation) lowerCAmelCase__ : Optional[int] = out_indices lowerCAmelCase__ : List[Any] = pool_scales # auxiliary head attributes (semantic segmentation) lowerCAmelCase__ : List[Any] = use_auxiliary_head lowerCAmelCase__ : Optional[int] = auxiliary_loss_weight lowerCAmelCase__ : List[str] = auxiliary_channels lowerCAmelCase__ : Optional[Any] = auxiliary_num_convs lowerCAmelCase__ : Union[str, Any] = auxiliary_concat_input lowerCAmelCase__ : List[str] = semantic_loss_ignore_index class __a ( __magic_name__ ): """simple docstring""" __UpperCamelCase : List[str] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return 1e-4
453
1
"""simple docstring""" import argparse import json from tqdm import tqdm def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--src_path""" , type=snake_case__ , default="""biencoder-nq-dev.json""" , help="""Path to raw DPR training data""" , ) parser.add_argument( """--evaluation_set""" , type=snake_case__ , help="""where to store parsed evaluation_set file""" , ) parser.add_argument( """--gold_data_path""" , type=snake_case__ , help="""where to store parsed gold_data_path file""" , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() with open(args.src_path , """r""" ) as src_file, open(args.evaluation_set , """w""" ) as eval_file, open( args.gold_data_path , """w""" ) as gold_file: SCREAMING_SNAKE_CASE__ = json.load(snake_case__ ) for dpr_record in tqdm(snake_case__ ): SCREAMING_SNAKE_CASE__ = dpr_record["""question"""] SCREAMING_SNAKE_CASE__ = [context["""title"""] for context in dpr_record["""positive_ctxs"""]] eval_file.write(question + """\n""" ) gold_file.write("""\t""".join(snake_case__ ) + """\n""" ) if __name__ == "__main__": main()
616
"""simple docstring""" import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase (unittest.TestCase ): @property def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = ort.SessionOptions() SCREAMING_SNAKE_CASE__ = False return options def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""" ) SCREAMING_SNAKE_CASE__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""" ) SCREAMING_SNAKE_CASE__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy""" ) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE__ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = """A red cat sitting on a park bench""" SCREAMING_SNAKE_CASE__ = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE__ = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , mask_image=__UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=1_5 , generator=__UpperCAmelCase , output_type="""np""" , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert np.abs(expected_image - image ).max() < 1e-2
616
1
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "artists_file": "artists.json", "lyrics_file": "lyrics.json", "genres_file": "genres.json", } __magic_name__ = { "artists_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json", }, "genres_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json", }, "lyrics_file": { "jukebox": "https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json", }, } __magic_name__ = { "jukebox": 512, } class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_LYRIC_TOKENS_SIZES __SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case=["v3", "v2", "v2"] , _snake_case=512 , _snake_case=5 , _snake_case="<|endoftext|>" , **_snake_case , ) -> str: """simple docstring""" UpperCAmelCase = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else unk_token super().__init__( unk_token=_snake_case , n_genres=_snake_case , version=_snake_case , max_n_lyric_tokens=_snake_case , **_snake_case , ) UpperCAmelCase = version UpperCAmelCase = max_n_lyric_tokens UpperCAmelCase = n_genres with open(_snake_case , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase = json.load(_snake_case ) with open(_snake_case , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase = json.load(_snake_case ) with open(_snake_case , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase = json.load(_snake_case ) UpperCAmelCase = R'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: UpperCAmelCase = oov.replace(R'''\-\'''' , R'''\-+\'''' ) UpperCAmelCase = regex.compile(_snake_case ) UpperCAmelCase = {v: k for k, v in self.artists_encoder.items()} UpperCAmelCase = {v: k for k, v in self.genres_encoder.items()} UpperCAmelCase = {v: k for k, v in self.lyrics_encoder.items()} @property def snake_case_ ( self ) -> str: """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def snake_case_ ( self ) -> Any: """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case ) -> List[Any]: """simple docstring""" UpperCAmelCase = [self.artists_encoder.get(_snake_case , 0 ) for artist in list_artists] for genres in range(len(_snake_case ) ): UpperCAmelCase = [self.genres_encoder.get(_snake_case , 0 ) for genre in list_genres[genres]] UpperCAmelCase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) UpperCAmelCase = [[self.lyrics_encoder.get(_snake_case , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def snake_case_ ( self , _snake_case ) -> Optional[Any]: """simple docstring""" return list(_snake_case ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , **_snake_case ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self.prepare_for_tokenization(_snake_case , _snake_case , _snake_case ) UpperCAmelCase = self._tokenize(_snake_case ) return artist, genre, lyrics def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case = False ) -> Tuple[str, str, str, Dict[str, Any]]: """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": UpperCAmelCase = artists[idx].lower() UpperCAmelCase = [genres[idx].lower()] else: UpperCAmelCase = self._normalize(artists[idx] ) + '''.v2''' UpperCAmelCase = [ self._normalize(_snake_case ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": UpperCAmelCase = regex.compile(R'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) UpperCAmelCase = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' UpperCAmelCase = {vocab[index]: index + 1 for index in range(len(_snake_case ) )} UpperCAmelCase = 0 UpperCAmelCase = len(_snake_case ) + 1 UpperCAmelCase = self.vocab UpperCAmelCase = {v: k for k, v in self.vocab.items()} UpperCAmelCase = '''''' else: UpperCAmelCase = regex.compile(R'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) UpperCAmelCase = self._run_strip_accents(_snake_case ) UpperCAmelCase = lyrics.replace('''\\''' , '''\n''' ) UpperCAmelCase = self.out_of_vocab.sub('''''' , _snake_case ), [], [] return artists, genres, lyrics def snake_case_ ( self , _snake_case ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = unicodedata.normalize('''NFD''' , _snake_case ) UpperCAmelCase = [] for char in text: UpperCAmelCase = unicodedata.category(_snake_case ) if cat == "Mn": continue output.append(_snake_case ) return "".join(_snake_case ) def snake_case_ ( self , _snake_case ) -> str: """simple docstring""" UpperCAmelCase = ( [chr(_snake_case ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )] + [chr(_snake_case ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )] + [chr(_snake_case ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )] + ['''.'''] ) UpperCAmelCase = frozenset(_snake_case ) UpperCAmelCase = re.compile(R'''_+''' ) UpperCAmelCase = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) UpperCAmelCase = pattern.sub('''_''' , _snake_case ).strip('''_''' ) return text def snake_case_ ( self , _snake_case ) -> str: """simple docstring""" return " ".join(_snake_case ) def snake_case_ ( self , _snake_case , _snake_case = None , _snake_case = False ) -> Optional[Any]: """simple docstring""" # Convert to TensorType if not isinstance(_snake_case , _snake_case ): UpperCAmelCase = TensorType(_snake_case ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf UpperCAmelCase = tf.constant UpperCAmelCase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch UpperCAmelCase = torch.tensor UpperCAmelCase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 UpperCAmelCase = jnp.array UpperCAmelCase = _is_jax else: UpperCAmelCase = np.asarray UpperCAmelCase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: UpperCAmelCase = [inputs] if not is_tensor(_snake_case ): UpperCAmelCase = as_tensor(_snake_case ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self , _snake_case , _snake_case , _snake_case="" , _snake_case="pt" ) -> BatchEncoding: """simple docstring""" UpperCAmelCase = [0, 0, 0] UpperCAmelCase = [artist] * len(self.version ) UpperCAmelCase = [genres] * len(self.version ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self.tokenize(_snake_case , _snake_case , _snake_case ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = self._convert_token_to_id(_snake_case , _snake_case , _snake_case ) UpperCAmelCase = [-INFINITY] * len(full_tokens[-1] ) UpperCAmelCase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=_snake_case ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def snake_case_ ( self , _snake_case , _snake_case = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=_snake_case ) ) UpperCAmelCase = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=_snake_case ) ) UpperCAmelCase = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=_snake_case ) ) return (artists_file, genres_file, lyrics_file) def snake_case_ ( self , _snake_case , _snake_case , _snake_case ) -> str: """simple docstring""" UpperCAmelCase = self.artists_decoder.get(_snake_case ) UpperCAmelCase = [self.genres_decoder.get(_snake_case ) for genre in genres_index] UpperCAmelCase = [self.lyrics_decoder.get(_snake_case ) for character in lyric_index] return artist, genres, lyrics
254
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor __magic_name__ = logging.get_logger(__name__) class lowercase ( A__ ): '''simple docstring''' def __init__( self , *_snake_case , **_snake_case ) -> None: """simple docstring""" warnings.warn( '''The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use SegformerImageProcessor instead.''' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
254
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def UpperCamelCase ( a ) -> YolosConfig: '''simple docstring''' __magic_name__ = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: __magic_name__ = 192 __magic_name__ = 768 __magic_name__ = 12 __magic_name__ = 3 __magic_name__ = [800, 1333] __magic_name__ = False elif yolos_name == "yolos_s_dWr": __magic_name__ = 330 __magic_name__ = 14 __magic_name__ = 6 __magic_name__ = 1320 elif "yolos_s" in yolos_name: __magic_name__ = 384 __magic_name__ = 1536 __magic_name__ = 12 __magic_name__ = 6 elif "yolos_b" in yolos_name: __magic_name__ = [800, 1344] __magic_name__ = 91 __magic_name__ = '''huggingface/label-files''' __magic_name__ = '''coco-detection-id2label.json''' __magic_name__ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) ) __magic_name__ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} __magic_name__ = idalabel __magic_name__ = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( a , a , a = False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __magic_name__ = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) __magic_name__ = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ = in_proj_weight[: config.hidden_size, :] __magic_name__ = in_proj_bias[: config.hidden_size] __magic_name__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __magic_name__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __magic_name__ = in_proj_weight[-config.hidden_size :, :] __magic_name__ = in_proj_bias[-config.hidden_size :] def UpperCamelCase ( a ) -> str: '''simple docstring''' if "backbone" in name: __magic_name__ = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: __magic_name__ = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: __magic_name__ = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: __magic_name__ = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: __magic_name__ = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: __magic_name__ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: __magic_name__ = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: __magic_name__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __magic_name__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __magic_name__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __magic_name__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __magic_name__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __magic_name__ = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: __magic_name__ = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: __magic_name__ = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: __magic_name__ = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def UpperCamelCase ( a , a ) -> dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): __magic_name__ = orig_state_dict.pop(__UpperCamelCase ) if "qkv" in key: __magic_name__ = key.split('''.''' ) __magic_name__ = int(key_split[2] ) __magic_name__ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: __magic_name__ = val[:dim, :] __magic_name__ = val[ dim : dim * 2, : ] __magic_name__ = val[-dim:, :] else: __magic_name__ = val[:dim] __magic_name__ = val[dim : dim * 2] __magic_name__ = val[-dim:] else: __magic_name__ = val return orig_state_dict def UpperCamelCase ( ) -> torch.Tensor: '''simple docstring''' __magic_name__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __magic_name__ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( a , a , a , a = False ) -> List[str]: '''simple docstring''' __magic_name__ = get_yolos_config(__UpperCamelCase ) # load original state_dict __magic_name__ = torch.load(__UpperCamelCase , map_location='''cpu''' )['''model'''] # load 🤗 model __magic_name__ = YolosForObjectDetection(__UpperCamelCase ) model.eval() __magic_name__ = convert_state_dict(__UpperCamelCase , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by YolosImageProcessor __magic_name__ = 800 if yolos_name != '''yolos_ti''' else 512 __magic_name__ = YolosImageProcessor(format='''coco_detection''' , size=__UpperCamelCase ) __magic_name__ = image_processor(images=prepare_img() , return_tensors='''pt''' ) __magic_name__ = model(**__UpperCamelCase ) __magic_name__ , __magic_name__ = outputs.logits, outputs.pred_boxes __magic_name__ , __magic_name__ = None, None if yolos_name == "yolos_ti": __magic_name__ = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) __magic_name__ = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": __magic_name__ = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) __magic_name__ = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": __magic_name__ = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) __magic_name__ = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": __magic_name__ = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) __magic_name__ = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": __magic_name__ = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) __magic_name__ = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(F'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] , __UpperCamelCase , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , __UpperCamelCase , atol=1e-4 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(F'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: __magic_name__ = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) __magic_name__ = model_mapping[yolos_name] image_processor.push_to_hub(__UpperCamelCase , organization='''hustvl''' ) model.push_to_hub(__UpperCamelCase , organization='''hustvl''' ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\'," " \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowerCAmelCase = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
708
'''simple docstring''' from __future__ import annotations def UpperCamelCase ( a ) -> bool: '''simple docstring''' return len(set(a ) ) == len(a ) if __name__ == "__main__": import doctest doctest.testmod()
245
0
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def _UpperCamelCase ( ) -> None: """simple docstring""" print("Making key files..." ) make_key_files("rsa" , 1024 ) print("Key files generation successful." ) def _UpperCamelCase ( UpperCamelCase ) -> tuple[tuple[int, int], tuple[int, int]]: """simple docstring""" print("Generating prime p..." ) __UpperCAmelCase : Any = rabinMiller.generate_large_prime(UpperCamelCase ) print("Generating prime q..." ) __UpperCAmelCase : Any = rabinMiller.generate_large_prime(UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: __UpperCAmelCase : Union[str, Any] = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(UpperCamelCase , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) __UpperCAmelCase : Optional[Any] = cryptoMath.find_mod_inverse(UpperCamelCase , (p - 1) * (q - 1) ) __UpperCAmelCase : Any = (n, e) __UpperCAmelCase : List[str] = (n, d) return (public_key, private_key) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> None: """simple docstring""" if os.path.exists(f"{name}_pubkey.txt" ) or os.path.exists(f"{name}_privkey.txt" ): print("\nWARNING:" ) print( f"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n" "Use a different name or delete these files and re-run this program." ) sys.exit() __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = generate_key(UpperCamelCase ) print(f"\nWriting public key to file {name}_pubkey.txt..." ) with open(f"{name}_pubkey.txt" , "w" ) as out_file: out_file.write(f"{key_size},{public_key[0]},{public_key[1]}" ) print(f"Writing private key to file {name}_privkey.txt..." ) with open(f"{name}_privkey.txt" , "w" ) as out_file: out_file.write(f"{key_size},{private_key[0]},{private_key[1]}" ) if __name__ == "__main__": main()
77
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A = logging.get_logger(__name__) A = {"""vocab_file""": """spiece.model"""} A = { """vocab_file""": { """bert_for_seq_generation""": ( """https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model""" ), } } A = {"""bert_for_seq_generation""": 512} class a__ ( __magic_name__ ): lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = [] lowercase_ = ["input_ids", "attention_mask"] def __init__( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str]="<s>" , UpperCamelCase_ : Optional[Any]="</s>" , UpperCamelCase_ : Optional[int]="<unk>" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : List[Any]="<::::>" , UpperCamelCase_ : Optional[Dict[str, Any]] = None , **UpperCamelCase_ : List[Any] , ): """simple docstring""" __UpperCAmelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __UpperCAmelCase : Dict = vocab_file __UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(UpperCamelCase_) @property def a_ ( self : List[str]): """simple docstring""" return self.sp_model.get_piece_size() def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : int = {self.convert_ids_to_tokens(UpperCamelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : int): """simple docstring""" __UpperCAmelCase : Optional[int] = self.__dict__.copy() __UpperCAmelCase : List[Any] = None return state def __setstate__( self : Optional[Any] , UpperCamelCase_ : Optional[int]): """simple docstring""" __UpperCAmelCase : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs"): __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def a_ ( self : Any , UpperCamelCase_ : str): """simple docstring""" return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_) def a_ ( self : Optional[Any] , UpperCamelCase_ : Optional[int]): """simple docstring""" return self.sp_model.piece_to_id(UpperCamelCase_) def a_ ( self : Tuple , UpperCamelCase_ : int): """simple docstring""" __UpperCAmelCase : int = self.sp_model.IdToPiece(UpperCamelCase_) return token def a_ ( self : Dict , UpperCamelCase_ : Optional[Any]): """simple docstring""" __UpperCAmelCase : int = [] __UpperCAmelCase : Tuple = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase_) + token __UpperCAmelCase : List[Any] = [] else: current_sub_tokens.append(UpperCamelCase_) out_string += self.sp_model.decode(UpperCamelCase_) return out_string.strip() def a_ ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None): """simple docstring""" if not os.path.isdir(UpperCamelCase_): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __UpperCAmelCase : Tuple = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCamelCase_) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , UpperCamelCase_) elif not os.path.isfile(self.vocab_file): with open(UpperCamelCase_ , "wb") as fi: __UpperCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_) return (out_vocab_file,)
77
1
'''simple docstring''' import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness _lowercase = """\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } """ _lowercase = """\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). """ _lowercase = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric(\"code_eval\") >>> test_cases = [\"assert add(2,3)==5\"] >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {'pass@1': 0.5, 'pass@2': 1.0} """ _lowercase = """ ################################################################################ !!!WARNING!!! ################################################################################ The \"code_eval\" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper \"Evaluating Large Language Models Trained on Code\" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this with: >>> import os >>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\" ################################################################################\ """ _lowercase = """The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.""" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def _lowercase ( self , _lowercase , _lowercase , _lowercase=[1, 10, 100] , _lowercase=4 , _lowercase=3.0 ): """simple docstring""" if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""" ) with ThreadPoolExecutor(max_workers=UpperCAmelCase__ ) as executor: _lowerCAmelCase = [] _lowerCAmelCase = Counter() _lowerCAmelCase = 0 _lowerCAmelCase = defaultdict(UpperCAmelCase__ ) for task_id, (candidates, test_case) in enumerate(zip(UpperCAmelCase__ , UpperCAmelCase__ ) ): for candidate in candidates: _lowerCAmelCase = candidate + '''\n''' + test_case _lowerCAmelCase = (test_program, timeout, task_id, completion_id[task_id]) _lowerCAmelCase = executor.submit(UpperCAmelCase__ , *UpperCAmelCase__ ) futures.append(UpperCAmelCase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(UpperCAmelCase__ ): _lowerCAmelCase = future.result() results[result["task_id"]].append((result["""completion_id"""], result) ) _lowerCAmelCase = [], [] for result in results.values(): result.sort() _lowerCAmelCase = [r[1]['''passed'''] for r in result] total.append(len(UpperCAmelCase__ ) ) correct.append(sum(UpperCAmelCase__ ) ) _lowerCAmelCase = np.array(UpperCAmelCase__ ) _lowerCAmelCase = np.array(UpperCAmelCase__ ) _lowerCAmelCase = k _lowerCAmelCase = {F'pass@{k}': estimate_pass_at_k(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A (__lowerCamelCase :int , __lowerCamelCase :List[str] , __lowerCamelCase :List[Any] ): def estimator(__lowerCamelCase :int , __lowerCamelCase :int , __lowerCamelCase :int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(__lowerCamelCase , __lowerCamelCase ): _lowerCAmelCase = itertools.repeat(__lowerCamelCase , len(__lowerCamelCase ) ) else: assert len(__lowerCamelCase ) == len(__lowerCamelCase ) _lowerCAmelCase = iter(__lowerCamelCase ) return np.array([estimator(int(__lowerCamelCase ) , int(__lowerCamelCase ) , __lowerCamelCase ) for n, c in zip(__lowerCamelCase , __lowerCamelCase )] )
700
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule _lowercase = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
162
0
from math import ceil, sqrt def snake_case ( lowerCamelCase = 1_000_000 ): '''simple docstring''' __lowercase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __lowercase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __lowercase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'''{solution() = }''')
80
def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [[] for _ in range(lowerCamelCase )] __lowercase = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1 or len(lowerCamelCase ) <= key: return input_string for position, character in enumerate(lowerCamelCase ): __lowercase = position % (lowest * 2) # puts it in bounds __lowercase = min(lowerCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(lowerCamelCase ) __lowercase = ["""""".join(lowerCamelCase ) for row in temp_grid] __lowercase = """""".join(lowerCamelCase ) return output_string def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [] __lowercase = key - 1 if key <= 0: raise ValueError("""Height of grid can't be 0 or negative""" ) if key == 1: return input_string __lowercase = [[] for _ in range(lowerCamelCase )] # generates template for position in range(len(lowerCamelCase ) ): __lowercase = position % (lowest * 2) # puts it in bounds __lowercase = min(lowerCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("""*""" ) __lowercase = 0 for row in temp_grid: # fills in the characters __lowercase = input_string[counter : counter + len(lowerCamelCase )] grid.append(list(lowerCamelCase ) ) counter += len(lowerCamelCase ) __lowercase = """""" # reads as zigzag for position in range(len(lowerCamelCase ) ): __lowercase = position % (lowest * 2) # puts it in bounds __lowercase = min(lowerCamelCase , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = {} for key_guess in range(1 , len(lowerCamelCase ) ): # tries every key __lowercase = decrypt(lowerCamelCase , lowerCamelCase ) return results if __name__ == "__main__": import doctest doctest.testmod()
80
1
from math import factorial def _lowerCamelCase ( A_ : int = 1_0_0 ) -> int: '''simple docstring''' return sum(int(A_ ) for x in str(factorial(A_ ) ) ) if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
582
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _lowerCamelCase ( A_ : Any ) -> str: '''simple docstring''' return 1 / (1 + np.exp(-z )) def _lowerCamelCase ( A_ : Optional[Any] , A_ : int ) -> str: '''simple docstring''' return (-y * np.log(A_ ) - (1 - y) * np.log(1 - h )).mean() def _lowerCamelCase ( A_ : Any , A_ : Union[str, Any] , A_ : str ) -> Dict: '''simple docstring''' UpperCamelCase__ : Dict =np.dot(A_ , A_ ) return np.sum(y * scores - np.log(1 + np.exp(A_ ) ) ) def _lowerCamelCase ( A_ : Optional[int] , A_ : List[str] , A_ : Any , A_ : Dict=7_0_0_0_0 ) -> Dict: '''simple docstring''' UpperCamelCase__ : Tuple =np.zeros(x.shape[1] ) for iterations in range(A_ ): UpperCamelCase__ : List[Any] =np.dot(A_ , A_ ) UpperCamelCase__ : Optional[int] =sigmoid_function(A_ ) UpperCamelCase__ : Optional[Any] =np.dot(x.T , h - y ) / y.size UpperCamelCase__ : Optional[int] =theta - alpha * gradient # updating the weights UpperCamelCase__ : Union[str, Any] =np.dot(A_ , A_ ) UpperCamelCase__ : Any =sigmoid_function(A_ ) UpperCamelCase__ : Dict =cost_function(A_ , A_ ) if iterations % 1_0_0 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __UpperCAmelCase = datasets.load_iris() __UpperCAmelCase = iris.data[:, :2] __UpperCAmelCase = (iris.target != 0) * 1 __UpperCAmelCase = 0.1 __UpperCAmelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print("""theta: """, theta) # printing the theta i.e our weights vector def _lowerCamelCase ( A_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return sigmoid_function( np.dot(A_ , A_ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") ((__UpperCAmelCase) , (__UpperCAmelCase)) = (x[:, 0].min(), x[:, 0].max()) ((__UpperCAmelCase) , (__UpperCAmelCase)) = (x[:, 1].min(), x[:, 1].max()) ((__UpperCAmelCase) , (__UpperCAmelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __UpperCAmelCase = np.c_[xxa.ravel(), xxa.ravel()] __UpperCAmelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
582
1
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =StableDiffusionControlNetImgaImgPipeline __UpperCamelCase =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} __UpperCamelCase =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCamelCase =IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) __UpperCamelCase =IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase ( self : Any ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) SCREAMING_SNAKE_CASE = CLIPTextModel(lowerCamelCase_ ) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase ( self : Tuple , snake_case__ : Dict , snake_case__ : Tuple=0 ): """simple docstring""" if str(lowerCamelCase_ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=lowerCamelCase_ , device=torch.device(lowerCamelCase_ ) , ) SCREAMING_SNAKE_CASE = floats_tensor(control_image.shape , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((6_4, 6_4) ) SCREAMING_SNAKE_CASE = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def UpperCamelCase ( self : List[str] ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase ( self : Tuple ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =StableDiffusionControlNetImgaImgPipeline __UpperCamelCase =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} __UpperCamelCase =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCamelCase =frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def UpperCamelCase ( self : str ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=3_2 , ) torch.manual_seed(0 ) def init_weights(snake_case__ : int ): if isinstance(lowerCamelCase_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) SCREAMING_SNAKE_CASE = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(lowerCamelCase_ ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ControlNetModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=3_2 , conditioning_embedding_out_channels=(1_6, 3_2) , ) controlneta.controlnet_down_blocks.apply(lowerCamelCase_ ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=lowerCamelCase_ , set_alpha_to_one=lowerCamelCase_ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) SCREAMING_SNAKE_CASE = CLIPTextModel(lowerCamelCase_ ) SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE = MultiControlNetModel([controlneta, controlneta] ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCamelCase ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Union[str, Any]=0 ): """simple docstring""" if str(lowerCamelCase_ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = [ randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=lowerCamelCase_ , device=torch.device(lowerCamelCase_ ) , ), randn_tensor( (1, 3, 3_2 * controlnet_embedder_scale_factor, 3_2 * controlnet_embedder_scale_factor) , generator=lowerCamelCase_ , device=torch.device(lowerCamelCase_ ) , ), ] SCREAMING_SNAKE_CASE = floats_tensor(control_image[0].shape , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(lowerCamelCase_ ) ).convert('RGB' ).resize((6_4, 6_4) ) SCREAMING_SNAKE_CASE = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE = 10.0 SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE = steps SCREAMING_SNAKE_CASE = scale SCREAMING_SNAKE_CASE = pipe(**lowerCamelCase_ )[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE = steps SCREAMING_SNAKE_CASE = scale SCREAMING_SNAKE_CASE = pipe(**lowerCamelCase_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE = steps SCREAMING_SNAKE_CASE = scale SCREAMING_SNAKE_CASE = pipe(**lowerCamelCase_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE = steps SCREAMING_SNAKE_CASE = scale SCREAMING_SNAKE_CASE = pipe(**lowerCamelCase_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase ( self : str ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def UpperCamelCase ( self : Optional[int] ): """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def UpperCamelCase ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = self.pipeline_class(**lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(lowerCamelCase_ ) except NotImplementedError: pass @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) SCREAMING_SNAKE_CASE = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=lowerCamelCase_ , controlnet=lowerCamelCase_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCamelCase_ ) SCREAMING_SNAKE_CASE = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE = 'evil space-punk bird' SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((5_1_2, 5_1_2) ) SCREAMING_SNAKE_CASE = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((5_1_2, 5_1_2) ) SCREAMING_SNAKE_CASE = pipe( lowerCamelCase_ , lowerCamelCase_ , control_image=lowerCamelCase_ , generator=lowerCamelCase_ , output_type='np' , num_inference_steps=5_0 , strength=0.6 , ) SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) SCREAMING_SNAKE_CASE = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9E-2
439
def _lowercase ( a__ : list ) -> list: """simple docstring""" if any(not isinstance(a__ , a__ ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(a__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(a__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
147
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : List[str] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[str] = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
720
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ : str = logging.get_logger(__name__) snake_case_ : int = "▁" snake_case_ : str = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} snake_case_ : int = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } snake_case_ : Optional[Any] = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } snake_case_ : Dict = { "ernie-m-base": 5_14, "ernie-m-large": 5_14, } snake_case_ : Any = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class __a (lowerCamelCase ): __a : List[str] = ["input_ids"] __a : Union[str, Any] = VOCAB_FILES_NAMES __a : Tuple = PRETRAINED_INIT_CONFIGURATION __a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __a : Union[str, Any] = RESOURCE_FILES_NAMES def __init__( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : int=None , __magic_name__ : str=False , __magic_name__ : int="utf8" , __magic_name__ : Optional[int]="[UNK]" , __magic_name__ : Dict="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : str="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Union[str, Any] , ) -> None: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , vocab_file=__magic_name__ , encoding=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) UpperCAmelCase_ : Optional[Any] = do_lower_case UpperCAmelCase_ : List[str] = sentencepiece_model_ckpt UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__magic_name__ ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCAmelCase_ : List[Any] = self.load_vocab(filepath=__magic_name__ ) else: UpperCAmelCase_ : str = {self.sp_model.id_to_piece(__magic_name__ ): id for id in range(self.sp_model.get_piece_size() )} UpperCAmelCase_ : int = {v: k for k, v in self.vocab.items()} def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Any ) -> Any: """simple docstring""" if text is None: return None UpperCAmelCase_ : str = self.tokenize(__magic_name__ ) UpperCAmelCase_ , UpperCAmelCase_ : str = '''''', [] for i, ch in enumerate(__magic_name__ ): if ch in self.SP_CHAR_MAPPING: UpperCAmelCase_ : Optional[int] = self.SP_CHAR_MAPPING.get(__magic_name__ ) else: UpperCAmelCase_ : Union[str, Any] = unicodedata.normalize('''NFKC''' , __magic_name__ ) if self.is_whitespace(__magic_name__ ): continue normalized_text += ch char_mapping.extend([i] * len(__magic_name__ ) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = normalized_text, [], 0 if self.do_lower_case: UpperCAmelCase_ : Optional[int] = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCAmelCase_ : Tuple = token[1:] UpperCAmelCase_ : int = text[offset:].index(__magic_name__ ) + offset UpperCAmelCase_ : Optional[int] = start + len(__magic_name__ ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCAmelCase_ : int = end return token_mapping @property def UpperCAmelCase__ ( self : Any ) -> Any: """simple docstring""" return len(self.vocab ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : str ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.__dict__.copy() UpperCAmelCase_ : Optional[Any] = None return state def __setstate__( self : str , __magic_name__ : Any ) -> Dict: """simple docstring""" UpperCAmelCase_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase_ : int = {} UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Any ) -> List[str]: """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__magic_name__ , __magic_name__ ) for c in text) ) def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Any=False , __magic_name__ : List[str]=64 , __magic_name__ : List[str]=0.1 ) -> List[str]: """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: UpperCAmelCase_ : Dict = True if self.sp_model_kwargs.get('''alpha''' ) is not None: UpperCAmelCase_ : Union[str, Any] = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: UpperCAmelCase_ : Any = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: UpperCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(__magic_name__ ) else: UpperCAmelCase_ : Dict = self.sp_model.SampleEncodeAsPieces(__magic_name__ , __magic_name__ , __magic_name__ ) UpperCAmelCase_ : List[Any] = [] for pi, piece in enumerate(__magic_name__ ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__magic_name__ ) and pi != 0: new_pieces.append(__magic_name__ ) continue else: continue UpperCAmelCase_ : List[str] = 0 for i, chunk in enumerate(__magic_name__ ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__magic_name__ ) or self.is_punct(__magic_name__ ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__magic_name__ ) UpperCAmelCase_ : List[Any] = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase_ : List[str] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCAmelCase_ : str = i if len(__magic_name__ ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip() return out_string def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCAmelCase_ : str = self.convert_ids_to_tokens(__magic_name__ ) UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip() return out_string def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[Any] ) -> List[Any]: """simple docstring""" return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.reverse_vocab.get(__magic_name__ , self.unk_token ) def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Union[str, Any]=None ) -> Any: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id] UpperCAmelCase_ : List[Any] = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None ) -> int: """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]=False ) -> Optional[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1] return [1] + ([0] * len(__magic_name__ )) + [1] def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(__magic_name__ ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__magic_name__ ) + 1) + [1] * (len(__magic_name__ ) + 3) def UpperCAmelCase__ ( self : Dict , __magic_name__ : str ) -> Tuple: """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] ) -> str: """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] ) -> Dict: """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__magic_name__ ) == 1: UpperCAmelCase_ : Optional[Any] = unicodedata.category(__magic_name__ ) if cat == "Zs": return True return False def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> Any: """simple docstring""" UpperCAmelCase_ : Optional[Any] = {} with io.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__magic_name__ ): UpperCAmelCase_ : List[Any] = line.rstrip('''\n''' ) UpperCAmelCase_ : Dict = int(__magic_name__ ) return token_to_idx def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = 0 if os.path.isdir(__magic_name__ ): UpperCAmelCase_ : Any = os.path.join( __magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCAmelCase_ : List[str] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __magic_name__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCAmelCase_ : Dict = token_index writer.write(token + '''\n''' ) index += 1 UpperCAmelCase_ : Union[str, Any] = os.path.join(__magic_name__ , '''sentencepiece.bpe.model''' ) with open(__magic_name__ , '''wb''' ) as fi: UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (vocab_file,)
644
0
'''simple docstring''' from __future__ import annotations def __a ( A__ , A__ ) -> list[tuple[int, int]]: lowerCAmelCase , lowerCAmelCase = position lowerCAmelCase = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCAmelCase = [] for position in positions: lowerCAmelCase , lowerCAmelCase = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(A__ ) return permissible_positions def __a ( A__ ) -> bool: return not any(elem == 0 for row in board for elem in row ) def __a ( A__ , A__ , A__ ) -> bool: if is_complete(A__ ): return True for position in get_valid_pos(A__ , len(A__ ) ): lowerCAmelCase , lowerCAmelCase = position if board[y][x] == 0: lowerCAmelCase = curr + 1 if open_knight_tour_helper(A__ , A__ , curr + 1 ): return True lowerCAmelCase = 0 return False def __a ( A__ ) -> list[list[int]]: lowerCAmelCase = [[0 for i in range(A__ )] for j in range(A__ )] for i in range(A__ ): for j in range(A__ ): lowerCAmelCase = 1 if open_knight_tour_helper(A__ , (i, j) , 1 ): return board lowerCAmelCase = 0 lowerCAmelCase = f"Open Kight Tour cannot be performed on a board of size {n}" raise ValueError(A__ ) if __name__ == "__main__": import doctest doctest.testmod()
649
'''simple docstring''' def __a ( A__ , A__ ) -> int: return int((input_a, input_a).count(0 ) == 0 ) def __a ( ) -> None: assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
649
1
"""simple docstring""" from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = False ,lowerCamelCase_ = False ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> Dict: A = path_or_paths A = split if split or isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else """train""" A = features A = cache_dir A = keep_in_memory A = streaming A = num_proc A = kwargs @abstractmethod def UpperCamelCase__ ( self ) -> Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,lowerCamelCase_ = False ,lowerCamelCase_ = False ,lowerCamelCase_ = None ,**lowerCamelCase_ ,) -> int: A = features A = cache_dir A = keep_in_memory A = streaming A = num_proc A = kwargs @abstractmethod def UpperCamelCase__ ( self ) -> Union[Dataset, IterableDataset]: pass
716
"""simple docstring""" import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ="https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase ={ "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def _A ( _a : Optional[Any] ): """simple docstring""" if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 1_0: A = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" ) elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 1_0: A = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" ) elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 1_0: A = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" ) elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 1_0: A = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" ) if "conditioner_blocks.0." in key: A = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" ) if "prime_prior" in key: A = key.replace("""prime_prior""" , """encoder""" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: A = key.replace(""".emb.""" , """.""" ) if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(""".k""" , """.codebook""" ) if "y_emb." in key: return key.replace("""y_emb.""" , """metadata_embedding.""" ) if "x_emb.emb." in key: A = key.replace("""0.x_emb.emb""" , """embed_tokens""" ) if "prime_state_ln" in key: return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" ) if ".ln" in key: return key.replace(""".ln""" , """.layer_norm""" ) if "_ln" in key: return key.replace("""_ln""" , """_layer_norm""" ) if "prime_state_proj" in key: return key.replace("""prime_state_proj""" , """encoder.proj_in""" ) if "prime_x_out" in key: return key.replace("""prime_x_out""" , """encoder.lm_head""" ) if "prior.x_out" in key: return key.replace("""x_out""" , """fc_proj_out""" ) if "x_emb" in key: return key.replace("""x_emb""" , """embed_tokens""" ) return key def _A ( _a : Union[str, Any] , _a : Union[str, Any] , _a : Union[str, Any] , _a : List[Any] ): """simple docstring""" A = {} import re A = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) A = re.compile( r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) A = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) A = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" ) A = re.compile( r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) A = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" ) A = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" ) A = re.compile( r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" ) A = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_a ): A = re_encoder_block_conv_in.match(_a ) A = regex_match.groups() A = int(groups[2] ) * 2 + int(groups[3] ) A = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}' A = re_encoder_block_conv_in.sub(_a , _a ) elif re_encoder_block_resnet.fullmatch(_a ): A = re_encoder_block_resnet.match(_a ) A = regex_match.groups() A = int(groups[2] ) * 2 + int(groups[3] ) A = {"""1""": 1, """3""": 2}[groups[-2]] A = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.' A = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' A = prefix + resnet_block A = re_encoder_block_resnet.sub(_a , _a ) elif re_encoder_block_proj_out.fullmatch(_a ): A = re_encoder_block_proj_out.match(_a ) A = regex_match.groups() A = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}' A = re_encoder_block_proj_out.sub(_a , _a ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_a ): A = re_decoder_block_conv_out.match(_a ) A = regex_match.groups() A = int(groups[2] ) * 2 + int(groups[3] ) - 2 A = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}' A = re_decoder_block_conv_out.sub(_a , _a ) elif re_decoder_block_resnet.fullmatch(_a ): A = re_decoder_block_resnet.match(_a ) A = regex_match.groups() A = int(groups[2] ) * 2 + int(groups[3] ) - 2 A = {"""1""": 1, """3""": 2}[groups[-2]] A = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.' A = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' A = prefix + resnet_block A = re_decoder_block_resnet.sub(_a , _a ) elif re_decoder_block_proj_in.fullmatch(_a ): A = re_decoder_block_proj_in.match(_a ) A = regex_match.groups() A = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}' A = re_decoder_block_proj_in.sub(_a , _a ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_a ): A = re_prior_cond_conv_out.match(_a ) A = regex_match.groups() A = int(groups[1] ) * 2 + int(groups[2] ) - 2 A = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}' A = re_prior_cond_conv_out.sub(_a , _a ) elif re_prior_cond_resnet.fullmatch(_a ): A = re_prior_cond_resnet.match(_a ) A = regex_match.groups() A = int(groups[1] ) * 2 + int(groups[2] ) - 2 A = {"""1""": 1, """3""": 2}[groups[-2]] A = f'conditioner_blocks.upsampler.upsample_block.{block_index}.' A = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}' A = prefix + resnet_block A = re_prior_cond_resnet.sub(_a , _a ) elif re_prior_cond_proj_in.fullmatch(_a ): A = re_prior_cond_proj_in.match(_a ) A = regex_match.groups() A = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}' A = re_prior_cond_proj_in.sub(_a , _a ) # keep original key else: A = original_key A = replace_key(_a ) if f'{key_prefix}.{key}' not in model_state_dict or key is None: print(f'failed converting {original_key} to {key}, does not match' ) # handle missmatched shape elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape: A = model_state_dict[f'{key_prefix}.{key}'] print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' ) A = original_key A = original_key A = value return new_dict @torch.no_grad() def _A ( _a : Optional[Any]=None , _a : str=None ): """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ): A = requests.get(f'{PREFIX}{file}' , allow_redirects=_a ) os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=_a ) open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , """wb""" ).write(r.content ) A = MODEL_MAPPING[model_name.split("""/""" )[-1]] A = JukeboxConfig.from_pretrained(_a ) A = JukeboxModel(_a ) A = [] A = {} for i, dict_name in enumerate(_a ): A = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )["""model"""] A = {} for k in old_dic.keys(): if k.endswith(""".b""" ): A = old_dic[k] elif k.endswith(""".w""" ): A = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: A = old_dic[k] else: A = old_dic[k] A = """vqvae""" if i == 0 else f'priors.{3 - i}' A = fix_jukebox_keys(_a , model.state_dict() , _a , _a ) weight_dict.append(_a ) A = weight_dict.pop(0 ) model.vqvae.load_state_dict(_a ) for i in range(len(_a ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_a ).mkdir(exist_ok=_a ) with open(f'{pytorch_dump_folder_path}/mapping.json' , """w""" ) as txtfile: json.dump(_a , _a ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_a ) return weight_dict if __name__ == "__main__": UpperCAmelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase =parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
255
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable _a : int = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Union[str, Any] = ["DPTFeatureExtractor"] _a : List[str] = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys _a : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
56
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case_ : '''simple docstring''' def __init__( self, A_, A_=13, A_=[30, 30], A_=2, A_=3, A_=True, A_=True, A_=32, A_=5, A_=4, A_=37, A_="gelu", A_=0.1, A_=0.1, A_=10, A_=0.02, A_=3, A_=None, A_=8, A_=10, ) -> List[str]: UpperCAmelCase__ =parent UpperCAmelCase__ =batch_size UpperCAmelCase__ =image_size UpperCAmelCase__ =patch_size UpperCAmelCase__ =num_channels UpperCAmelCase__ =is_training UpperCAmelCase__ =use_labels UpperCAmelCase__ =hidden_size UpperCAmelCase__ =num_hidden_layers UpperCAmelCase__ =num_attention_heads UpperCAmelCase__ =intermediate_size UpperCAmelCase__ =hidden_act UpperCAmelCase__ =hidden_dropout_prob UpperCAmelCase__ =attention_probs_dropout_prob UpperCAmelCase__ =type_sequence_label_size UpperCAmelCase__ =initializer_range UpperCAmelCase__ =num_labels UpperCAmelCase__ =scope UpperCAmelCase__ =n_targets UpperCAmelCase__ =num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens UpperCAmelCase__ =(image_size[1] // patch_size) * (image_size[0] // patch_size) UpperCAmelCase__ =num_patches + 1 + self.num_detection_tokens def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase__ =floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) UpperCAmelCase__ =None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) UpperCAmelCase__ =[] for i in range(self.batch_size ): UpperCAmelCase__ ={} UpperCAmelCase__ =torch.randint( high=self.num_labels, size=(self.n_targets,), device=A_ ) UpperCAmelCase__ =torch.rand(self.n_targets, 4, device=A_ ) labels.append(A_ ) UpperCAmelCase__ =self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ) -> Dict: return YolosConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=A_, initializer_range=self.initializer_range, num_detection_tokens=self.num_detection_tokens, num_labels=self.num_labels, ) def __UpperCAmelCase ( self, A_, A_, A_ ) -> Tuple: UpperCAmelCase__ =YolosModel(config=A_ ) model.to(A_ ) model.eval() UpperCAmelCase__ =model(A_ ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __UpperCAmelCase ( self, A_, A_, A_ ) -> Union[str, Any]: UpperCAmelCase__ =YolosForObjectDetection(A_ ) model.to(A_ ) model.eval() UpperCAmelCase__ =model(pixel_values=A_ ) UpperCAmelCase__ =model(A_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4) ) UpperCAmelCase__ =model(pixel_values=A_, labels=A_ ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape, (self.batch_size, self.num_detection_tokens, 4) ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase__ =self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ =config_and_inputs UpperCAmelCase__ ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case_ ( a, a, unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () __UpperCamelCase = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def __UpperCAmelCase ( self, A_, A_, A_=False ) -> Dict: UpperCAmelCase__ =super()._prepare_for_class(A_, A_, return_labels=A_ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": UpperCAmelCase__ =[] for i in range(self.model_tester.batch_size ): UpperCAmelCase__ ={} UpperCAmelCase__ =torch.ones( size=(self.model_tester.n_targets,), device=A_, dtype=torch.long ) UpperCAmelCase__ =torch.ones( self.model_tester.n_targets, 4, device=A_, dtype=torch.float ) labels.append(A_ ) UpperCAmelCase__ =labels return inputs_dict def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase__ =YolosModelTester(self ) UpperCAmelCase__ =ConfigTester(self, config_class=A_, has_text_modality=A_, hidden_size=37 ) def __UpperCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self ) -> Union[str, Any]: # YOLOS does not use inputs_embeds pass def __UpperCAmelCase ( self ) -> Any: UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ =model_class(A_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCAmelCase__ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_, nn.Linear ) ) def __UpperCAmelCase ( self ) -> str: UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ =model_class(A_ ) UpperCAmelCase__ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ =[*signature.parameters.keys()] UpperCAmelCase__ =["pixel_values"] self.assertListEqual(arg_names[:1], A_ ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ =True # in YOLOS, the seq_len is different UpperCAmelCase__ =self.model_tester.expected_seq_len for model_class in self.all_model_classes: UpperCAmelCase__ =True UpperCAmelCase__ =False UpperCAmelCase__ =True UpperCAmelCase__ =model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCAmelCase__ =model(**self._prepare_for_class(A_, A_ ) ) UpperCAmelCase__ =outputs.attentions self.assertEqual(len(A_ ), self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ =True UpperCAmelCase__ =model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCAmelCase__ =model(**self._prepare_for_class(A_, A_ ) ) UpperCAmelCase__ =outputs.attentions self.assertEqual(len(A_ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) UpperCAmelCase__ =len(A_ ) # Check attention is always last and order is fine UpperCAmelCase__ =True UpperCAmelCase__ =True UpperCAmelCase__ =model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCAmelCase__ =model(**self._prepare_for_class(A_, A_ ) ) UpperCAmelCase__ =1 self.assertEqual(out_len + added_hidden_states, len(A_ ) ) UpperCAmelCase__ =outputs.attentions self.assertEqual(len(A_ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def __UpperCAmelCase ( self ) -> List[str]: def check_hidden_states_output(A_, A_, A_ ): UpperCAmelCase__ =model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCAmelCase__ =model(**self._prepare_for_class(A_, A_ ) ) UpperCAmelCase__ =outputs.hidden_states UpperCAmelCase__ =getattr( self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(A_ ), A_ ) # YOLOS has a different seq_length UpperCAmelCase__ =self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ =True check_hidden_states_output(A_, A_, A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ =True check_hidden_states_output(A_, A_, A_ ) def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*A_ ) @slow def __UpperCAmelCase ( self ) -> Any: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ =YolosModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class snake_case_ ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ) -> Any: return AutoImageProcessor.from_pretrained("hustvl/yolos-small" ) if is_vision_available() else None @slow def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase__ =YolosForObjectDetection.from_pretrained("hustvl/yolos-small" ).to(A_ ) UpperCAmelCase__ =self.default_image_processor UpperCAmelCase__ =prepare_img() UpperCAmelCase__ =image_processor(images=A_, return_tensors="pt" ).to(A_ ) # forward pass with torch.no_grad(): UpperCAmelCase__ =model(inputs.pixel_values ) # verify outputs UpperCAmelCase__ =torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape, A_ ) UpperCAmelCase__ =torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]], device=A_, ) UpperCAmelCase__ =torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]], device=A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], A_, atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], A_, atol=1E-4 ) ) # verify postprocessing UpperCAmelCase__ =image_processor.post_process_object_detection( A_, threshold=0.3, target_sizes=[image.size[::-1]] )[0] UpperCAmelCase__ =torch.tensor([0.99_94, 0.97_90, 0.99_64, 0.99_72, 0.98_61] ).to(A_ ) UpperCAmelCase__ =[75, 75, 17, 63, 17] UpperCAmelCase__ =torch.tensor([3_35.06_09, 79.38_48, 3_75.42_16, 1_87.24_95] ).to(A_ ) self.assertEqual(len(results["scores"] ), 5 ) self.assertTrue(torch.allclose(results["scores"], A_, atol=1E-4 ) ) self.assertSequenceEqual(results["labels"].tolist(), A_ ) self.assertTrue(torch.allclose(results["boxes"][0, :], A_ ) )
625
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCamelCase : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : int = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys UpperCamelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
715
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf UpperCamelCase : Optional[Any] = logging.get_logger(__name__) @dataclass class lowerCamelCase__ ( UpperCAmelCase_ ): lowerCAmelCase = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self : str , **_lowercase : Union[str, Any] ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: A = deprecated_arg[3:] A = not kwargs.pop(_lowercase ) logger.warning( f'{deprecated_arg} is depreciated. Please use --no-{positive_arg} or' f' {positive_arg}={kwargs[positive_arg]}' ) A = kwargs.pop('tpu_name' , self.tpu_name ) A = kwargs.pop('device_idx' , self.device_idx ) A = kwargs.pop('eager_mode' , self.eager_mode ) A = kwargs.pop('use_xla' , self.use_xla ) super().__init__(**_lowercase ) lowerCAmelCase = field( default=UpperCAmelCase_ , metadata={"""help""": """Name of TPU"""} , ) lowerCAmelCase = field( default=0 , metadata={"""help""": """CPU / GPU device index. Defaults to 0."""} , ) lowerCAmelCase = field(default=UpperCAmelCase_ , metadata={"""help""": """Benchmark models in eager model."""} ) lowerCAmelCase = field( default=UpperCAmelCase_ , metadata={ """help""": """Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.""" } , ) @cached_property def __a ( self : Optional[Any] ): requires_backends(self , ['tf'] ) A = None if self.tpu: try: if self.tpu_name: A = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: A = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: A = None return tpu @cached_property def __a ( self : Dict ): requires_backends(self , ['tf'] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) A = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU' ) A = tf.distribute.OneDeviceStrategy(device=f'/gpu:{self.device_idx}' ) else: tf.config.set_visible_devices([] , 'GPU' ) # disable GPU A = tf.distribute.OneDeviceStrategy(device=f'/cpu:{self.device_idx}' ) return strategy @property def __a ( self : List[Any] ): requires_backends(self , ['tf'] ) return self._setup_tpu is not None @property def __a ( self : Optional[Any] ): requires_backends(self , ['tf'] ) return self._setup_strategy @property def __a ( self : str ): requires_backends(self , ['tf'] ) return tf.config.list_physical_devices('GPU' ) @property def __a ( self : Any ): requires_backends(self , ['tf'] ) if self.cuda: return len(self.gpu_list ) return 0 @property def __a ( self : Dict ): return self.n_gpu > 0
91
0
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase__ ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=5 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=4 , ) -> str: _lowerCamelCase : str = parent _lowerCamelCase : Any = batch_size _lowerCamelCase : List[str] = seq_length _lowerCamelCase : Union[str, Any] = is_training _lowerCamelCase : Any = use_attention_mask _lowerCamelCase : Optional[int] = use_token_type_ids _lowerCamelCase : Any = use_labels _lowerCamelCase : Optional[int] = vocab_size _lowerCamelCase : Dict = hidden_size _lowerCamelCase : int = num_hidden_layers _lowerCamelCase : Dict = num_attention_heads _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : Any = hidden_act _lowerCamelCase : Optional[int] = hidden_dropout_prob _lowerCamelCase : int = attention_probs_dropout_prob _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : Any = type_sequence_label_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : List[str] = num_choices def UpperCamelCase_ ( self) -> Union[str, Any]: _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _lowerCamelCase : Dict = None if self.use_attention_mask: _lowerCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCamelCase : int = None if self.use_token_type_ids: _lowerCamelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _lowerCamelCase : List[str] = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : Any = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = config_and_inputs _lowerCamelCase : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : List[Any] = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : str = config_and_inputs _lowerCamelCase : List[str] = True _lowerCamelCase : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) _lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase__ ( A_ ,unittest.TestCase ): __UpperCAmelCase = True __UpperCAmelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase_ ( self) -> str: _lowerCamelCase : Tuple = FlaxRobertaModelTester(self) @slow def UpperCamelCase_ ( self) -> Dict: for model_class_name in self.all_model_classes: _lowerCamelCase : Any = model_class_name.from_pretrained("""roberta-base""" , from_pt=SCREAMING_SNAKE_CASE) _lowerCamelCase : int = model(np.ones((1, 1))) self.assertIsNotNone(SCREAMING_SNAKE_CASE)
88
"""simple docstring""" from math import isqrt, loga def _snake_case ( __snake_case : int ): """simple docstring""" _lowerCamelCase : List[str] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowerCamelCase : Optional[int] = False return [i for i in range(2 , __snake_case ) if is_prime[i]] def _snake_case ( __snake_case : int = 800800 , __snake_case : int = 800800 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = degree * loga(__snake_case ) _lowerCamelCase : Union[str, Any] = int(__snake_case ) _lowerCamelCase : Dict = calculate_prime_numbers(__snake_case ) _lowerCamelCase : Optional[int] = 0 _lowerCamelCase : Any = 0 _lowerCamelCase : Any = len(__snake_case ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f'''{solution() = }''')
88
1
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> Optional[int]: super().__init__() lowercase__ : str = value_function lowercase__ : List[str] = unet lowercase__ : str = scheduler lowercase__ : int = env lowercase__ : Optional[Any] = env.get_dataset() lowercase__ : int = {} for key in self.data.keys(): try: lowercase__ : Union[str, Any] = self.data[key].mean() except: # noqa: E722 pass lowercase__ : Dict = {} for key in self.data.keys(): try: lowercase__ : List[Any] = self.data[key].std() except: # noqa: E722 pass lowercase__ : int = env.observation_space.shape[0] lowercase__ : Dict = env.action_space.shape[0] def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ ) -> Any: return (x_in - self.means[key]) / self.stds[key] def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: return x_in * self.stds[key] + self.means[key] def UpperCAmelCase__( self , lowerCamelCase__ ) -> Optional[Any]: if type(lowerCamelCase__ ) is dict: return {k: self.to_torch(lowerCamelCase__ ) for k, v in x_in.items()} elif torch.is_tensor(lowerCamelCase__ ): return x_in.to(self.unet.device ) return torch.tensor(lowerCamelCase__ , device=self.unet.device ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: for key, val in cond.items(): lowercase__ : Dict = val.clone() return x_in def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: lowercase__ : Optional[Any] = x.shape[0] lowercase__ : int = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowercase__ : Union[str, Any] = torch.full((batch_size,) , lowerCamelCase__ , device=self.unet.device , dtype=torch.long ) for _ in range(lowerCamelCase__ ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowercase__ : str = self.value_function(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample lowercase__ : Union[str, Any] = torch.autograd.grad([y.sum()] , [x] )[0] lowercase__ : Dict = self.scheduler._get_variance(lowerCamelCase__ ) lowercase__ : Dict = torch.exp(0.5 * posterior_variance ) lowercase__ : Union[str, Any] = model_std * grad lowercase__ : List[str] = 0 lowercase__ : List[str] = x.detach() lowercase__ : Optional[int] = x + scale * grad lowercase__ : Any = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) lowercase__ : List[str] = self.unet(x.permute(0 , 2 , 1 ) , lowerCamelCase__ ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg lowercase__ : Dict = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , predict_epsilon=lowerCamelCase__ )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) lowercase__ : List[str] = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) lowercase__ : Dict = self.to_torch(lowerCamelCase__ ) return x, y def __call__( self , lowerCamelCase__ , lowerCamelCase__=64 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=0.1 ) -> Any: # normalize the observations and create batch dimension lowercase__ : Any = self.normalize(lowerCamelCase__ , """observations""" ) lowercase__ : List[Any] = obs[None].repeat(lowerCamelCase__ , axis=0 ) lowercase__ : List[Any] = {0: self.to_torch(lowerCamelCase__ )} lowercase__ : Union[str, Any] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowercase__ : Tuple = randn_tensor(lowerCamelCase__ , device=self.unet.device ) lowercase__ : int = self.reset_xa(lowerCamelCase__ , lowerCamelCase__ , self.action_dim ) lowercase__ : Optional[int] = self.to_torch(lowerCamelCase__ ) # run the diffusion process lowercase__ , lowercase__ : Optional[int] = self.run_diffusion(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # sort output trajectories by value lowercase__ : Tuple = y.argsort(0 , descending=lowerCamelCase__ ).squeeze() lowercase__ : Union[str, Any] = x[sorted_idx] lowercase__ : Union[str, Any] = sorted_values[:, :, : self.action_dim] lowercase__ : Tuple = actions.detach().cpu().numpy() lowercase__ : Union[str, Any] = self.de_normalize(lowerCamelCase__ , key="""actions""" ) # select the action with the highest value if y is not None: lowercase__ : int = 0 else: # if we didn't run value guiding, select a random action lowercase__ : List[Any] = np.random.randint(0 , lowerCamelCase__ ) lowercase__ : List[str] = denorm_actions[selected_index, 0] return denorm_actions
128
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __snake_case = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] __snake_case = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } __snake_case = {F"funnel-transformer/{name}": 512 for name in _model_names} __snake_case = {F"funnel-transformer/{name}": {'do_lower_case': True} for name in _model_names} class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" _a : Union[str, Any] = VOCAB_FILES_NAMES _a : Any = PRETRAINED_VOCAB_FILES_MAP _a : List[Any] = PRETRAINED_INIT_CONFIGURATION _a : List[Any] = FunnelTokenizer _a : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _a : int = 2 def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__="<unk>" , lowerCamelCase__="<sep>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<cls>" , lowerCamelCase__="<mask>" , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__="##" , **lowerCamelCase__ , ) -> Union[str, Any]: super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , clean_text=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , wordpieces_prefix=lowerCamelCase__ , **lowerCamelCase__ , ) lowercase__ : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase__ ) != tokenize_chinese_chars ): lowercase__ : List[str] = getattr(lowerCamelCase__ , normalizer_state.pop("""type""" ) ) lowercase__ : Optional[Any] = do_lower_case lowercase__ : Union[str, Any] = strip_accents lowercase__ : Optional[Any] = tokenize_chinese_chars lowercase__ : Union[str, Any] = normalizer_class(**lowerCamelCase__ ) lowercase__ : Union[str, Any] = do_lower_case def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__=None ) -> Tuple: lowercase__ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: lowercase__ : Optional[int] = [self.sep_token_id] lowercase__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: lowercase__ : Optional[Any] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
128
1
'''simple docstring''' from __future__ import annotations def __snake_case ( lowerCamelCase_ : list[int] , lowerCamelCase_ : int ): '''simple docstring''' if len(lowerCamelCase_ ) < k or k < 0: raise ValueError("Invalid Input" ) __magic_name__ = __magic_name__ = sum(array[:k] ) for i in range(len(lowerCamelCase_ ) - k ): __magic_name__ = current_sum - array[i] + array[i + k] __magic_name__ = max(lowerCamelCase_ , lowerCamelCase_ ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __magic_name__ : List[str] =[randint(-10_00, 10_00) for i in range(1_00)] __magic_name__ : List[str] =randint(0, 1_10) print(F'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
664
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ : Union[str, Any] ={'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : str =[ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __magic_name__ : List[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
664
1
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": snake_case_ : str = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') snake_case_ : Any = F'''https://www.google.com/search?q={query}&num=100''' snake_case_ : int = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: snake_case_ : Union[str, Any] = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: snake_case_ : Optional[int] = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
708
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=3 , lowerCamelCase__=1_8 , lowerCamelCase__=3_0 , lowerCamelCase__=4_0_0 , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=[0.5, 0.5, 0.5] , lowerCamelCase__=[0.5, 0.5, 0.5] , ): '''simple docstring''' UpperCamelCase = size if size is not None else {'''shortest_edge''': 1_8} UpperCamelCase = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = do_center_crop UpperCamelCase = crop_size UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def UpperCAmelCase ( self ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowercase__ ( snake_case_, unittest.TestCase ): '''simple docstring''' _snake_case = LevitImageProcessor if is_vision_available() else None def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = LevitImageProcessingTester(self ) @property def UpperCAmelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''size''' ) ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8} ) self.assertEqual(image_processor.crop_size , {'''height''': 1_8, '''width''': 1_8} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size , {'''height''': 8_4, '''width''': 8_4} ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase = image_processing(lowerCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
350
0
"""simple docstring""" def __magic_name__ ( UpperCamelCase : Optional[int] ) -> Optional[int]: if not all(char in '01' for char in bin_string ): raise ValueError('Non-binary value was passed to the function' ) if not bin_string: raise ValueError('Empty string was passed to the function' ) a__ = "" while len(UpperCamelCase ) % 3 != 0: a__ = "0" + bin_string a__ = [ bin_string[index : index + 3] for index in range(len(UpperCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: a__ = 0 for index, val in enumerate(UpperCamelCase ): oct_val += int(2 ** (2 - index) * int(UpperCamelCase ) ) oct_string += str(UpperCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
273
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
62
0
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def __lowerCamelCase (UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = flatten_dict(UpperCAmelCase__ ) return flax_params def __lowerCamelCase (UpperCAmelCase__ : Tuple ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = { "token_embedder": "embeddings", "encoder_norm": "layernorm", "kernel": "weight", ".out": ".output", "scale": "weight", "embedders_0.pos_embedding": "row_embedder.weight", "embedders_1.pos_embedding": "column_embedder.weight", } SCREAMING_SNAKE_CASE = { "query": "attention.query", "key": "attention.key", "value": "attention.value", "output.dense": "output", "encoder_decoder_attention.o": "encoder_decoder_attention.attention.o", "pre_self_attention_layer_norm": "self_attention.layer_norm", "pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm", "mlp.": "mlp.DenseReluDense.", "pre_mlp_layer_norm": "mlp.layer_norm", "self_attention.o": "self_attention.attention.o", "decoder.embeddings.embedding": "decoder.embed_tokens.weight", "decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight", "decoder.decoder_norm.weight": "decoder.final_layer_norm.weight", "decoder.logits_dense.weight": "decoder.lm_head.weight", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key SCREAMING_SNAKE_CASE = ".".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): SCREAMING_SNAKE_CASE = new_key.replace(UpperCAmelCase__ , UpperCAmelCase__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): SCREAMING_SNAKE_CASE = new_key.replace(UpperCAmelCase__ , UpperCAmelCase__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number SCREAMING_SNAKE_CASE = re.sub(r"layers_(\d+)" , r"layer.\1" , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = new_key.replace("encoder" , "encoder.encoder" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number SCREAMING_SNAKE_CASE = re.sub(r"layers_(\d+)" , r"layer.\1" , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = flax_dict[key] SCREAMING_SNAKE_CASE = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): SCREAMING_SNAKE_CASE = torch.from_numpy(converted_dict[key].T ) else: SCREAMING_SNAKE_CASE = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : Any=False ): SCREAMING_SNAKE_CASE = get_flax_param(UpperCAmelCase__ ) if not use_large: SCREAMING_SNAKE_CASE = PixaStructVisionConfig() SCREAMING_SNAKE_CASE = PixaStructTextConfig() else: SCREAMING_SNAKE_CASE = PixaStructVisionConfig( hidden_size=1_5_3_6 , d_ff=3_9_6_8 , num_attention_heads=2_4 , num_hidden_layers=1_8 ) SCREAMING_SNAKE_CASE = PixaStructTextConfig(hidden_size=1_5_3_6 , d_ff=3_9_6_8 , num_heads=2_4 , num_layers=1_8 ) SCREAMING_SNAKE_CASE = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = PixaStructForConditionalGeneration(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = rename_and_convert_flax_params(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer" ) SCREAMING_SNAKE_CASE = PixaStructImageProcessor() SCREAMING_SNAKE_CASE = PixaStructProcessor(image_processor=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ ) if use_large: SCREAMING_SNAKE_CASE = 4_0_9_6 SCREAMING_SNAKE_CASE = True # mkdir if needed os.makedirs(UpperCAmelCase__ , exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) processor.save_pretrained(UpperCAmelCase__ ) print("Model saved in {}".format(UpperCAmelCase__ ) ) if __name__ == "__main__": _lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') _lowerCamelCase : int = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
647
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib _lowerCamelCase : str = threading.Lock() _lowerCamelCase : Optional[logging.Handler] = None _lowerCamelCase : Any = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } _lowerCamelCase : Union[str, Any] = logging.WARNING _lowerCamelCase : List[Any] = True def __lowerCamelCase (): SCREAMING_SNAKE_CASE = os.getenv("TRANSFORMERS_VERBOSITY" , UpperCAmelCase__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, " F"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def __lowerCamelCase (): return __name__.split("." )[0] def __lowerCamelCase (): return logging.getLogger(_get_library_name() ) def __lowerCamelCase (): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return SCREAMING_SNAKE_CASE = logging.StreamHandler() # Set sys.stderr as stream. SCREAMING_SNAKE_CASE = sys.stderr.flush # Apply our default configuration to the library root logger. SCREAMING_SNAKE_CASE = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) SCREAMING_SNAKE_CASE = False def __lowerCamelCase (): global _default_handler with _lock: if not _default_handler: return SCREAMING_SNAKE_CASE = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) SCREAMING_SNAKE_CASE = None def __lowerCamelCase (): return log_levels def __lowerCamelCase (UpperCAmelCase__ : Optional[str] = None ): if name is None: SCREAMING_SNAKE_CASE = _get_library_name() _configure_library_root_logger() return logging.getLogger(UpperCAmelCase__ ) def __lowerCamelCase (): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def __lowerCamelCase (UpperCAmelCase__ : int ): _configure_library_root_logger() _get_library_root_logger().setLevel(UpperCAmelCase__ ) def __lowerCamelCase (): return set_verbosity(UpperCAmelCase__ ) def __lowerCamelCase (): return set_verbosity(UpperCAmelCase__ ) def __lowerCamelCase (): return set_verbosity(UpperCAmelCase__ ) def __lowerCamelCase (): return set_verbosity(UpperCAmelCase__ ) def __lowerCamelCase (): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def __lowerCamelCase (): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def __lowerCamelCase (UpperCAmelCase__ : logging.Handler ): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : logging.Handler ): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(UpperCAmelCase__ ) def __lowerCamelCase (): _configure_library_root_logger() SCREAMING_SNAKE_CASE = False def __lowerCamelCase (): _configure_library_root_logger() SCREAMING_SNAKE_CASE = True def __lowerCamelCase (): SCREAMING_SNAKE_CASE = _get_library_root_logger().handlers for handler in handlers: SCREAMING_SNAKE_CASE = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" ) handler.setFormatter(UpperCAmelCase__ ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(UpperCAmelCase__ ) def __lowerCamelCase (self : str , *UpperCAmelCase__ : Union[str, Any] , **UpperCAmelCase__ : List[str] ): SCREAMING_SNAKE_CASE = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , UpperCAmelCase__ ) if no_advisory_warnings: return self.warning(*UpperCAmelCase__ , **UpperCAmelCase__ ) _lowerCamelCase : str = warning_advice @functools.lru_cache(UpperCAmelCase__ ) def __lowerCamelCase (self : List[str] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int ): self.warning(*UpperCAmelCase__ , **UpperCAmelCase__ ) _lowerCamelCase : Dict = warning_once class lowercase : def __init__( self : List[Any] , *_UpperCamelCase : Union[str, Any] , **_UpperCamelCase : str ) -> List[Any]: # pylint: disable=unused-argument '''simple docstring''' SCREAMING_SNAKE_CASE = args[0] if args else None def __iter__( self : Optional[Any] ) -> str: '''simple docstring''' return iter(self._iterator ) def __getattr__( self : List[str] , _UpperCamelCase : Any ) -> List[Any]: '''simple docstring''' def empty_fn(*_UpperCamelCase : List[str] , **_UpperCamelCase : Union[str, Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Any ) -> Optional[Any]: '''simple docstring''' return self def __exit__( self : Optional[Any] , _UpperCamelCase : Tuple , _UpperCamelCase : str , _UpperCamelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' return class lowercase : def __call__( self : Union[str, Any] , *_UpperCamelCase : Optional[Any] , **_UpperCamelCase : Tuple ) -> Tuple: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*_UpperCamelCase , **_UpperCamelCase ) else: return EmptyTqdm(*_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : Dict , *_UpperCamelCase : Dict , **_UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_UpperCamelCase , **_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() _lowerCamelCase : Union[str, Any] = _tqdm_cls() def __lowerCamelCase (): global _tqdm_active return bool(_tqdm_active ) def __lowerCamelCase (): global _tqdm_active SCREAMING_SNAKE_CASE = True hf_hub_utils.enable_progress_bars() def __lowerCamelCase (): global _tqdm_active SCREAMING_SNAKE_CASE = False hf_hub_utils.disable_progress_bars()
647
1
'''simple docstring''' from __future__ import annotations lowerCAmelCase_ : Tuple = list[tuple[int, int]] lowerCAmelCase_ : int = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCAmelCase_ : Optional[int] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : Optional[Any] , ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : Optional[Any] = pos_x _UpperCamelCase : List[Any] = pos_y _UpperCamelCase : Any = (pos_y, pos_x) _UpperCamelCase : Union[str, Any] = goal_x _UpperCamelCase : Optional[Any] = goal_y _UpperCamelCase : str = g_cost _UpperCamelCase : Union[str, Any] = parent _UpperCamelCase : str = self.calculate_heuristic() def snake_case__ ( self : List[str] ) ->Tuple: '''simple docstring''' _UpperCamelCase : Union[str, Any] = abs(self.pos_x - self.goal_x ) _UpperCamelCase : Tuple = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Optional[Any] , lowercase__ : int ) ->Tuple: '''simple docstring''' return self.f_cost < other.f_cost class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , lowercase__ : Dict , lowercase__ : Tuple ) ->List[str]: '''simple docstring''' _UpperCamelCase : List[str] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) _UpperCamelCase : str = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a ) _UpperCamelCase : Optional[Any] = [self.start] _UpperCamelCase : Tuple = [] _UpperCamelCase : Tuple = False def snake_case__ ( self : Optional[int] ) ->Union[str, Any]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _UpperCamelCase : Optional[Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: _UpperCamelCase : Optional[Any] = True return self.retrace_path(_a ) self.closed_nodes.append(_a ) _UpperCamelCase : Optional[int] = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path _UpperCamelCase : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) if not self.reached: return [self.start.pos] return None def snake_case__ ( self : Any , lowercase__ : Dict ) ->Optional[int]: '''simple docstring''' _UpperCamelCase : Dict = [] for action in delta: _UpperCamelCase : Optional[Any] = parent.pos_x + action[1] _UpperCamelCase : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def snake_case__ ( self : List[str] , lowercase__ : Optional[int] ) ->List[Any]: '''simple docstring''' _UpperCamelCase : Any = node _UpperCamelCase : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _UpperCamelCase : Tuple = current_node.parent path.reverse() return path if __name__ == "__main__": lowerCAmelCase_ : List[str] = (0, 0) lowerCAmelCase_ : Tuple = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") lowerCAmelCase_ : Dict = GreedyBestFirst(init, goal) lowerCAmelCase_ : Union[str, Any] = greedy_bf.search() if path: for pos_x, pos_y in path: lowerCAmelCase_ : Tuple = 2 for elem in grid: print(elem)
435
"""simple docstring""" from __future__ import annotations lowercase_ = list[tuple[int, int]] lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , ): __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = g_cost __a = parent __a = self.calculate_heuristic() def __UpperCAmelCase ( self ): __a = abs(self.pos_x - self.goal_x ) __a = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , _a ): return self.f_cost < other.f_cost class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a ) __a = [self.start] __a = [] __a = False def __UpperCAmelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __a = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __a = True return self.retrace_path(_a ) self.closed_nodes.append(_a ) __a = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path __a = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) if not self.reached: return [self.start.pos] return None def __UpperCAmelCase ( self , _a ): __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def __UpperCAmelCase ( self , _a ): __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") lowercase_ = GreedyBestFirst(init, goal) lowercase_ = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase_ = 2 for elem in grid: print(elem)
695
0
'''simple docstring''' class snake_case : """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : List[str] = None snake_case__ : Dict = None snake_case__ : Union[str, Any] = graph self._normalize_graph(lowerCamelCase , lowerCamelCase ) snake_case__ : Optional[int] = len(lowerCamelCase ) snake_case__ : Union[str, Any] = None def lowercase__ ( self , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" if sources is int: snake_case__ : Optional[Any] = [sources] if sinks is int: snake_case__ : List[str] = [sinks] if len(lowerCamelCase ) == 0 or len(lowerCamelCase ) == 0: return snake_case__ : Any = sources[0] snake_case__ : Optional[Any] = sinks[0] # make fake vertex if there are more # than one source or sink if len(lowerCamelCase ) > 1 or len(lowerCamelCase ) > 1: snake_case__ : List[str] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) snake_case__ : str = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: snake_case__ : List[Any] = max_input_flow snake_case__ : Any = 0 snake_case__ : str = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: snake_case__ : str = max_input_flow snake_case__ : Union[str, Any] = size - 1 def lowercase__ ( self ) -> Dict: """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowercase__ ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" snake_case__ : str = algorithm(self ) class snake_case : """simple docstring""" def __init__( self , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : Tuple = flow_network snake_case__ : List[str] = flow_network.verticesCount snake_case__ : Optional[int] = flow_network.sourceIndex snake_case__ : Optional[int] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that snake_case__ : Tuple = flow_network.graph snake_case__ : List[Any] = False def lowercase__ ( self ) -> Tuple: """simple docstring""" if not self.executed: self._algorithm() snake_case__ : Tuple = True def lowercase__ ( self ) -> int: """simple docstring""" pass class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase ) -> Optional[Any]: """simple docstring""" super().__init__(lowerCamelCase ) # use this to save your result snake_case__ : Optional[int] = -1 def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class snake_case ( __lowerCamelCase ): """simple docstring""" def __init__( self , lowerCamelCase ) -> List[Any]: """simple docstring""" super().__init__(lowerCamelCase ) snake_case__ : int = [[0] * self.verticies_count for i in range(self.verticies_count )] snake_case__ : Dict = [0] * self.verticies_count snake_case__ : Optional[Any] = [0] * self.verticies_count def lowercase__ ( self ) -> str: """simple docstring""" snake_case__ : Union[str, Any] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule snake_case__ : List[Any] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list snake_case__ : Union[str, Any] = 0 while i < len(lowerCamelCase ): snake_case__ : Optional[Any] = vertices_list[i] snake_case__ : Tuple = self.heights[vertex_index] self.process_vertex(lowerCamelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(lowerCamelCase ) ) snake_case__ : Optional[Any] = 0 else: i += 1 snake_case__ : Optional[Any] = sum(self.preflow[self.source_index] ) def lowercase__ ( self , lowerCamelCase ) -> Optional[Any]: """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(lowerCamelCase , lowerCamelCase ) self.relabel(lowerCamelCase ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase ) -> List[str]: """simple docstring""" snake_case__ : List[Any] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowercase__ ( self , lowerCamelCase ) -> str: """simple docstring""" snake_case__ : Tuple = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): snake_case__ : List[str] = self.heights[to_index] if min_height is not None: snake_case__ : Tuple = min_height + 1 if __name__ == "__main__": _lowerCAmelCase : Any = [0] _lowerCAmelCase : int = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] _lowerCAmelCase : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network _lowerCAmelCase : str = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate _lowerCAmelCase : Optional[int] = flow_network.find_maximum_flow() print(F'''maximum flow is {maximum_flow}''')
694
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : List[Any] = logging.get_logger(__name__) class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'encoder-decoder' _lowerCAmelCase = True def __init__( self , **lowerCamelCase ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" snake_case__ : List[str] = kwargs.pop('''encoder''' ) snake_case__ : Any = encoder_config.pop('''model_type''' ) snake_case__ : List[str] = kwargs.pop('''decoder''' ) snake_case__ : str = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig snake_case__ : Tuple = AutoConfig.for_model(lowerCamelCase , **lowerCamelCase ) snake_case__ : Optional[Any] = AutoConfig.for_model(lowerCamelCase , **lowerCamelCase ) snake_case__ : str = True @classmethod def lowercase__ ( cls , lowerCamelCase , lowerCamelCase , **lowerCamelCase ) -> PretrainedConfig: """simple docstring""" logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) snake_case__ : Optional[int] = True snake_case__ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase ) def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" snake_case__ : List[Any] = copy.deepcopy(self.__dict__ ) snake_case__ : List[Any] = self.encoder.to_dict() snake_case__ : str = self.decoder.to_dict() snake_case__ : Any = self.__class__.model_type return output
694
1
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' print('''Loading config file...''' ) def flatten_yaml_as_dict(_lowercase , _lowercase="" , _lowercase="." ): UpperCAmelCase_ : Any = [] for k, v in d.items(): UpperCAmelCase_ : List[Any] = parent_key + sep + k if parent_key else k if isinstance(snake_case_ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case_ , snake_case_ , sep=snake_case_ ).items() ) else: items.append((new_key, v) ) return dict(snake_case_ ) UpperCAmelCase_ : Optional[int] = argparse.Namespace() with open(snake_case_ , '''r''' ) as yaml_file: try: UpperCAmelCase_ : List[Any] = yaml.load(snake_case_ , Loader=yaml.FullLoader ) UpperCAmelCase_ : Any = flatten_yaml_as_dict(snake_case_ ) for k, v in flat_cfg.items(): setattr(snake_case_ , snake_case_ , snake_case_ ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(snake_case_ , str(snake_case_ ) ) ) return config def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[str] = MobileViTVaConfig() UpperCAmelCase_ : Optional[Any] = False # dataset if task_name.startswith('''imagenet1k_''' ): UpperCAmelCase_ : Dict = 1000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase_ : List[str] = 384 else: UpperCAmelCase_ : int = 256 UpperCAmelCase_ : Union[str, Any] = '''imagenet-1k-id2label.json''' elif task_name.startswith('''imagenet21k_to_1k_''' ): UpperCAmelCase_ : Any = 21000 if int(task_name.strip().split('''_''' )[-1] ) == 384: UpperCAmelCase_ : Dict = 384 else: UpperCAmelCase_ : str = 256 UpperCAmelCase_ : str = '''imagenet-22k-id2label.json''' elif task_name.startswith('''ade20k_''' ): UpperCAmelCase_ : List[str] = 151 UpperCAmelCase_ : Dict = 512 UpperCAmelCase_ : Optional[Any] = '''ade20k-id2label.json''' UpperCAmelCase_ : Dict = True elif task_name.startswith('''voc_''' ): UpperCAmelCase_ : Any = 21 UpperCAmelCase_ : Union[str, Any] = 512 UpperCAmelCase_ : Optional[Any] = '''pascal-voc-id2label.json''' UpperCAmelCase_ : List[str] = True # orig_config UpperCAmelCase_ : int = load_orig_config_file(snake_case_ ) assert getattr(snake_case_ , '''model.classification.name''' , -1 ) == "mobilevit_v2", "Invalid model" UpperCAmelCase_ : Dict = getattr(snake_case_ , '''model.classification.mitv2.width_multiplier''' , 1.0 ) assert ( getattr(snake_case_ , '''model.classification.mitv2.attn_norm_layer''' , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" UpperCAmelCase_ : Any = getattr(snake_case_ , '''model.classification.activation.name''' , '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: UpperCAmelCase_ : Tuple = getattr(snake_case_ , '''model.segmentation.output_stride''' , 16 ) if "_deeplabv3" in task_name: UpperCAmelCase_ : Dict = getattr(snake_case_ , '''model.segmentation.deeplabv3.aspp_rates''' , [12, 24, 36] ) UpperCAmelCase_ : Tuple = getattr(snake_case_ , '''model.segmentation.deeplabv3.aspp_out_channels''' , 512 ) UpperCAmelCase_ : int = getattr(snake_case_ , '''model.segmentation.deeplabv3.aspp_dropout''' , 0.1 ) # id2label UpperCAmelCase_ : Optional[int] = '''huggingface/label-files''' UpperCAmelCase_ : str = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ : Tuple = {int(snake_case_ ): v for k, v in idalabel.items()} UpperCAmelCase_ : str = idalabel UpperCAmelCase_ : Optional[Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = dct.pop(snake_case_ ) UpperCAmelCase_ : Tuple = val def lowerCamelCase__ ( _lowercase , _lowercase=False ): '''simple docstring''' if base_model: UpperCAmelCase_ : int = '''''' else: UpperCAmelCase_ : int = '''mobilevitv2.''' UpperCAmelCase_ : Dict = [] for k in state_dict.keys(): if k[:8] == "encoder.": UpperCAmelCase_ : List[str] = k[8:] else: UpperCAmelCase_ : Optional[Any] = k if ".block." in k: UpperCAmelCase_ : Tuple = k_new.replace('''.block.''' , '''.''' ) if ".conv." in k: UpperCAmelCase_ : Optional[Any] = k_new.replace('''.conv.''' , '''.convolution.''' ) if ".norm." in k: UpperCAmelCase_ : Tuple = k_new.replace('''.norm.''' , '''.normalization.''' ) if "conv_1." in k: UpperCAmelCase_ : Union[str, Any] = k_new.replace('''conv_1.''' , f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: UpperCAmelCase_ : List[Any] = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: UpperCAmelCase_ : List[Any] = k_new.replace('''.exp_1x1.''' , '''.expand_1x1.''' ) if ".red_1x1." in k: UpperCAmelCase_ : str = k_new.replace('''.red_1x1.''' , '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: UpperCAmelCase_ : List[Any] = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: UpperCAmelCase_ : Optional[Any] = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: UpperCAmelCase_ : str = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: UpperCAmelCase_ : Union[str, Any] = [0, 1] elif i == 4: UpperCAmelCase_ : List[str] = [0, 1, 2, 3] elif i == 5: UpperCAmelCase_ : int = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: UpperCAmelCase_ : List[Any] = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: UpperCAmelCase_ : List[Any] = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: UpperCAmelCase_ : Dict = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: UpperCAmelCase_ : Optional[Any] = k_new.replace('''pre_norm_attn.0.''' , '''layernorm_before.''' ) if "pre_norm_attn.1." in k: UpperCAmelCase_ : Tuple = k_new.replace('''pre_norm_attn.1.''' , '''attention.''' ) if "pre_norm_ffn.0." in k: UpperCAmelCase_ : Optional[Any] = k_new.replace('''pre_norm_ffn.0.''' , '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: UpperCAmelCase_ : Optional[int] = k_new.replace('''pre_norm_ffn.1.''' , '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: UpperCAmelCase_ : Dict = k_new.replace('''pre_norm_ffn.3.''' , '''ffn.conv2.''' ) if "classifier.1." in k: UpperCAmelCase_ : Any = k_new.replace('''classifier.1.''' , '''classifier.''' ) if "seg_head." in k: UpperCAmelCase_ : List[str] = k_new.replace('''seg_head.''' , '''segmentation_head.''' ) if ".aspp_layer." in k: UpperCAmelCase_ : List[Any] = k_new.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in k: UpperCAmelCase_ : List[Any] = k_new.replace('''.aspp_pool.''' , '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Dict = [] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(snake_case_ ) for k in keys_to_ignore: state_dict.pop(snake_case_ , snake_case_ ) def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" UpperCAmelCase_ : List[Any] = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Dict = get_mobilevitva_config(snake_case_ , snake_case_ ) # load original state_dict UpperCAmelCase_ : Any = torch.load(snake_case_ , map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): UpperCAmelCase_ : Union[str, Any] = MobileViTVaForSemanticSegmentation(snake_case_ ).eval() UpperCAmelCase_ : str = False else: UpperCAmelCase_ : List[str] = MobileViTVaForImageClassification(snake_case_ ).eval() UpperCAmelCase_ : Any = False # remove and rename some keys of load the original model UpperCAmelCase_ : Tuple = checkpoint remove_unused_keys(snake_case_ ) UpperCAmelCase_ : str = create_rename_keys(snake_case_ , base_model=snake_case_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case_ , snake_case_ , snake_case_ ) # load modified state_dict model.load_state_dict(snake_case_ ) # Check outputs on an image, prepared by MobileViTImageProcessor UpperCAmelCase_ : List[str] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) UpperCAmelCase_ : Union[str, Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase_ : Any = model(**snake_case_ ) # verify classification model if task_name.startswith('''imagenet''' ): UpperCAmelCase_ : str = outputs.logits UpperCAmelCase_ : List[Any] = logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant UpperCAmelCase_ : List[str] = torch.tensor([-1.6_3_3_6E0_0, -7.3_2_0_4E-0_2, -5.1_8_8_3E-0_1] ) assert torch.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case_ ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) __a = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
30
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position snake_case_ = '2.13.1' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip snake_case_ = concatenate_datasets snake_case_ = DownloadConfig snake_case_ = DownloadManager snake_case_ = DownloadMode snake_case_ = DownloadConfig snake_case_ = DownloadMode snake_case_ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
592
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase : Tuple = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Optional[Any] = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Dict = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Tuple = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[str] = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __lowercase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
315
from __future__ import annotations from typing import Generic, TypeVar __lowercase : Any = TypeVar('''T''') class _A ( Generic[T] ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Optional[int] = data snake_case : Dict = self snake_case : str = 0 class _A ( Generic[T] ): '''simple docstring''' def __init__( self ): '''simple docstring''' # map from node name to the node object snake_case : dict[T, DisjointSetTreeNode[T]] = {} def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' # create a new set with x as its member snake_case : Optional[Any] = DisjointSetTreeNode(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' # find the set x belongs to (with path-compression) snake_case : Union[str, Any] = self.map[data] if elem_ref != elem_ref.parent: snake_case : Union[str, Any] = self.find_set(elem_ref.parent.data ) return elem_ref.parent def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' # helper function for union operation if nodea.rank > nodea.rank: snake_case : Any = nodea else: snake_case : int = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' # merge 2 disjoint sets self.link(self.find_set(SCREAMING_SNAKE_CASE_ ) ,self.find_set(SCREAMING_SNAKE_CASE_ ) ) class _A ( Generic[T] ): '''simple docstring''' def __init__( self ): '''simple docstring''' # connections: map from the node to the neighbouring nodes (with weights) snake_case : dict[T, dict[T, int]] = {} def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' # add a node ONLY if its not present in the graph if node not in self.connections: snake_case : List[str] = {} def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' # add an edge with the given weight self.add_node(SCREAMING_SNAKE_CASE_ ) self.add_node(SCREAMING_SNAKE_CASE_ ) snake_case : str = weight snake_case : Optional[int] = weight def snake_case_ ( self ): '''simple docstring''' snake_case : int = [] snake_case : int = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda SCREAMING_SNAKE_CASE_ : x[2] ) # creating the disjoint set snake_case : Tuple = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(SCREAMING_SNAKE_CASE_ ) # MST generation snake_case : str = 0 snake_case : Any = 0 snake_case : Union[str, Any] = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: snake_case , snake_case , snake_case : Union[str, Any] = edges[index] index += 1 snake_case : Union[str, Any] = disjoint_set.find_set(SCREAMING_SNAKE_CASE_ ) snake_case : Dict = disjoint_set.find_set(SCREAMING_SNAKE_CASE_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) disjoint_set.union(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) return graph
315
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') UpperCAmelCase : Dict = logging.getLogger(__name__) @dataclass class lowerCamelCase__ : """simple docstring""" __a = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __a = field( default=A , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __a = field( default=A , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __a = field( default=A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __a = field( default=A , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __a = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __a = field( default=A , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) @dataclass class lowerCamelCase__ : """simple docstring""" __a = field(default=A , metadata={"""help""": """The input training data file (a text file)."""} ) __a = field( default=A , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __a = field( default=A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __a = field( default=A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __a = field( default=A , metadata={ """help""": ( """The maximum total input sequence length after tokenization. If passed, sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __a = field( default=A , metadata={ """help""": ( """Whether to pad all samples to the maximum sentence length. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch. More """ """efficient on GPU but very bad for TPU.""" ) } , ) __a = field( default=A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __a = field( default=A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' if self.train_file is not None: __UpperCAmelCase : List[Any] = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __UpperCAmelCase : List[str] = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowerCamelCase__ : """simple docstring""" __a = 42 __a = True __a = None __a = None def __call__( self : Tuple , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : List[str] = """label""" if """label""" in features[0].keys() else """labels""" __UpperCAmelCase : Union[str, Any] = [feature.pop(UpperCamelCase ) for feature in features] __UpperCAmelCase : str = len(UpperCamelCase ) __UpperCAmelCase : Dict = len(features[0]["""input_ids"""] ) __UpperCAmelCase : int = [ [{k: v[i] for k, v in feature.items()} for i in range(UpperCamelCase )] for feature in features ] __UpperCAmelCase : str = list(chain(*UpperCamelCase ) ) __UpperCAmelCase : int = self.tokenizer.pad( UpperCamelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) # Un-flatten __UpperCAmelCase : Optional[Any] = {k: v.view(UpperCamelCase , UpperCamelCase , -1 ) for k, v in batch.items()} # Add back labels __UpperCAmelCase : int = torch.tensor(UpperCamelCase , dtype=torch.intaa ) return batch def lowerCamelCase ( ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_swag""" , _UpperCamelCase , _UpperCamelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __UpperCAmelCase : Any = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) datasets.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. __UpperCAmelCase : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCAmelCase : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __UpperCAmelCase : str = {} if data_args.train_file is not None: __UpperCAmelCase : str = data_args.train_file if data_args.validation_file is not None: __UpperCAmelCase : Union[str, Any] = data_args.validation_file __UpperCAmelCase : List[Any] = data_args.train_file.split(""".""" )[-1] __UpperCAmelCase : Optional[int] = load_dataset( _UpperCamelCase , data_files=_UpperCamelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __UpperCAmelCase : Any = load_dataset( """swag""" , """regular""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __UpperCAmelCase : Dict = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCAmelCase : Dict = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __UpperCAmelCase : Dict = [f'''ending{i}''' for i in range(4 )] __UpperCAmelCase : Any = """sent1""" __UpperCAmelCase : List[str] = """sent2""" if data_args.max_seq_length is None: __UpperCAmelCase : List[str] = tokenizer.model_max_length if max_seq_length > 1_0_2_4: logger.warning( """The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value""" """ of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can""" """ override this default with `--block_size xxx`.""" ) __UpperCAmelCase : str = 1_0_2_4 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) __UpperCAmelCase : Optional[Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(_UpperCamelCase : str ): __UpperCAmelCase : List[str] = [[context] * 4 for context in examples[context_name]] __UpperCAmelCase : Union[str, Any] = examples[question_header_name] __UpperCAmelCase : int = [ [f'''{header} {examples[end][i]}''' for end in ending_names] for i, header in enumerate(_UpperCamelCase ) ] # Flatten out __UpperCAmelCase : List[str] = list(chain(*_UpperCamelCase ) ) __UpperCAmelCase : List[Any] = list(chain(*_UpperCamelCase ) ) # Tokenize __UpperCAmelCase : Optional[int] = tokenizer( _UpperCamelCase , _UpperCamelCase , truncation=_UpperCamelCase , max_length=_UpperCamelCase , padding="""max_length""" if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(_UpperCamelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError("""--do_train requires a train dataset""" ) __UpperCAmelCase : List[Any] = raw_datasets["""train"""] if data_args.max_train_samples is not None: __UpperCAmelCase : Optional[int] = min(len(_UpperCamelCase ) , data_args.max_train_samples ) __UpperCAmelCase : Union[str, Any] = train_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): __UpperCAmelCase : List[str] = train_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError("""--do_eval requires a validation dataset""" ) __UpperCAmelCase : int = raw_datasets["""validation"""] if data_args.max_eval_samples is not None: __UpperCAmelCase : Dict = min(len(_UpperCamelCase ) , data_args.max_eval_samples ) __UpperCAmelCase : Any = eval_dataset.select(range(_UpperCamelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): __UpperCAmelCase : Any = eval_dataset.map( _UpperCamelCase , batched=_UpperCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __UpperCAmelCase : Optional[int] = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=_UpperCamelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(_UpperCamelCase : Dict ): __UpperCAmelCase ,__UpperCAmelCase : List[str] = eval_predictions __UpperCAmelCase : Optional[int] = np.argmax(_UpperCamelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __UpperCAmelCase : Tuple = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=_UpperCamelCase , data_collator=_UpperCamelCase , compute_metrics=_UpperCamelCase , ) # Training if training_args.do_train: __UpperCAmelCase : str = None if training_args.resume_from_checkpoint is not None: __UpperCAmelCase : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: __UpperCAmelCase : List[str] = last_checkpoint __UpperCAmelCase : Any = trainer.train(resume_from_checkpoint=_UpperCamelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __UpperCAmelCase : Dict = train_result.metrics __UpperCAmelCase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCamelCase ) ) __UpperCAmelCase : List[Any] = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics("""train""" , _UpperCamelCase ) trainer.save_metrics("""train""" , _UpperCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __UpperCAmelCase : List[str] = trainer.evaluate() __UpperCAmelCase : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics("""eval""" , _UpperCamelCase ) trainer.save_metrics("""eval""" , _UpperCamelCase ) __UpperCAmelCase : Tuple = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """multiple-choice""", """dataset_tags""": """swag""", """dataset_args""": """regular""", """dataset""": """SWAG""", """language""": """en""", } if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) def lowerCamelCase ( _UpperCamelCase : int ) -> Union[str, Any]: '''simple docstring''' main() if __name__ == "__main__": main()
139
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase : Union[str, "sqlalchemy.sql.Selectable"] , UpperCamelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , UpperCamelCase : Optional[Features] = None , UpperCamelCase : str = None , UpperCamelCase : bool = False , **UpperCamelCase : List[Any] , ): '''simple docstring''' super().__init__(features=UpperCamelCase , cache_dir=UpperCamelCase , keep_in_memory=UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Dict = Sql( cache_dir=UpperCamelCase , features=UpperCamelCase , sql=UpperCamelCase , con=UpperCamelCase , **UpperCamelCase , ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Tuple = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : str = None __UpperCAmelCase : Dict = None self.builder.download_and_prepare( download_config=UpperCamelCase , download_mode=UpperCamelCase , verification_mode=UpperCamelCase , base_path=UpperCamelCase , ) # Build dataset for splits __UpperCAmelCase : Optional[int] = self.builder.as_dataset( split="""train""" , verification_mode=UpperCamelCase , in_memory=self.keep_in_memory ) return dataset class lowerCamelCase__ : """simple docstring""" def __init__( self : List[Any] , UpperCamelCase : Dataset , UpperCamelCase : str , UpperCamelCase : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , **UpperCamelCase : Tuple , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) __UpperCAmelCase : Tuple = dataset __UpperCAmelCase : int = name __UpperCAmelCase : Union[str, Any] = con __UpperCAmelCase : Optional[int] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __UpperCAmelCase : Optional[int] = num_proc __UpperCAmelCase : Any = to_sql_kwargs def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Dict = self.to_sql_kwargs.pop("""sql""" , UpperCamelCase ) __UpperCAmelCase : Dict = self.to_sql_kwargs.pop("""con""" , UpperCamelCase ) __UpperCAmelCase : Any = self.to_sql_kwargs.pop("""index""" , UpperCamelCase ) __UpperCAmelCase : Dict = self._write(index=UpperCamelCase , **self.to_sql_kwargs ) return written def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Any = args __UpperCAmelCase : Optional[int] = {**to_sql_kwargs, """if_exists""": """append"""} if offset > 0 else to_sql_kwargs __UpperCAmelCase : Optional[int] = query_table( table=self.dataset.data , key=slice(UpperCamelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) __UpperCAmelCase : Optional[int] = batch.to_pandas() __UpperCAmelCase : Union[str, Any] = df.to_sql(self.name , self.con , index=UpperCamelCase , **UpperCamelCase ) return num_rows or len(UpperCamelCase ) def lowerCamelCase__ ( self : Tuple , UpperCamelCase : Optional[int] , **UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : List[Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __UpperCAmelCase ,__UpperCAmelCase : Tuple = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , UpperCamelCase , UpperCamelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ): written += num_rows return written
139
1
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Optional[Any] = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class UpperCAmelCase__ ( __lowerCamelCase ): """simple docstring""" a = '''longformer''' def __init__( self : Union[str, Any] , __lowerCamelCase : Optional[Any] = 512 , __lowerCamelCase : Any = 2 , __lowerCamelCase : List[str] = 1 , __lowerCamelCase : Any = 0 , __lowerCamelCase : Optional[Any] = 2 , __lowerCamelCase : Dict = 3_0522 , __lowerCamelCase : Any = 768 , __lowerCamelCase : Any = 12 , __lowerCamelCase : Union[str, Any] = 12 , __lowerCamelCase : List[Any] = 3072 , __lowerCamelCase : Optional[int] = "gelu" , __lowerCamelCase : Dict = 0.1 , __lowerCamelCase : Any = 0.1 , __lowerCamelCase : Optional[Any] = 512 , __lowerCamelCase : Tuple = 2 , __lowerCamelCase : Optional[int] = 0.02 , __lowerCamelCase : str = 1e-12 , __lowerCamelCase : Union[str, Any] = False , **__lowerCamelCase : int , ) -> Any: super().__init__(pad_token_id=a_ , **a_ ) SCREAMING_SNAKE_CASE__ = attention_window SCREAMING_SNAKE_CASE__ = sep_token_id SCREAMING_SNAKE_CASE__ = bos_token_id SCREAMING_SNAKE_CASE__ = eos_token_id SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = layer_norm_eps SCREAMING_SNAKE_CASE__ = onnx_export class UpperCAmelCase__ ( __lowerCamelCase ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] = "default" , __lowerCamelCase : int = None ) -> Dict: super().__init__(a_ , a_ , a_ ) SCREAMING_SNAKE_CASE__ = True @property def lowercase_ ( self : Tuple ) -> Optional[int]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__ = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE__ = {0: "batch", 1: "sequence"} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def lowercase_ ( self : Union[str, Any] ) -> List[str]: SCREAMING_SNAKE_CASE__ = super().outputs if self.task == "default": SCREAMING_SNAKE_CASE__ = {0: "batch"} return outputs @property def lowercase_ ( self : Union[str, Any] ) -> Optional[int]: return 1e-4 @property def lowercase_ ( self : List[Any] ) -> List[Any]: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def lowercase_ ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : Optional[Any] = False , __lowerCamelCase : Tuple = None , ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = super().generate_dummy_inputs( preprocessor=a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly SCREAMING_SNAKE_CASE__ = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global SCREAMING_SNAKE_CASE__ = 1 return inputs
707
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__ ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" a = AltDiffusionPipeline a = TEXT_TO_IMAGE_PARAMS a = TEXT_TO_IMAGE_BATCH_PARAMS a = TEXT_TO_IMAGE_IMAGE_PARAMS a = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase_ ( self : Tuple ) -> Tuple: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , ) SCREAMING_SNAKE_CASE__ = CLIPTextModel(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) SCREAMING_SNAKE_CASE__ = 77 SCREAMING_SNAKE_CASE__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowercase_ ( self : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int]=0 ) -> Union[str, Any]: if str(__lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowercase_ ( self : List[Any] ) -> str: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def lowercase_ ( self : List[Any] ) -> int: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase_ ( self : Dict ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE__ = RobertaSeriesModelWithTransformation(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = text_encoder SCREAMING_SNAKE_CASE__ = AltDiffusionPipeline(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''A photo of an astronaut''' SCREAMING_SNAKE_CASE__ = alt_pipe(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , ) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE__ = RobertaSeriesModelWithTransformation(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = text_encoder SCREAMING_SNAKE_CASE__ = AltDiffusionPipeline(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = alt_pipe(**__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Tuple ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self : str ) -> Any: # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE__ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = alt_pipe([prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase_ ( self : Optional[int] ) -> List[str]: SCREAMING_SNAKE_CASE__ = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE__ = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = alt_pipe([prompt] , generator=__lowerCamelCase , num_inference_steps=2 , output_type='''numpy''' ) SCREAMING_SNAKE_CASE__ = output.images SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
472
0
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP UpperCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase_ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int]=8 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 SCREAMING_SNAKE_CASE__ :Optional[int] = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _SCREAMING_SNAKE_CASE( _lowerCamelCase ): def __init__( self : Dict , UpperCamelCase_ : MultilingualCLIP , UpperCamelCase_ : XLMRobertaTokenizer , UpperCamelCase_ : UNetaDConditionModel , UpperCamelCase_ : Union[DDIMScheduler, DDPMScheduler] , UpperCamelCase_ : VQModel , ) -> Dict: super().__init__() self.register_modules( text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , movq=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE__ :Optional[int] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCamelCase ( self : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] ) -> Optional[Any]: if latents is None: SCREAMING_SNAKE_CASE__ :Tuple = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) SCREAMING_SNAKE_CASE__ :Optional[Any] = latents.to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = latents * scheduler.init_noise_sigma return latents def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any]=None , ) -> Tuple: SCREAMING_SNAKE_CASE__ :Optional[int] = len(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE__ :List[str] = self.tokenizer( _SCREAMING_SNAKE_CASE , padding='max_length' , truncation=_SCREAMING_SNAKE_CASE , max_length=77 , return_attention_mask=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors='pt' , ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = text_inputs.input_ids SCREAMING_SNAKE_CASE__ :List[str] = self.tokenizer(_SCREAMING_SNAKE_CASE , padding='longest' , return_tensors='pt' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ :Tuple = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) SCREAMING_SNAKE_CASE__ :Optional[Any] = text_input_ids.to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ :Any = text_inputs.attention_mask.to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ :Dict = self.text_encoder( input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ :Dict = prompt_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) SCREAMING_SNAKE_CASE__ :Optional[int] = text_encoder_hidden_states.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) SCREAMING_SNAKE_CASE__ :Tuple = text_mask.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE__ :List[str] if negative_prompt is None: SCREAMING_SNAKE_CASE__ :Union[str, Any] = [''] * batch_size elif type(_SCREAMING_SNAKE_CASE ) is not type(_SCREAMING_SNAKE_CASE ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(_SCREAMING_SNAKE_CASE )} !=''' f''' {type(_SCREAMING_SNAKE_CASE )}.''' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ :Any = [negative_prompt] elif batch_size != len(_SCREAMING_SNAKE_CASE ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(_SCREAMING_SNAKE_CASE )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ' the batch size of `prompt`.' ) else: SCREAMING_SNAKE_CASE__ :List[Any] = negative_prompt SCREAMING_SNAKE_CASE__ :Optional[Any] = self.tokenizer( _SCREAMING_SNAKE_CASE , padding='max_length' , max_length=77 , truncation=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors='pt' , ) SCREAMING_SNAKE_CASE__ :Dict = uncond_input.input_ids.to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ :List[Any] = uncond_input.attention_mask.to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ :Any = self.text_encoder( input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE__ :List[Any] = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE__ :Optional[Any] = negative_prompt_embeds.repeat(1 , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ :Tuple = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ :Optional[Any] = uncond_text_encoder_hidden_states.shape[1] SCREAMING_SNAKE_CASE__ :int = uncond_text_encoder_hidden_states.repeat(1 , _SCREAMING_SNAKE_CASE , 1 ) SCREAMING_SNAKE_CASE__ :Tuple = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , _SCREAMING_SNAKE_CASE , -1 ) SCREAMING_SNAKE_CASE__ :str = uncond_text_mask.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE__ :List[str] = torch.cat([negative_prompt_embeds, prompt_embeds] ) SCREAMING_SNAKE_CASE__ :Tuple = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) SCREAMING_SNAKE_CASE__ :Dict = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def __lowerCamelCase ( self : List[Any] , UpperCamelCase_ : Any=0 ) -> Any: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) SCREAMING_SNAKE_CASE__ :Dict = torch.device(f'''cuda:{gpu_id}''' ) SCREAMING_SNAKE_CASE__ :Dict = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : Optional[int]=0 ) -> Optional[Any]: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) SCREAMING_SNAKE_CASE__ :List[Any] = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE__ :List[str] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: SCREAMING_SNAKE_CASE__ :Dict = cpu_offload_with_hook(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prev_module_hook=_SCREAMING_SNAKE_CASE ) if self.safety_checker is not None: SCREAMING_SNAKE_CASE__ :Union[str, Any] = cpu_offload_with_hook(self.safety_checker , _SCREAMING_SNAKE_CASE , prev_module_hook=_SCREAMING_SNAKE_CASE ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE__ :List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCamelCase ( self : str ) -> Any: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_SCREAMING_SNAKE_CASE , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_SCREAMING_SNAKE_CASE ) def __call__( self : Dict , UpperCamelCase_ : Union[str, List[str]] , UpperCamelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_ : Optional[Union[str, List[str]]] = None , UpperCamelCase_ : int = 5_12 , UpperCamelCase_ : int = 5_12 , UpperCamelCase_ : int = 1_00 , UpperCamelCase_ : float = 4.0 , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[torch.FloatTensor] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ) -> Any: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ :List[str] = 1 elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ :Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(_SCREAMING_SNAKE_CASE )}''' ) SCREAMING_SNAKE_CASE__ :Optional[int] = self._execution_device SCREAMING_SNAKE_CASE__ :str = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE__ :str = guidance_scale > 1.0 SCREAMING_SNAKE_CASE__ :Optional[int] = self._encode_prompt( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ :str = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ :Tuple = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE__ :int = image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) SCREAMING_SNAKE_CASE__ :str = negative_image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) SCREAMING_SNAKE_CASE__ :Tuple = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=_SCREAMING_SNAKE_CASE ) self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ :List[Any] = self.scheduler.timesteps SCREAMING_SNAKE_CASE__ :str = self.unet.config.in_channels SCREAMING_SNAKE_CASE__ :int = get_new_h_w(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.movq_scale_factor ) # create initial latent SCREAMING_SNAKE_CASE__ :List[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.scheduler , ) for i, t in enumerate(self.progress_bar(_SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE__ :str = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE__ :str = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} SCREAMING_SNAKE_CASE__ :Optional[int] = self.unet( sample=_SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , added_cond_kwargs=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE__ :Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE__ :int = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE__ :Optional[Any] = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE__ :List[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE__ :Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE__ :int = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , ).prev_sample # post-processing SCREAMING_SNAKE_CASE__ :List[Any] = self.movq.decode(_SCREAMING_SNAKE_CASE , force_not_quantize=_SCREAMING_SNAKE_CASE )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE__ :List[str] = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE__ :List[str] = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ :Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ :Dict = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
209
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 A_ : int = get_tests_dir('fixtures') A_ : int = get_tests_dir('fixtures/dummy_feature_extractor_config.json') A_ : Dict = get_tests_dir('fixtures/dummy-config.json') class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self : int ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = 0 def _lowerCAmelCase ( self : List[str] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : str = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : List[Any] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally SCREAMING_SNAKE_CASE : Optional[Any] = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ).to_dict() config_dict.pop('feature_extractor_type' ) SCREAMING_SNAKE_CASE : int = WavaVecaFeatureExtractor(**_SCREAMING_SNAKE_CASE ) # save in new folder model_config.save_pretrained(_SCREAMING_SNAKE_CASE ) config.save_pretrained(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , 'bert-base is not a local folder and is not a valid model identifier' ): SCREAMING_SNAKE_CASE : str = AutoFeatureExtractor.from_pretrained('bert-base' ) def _lowerCAmelCase ( self : str ) -> str: """simple docstring""" with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE , revision='aaaaaa' ) def _lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): SCREAMING_SNAKE_CASE : int = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def _lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" with self.assertRaises(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : int = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" try: AutoConfig.register('custom' , _SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoFeatureExtractor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE : Union[str, Any] = CustomFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Dict = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def _lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" class lowerCAmelCase__ ( _lowerCamelCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : str = True try: AutoConfig.register('custom' , _SCREAMING_SNAKE_CASE ) AutoFeatureExtractor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE : str = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE : List[Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(_SCREAMING_SNAKE_CASE , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
265
0
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) __snake_case =logging.getLogger() def a_ ( ): lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('-f' ) lowerCAmelCase = parser.parse_args() return args.f def a_ ( lowerCamelCase : Optional[Any] ): lowerCAmelCase = {} lowerCAmelCase = os.path.join(lowerCamelCase , 'all_results.json' ) if os.path.exists(lowerCamelCase ): with open(lowerCamelCase , 'r' ) as f: lowerCAmelCase = json.load(lowerCamelCase ) else: raise ValueError(f'''can\'t find {path}''' ) return results def a_ ( ): lowerCAmelCase = torch.cuda.is_available() and torch_device == 'cuda' return is_using_cuda and is_apex_available() __snake_case =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class UpperCAmelCase_ ( __lowercase ): @classmethod def __UpperCAmelCase ( cls : List[str] ) -> int: # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = os.path.join(cls.tmpdir , 'default_config.yml' ) write_basic_config(save_location=cls.configPath ) lowerCAmelCase = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def __UpperCAmelCase ( cls : Optional[int] ) -> str: shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def __UpperCAmelCase ( self : str ) -> Optional[Any]: lowerCAmelCase = self.get_auto_remove_tmp_dir() lowerCAmelCase = F''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append('--fp16' ) run_command(self._launch_args + testargs ) lowerCAmelCase = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , 'glue_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: lowerCAmelCase = self.get_auto_remove_tmp_dir() lowerCAmelCase = F''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) lowerCAmelCase = get_results(UpperCAmelCase__ ) self.assertLess(result['perplexity'] , 1_0_0 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , 'clm_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]: lowerCAmelCase = self.get_auto_remove_tmp_dir() lowerCAmelCase = F''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) lowerCAmelCase = get_results(UpperCAmelCase__ ) self.assertLess(result['perplexity'] , 4_2 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , 'mlm_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def __UpperCAmelCase ( self : Dict ) -> Optional[int]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu lowerCAmelCase = 7 if get_gpu_count() > 1 else 2 lowerCAmelCase = self.get_auto_remove_tmp_dir() lowerCAmelCase = F''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) lowerCAmelCase = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertLess(result['train_loss'] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , 'ner_no_trainer' ) ) ) @unittest.skip(reason='Fix me @muellerzr' ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def __UpperCAmelCase ( self : Dict ) -> Dict: lowerCAmelCase = self.get_auto_remove_tmp_dir() lowerCAmelCase = F''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) lowerCAmelCase = get_results(UpperCAmelCase__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['eval_f1'] , 2_8 ) self.assertGreaterEqual(result['eval_exact'] , 2_8 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , 'qa_no_trainer' ) ) ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: lowerCAmelCase = self.get_auto_remove_tmp_dir() lowerCAmelCase = F''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) lowerCAmelCase = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , 'swag_no_trainer' ) ) ) @slow @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def __UpperCAmelCase ( self : Any ) -> List[str]: lowerCAmelCase = self.get_auto_remove_tmp_dir() lowerCAmelCase = F''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) lowerCAmelCase = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result['eval_rouge1'] , 1_0 ) self.assertGreaterEqual(result['eval_rouge2'] , 2 ) self.assertGreaterEqual(result['eval_rougeL'] , 7 ) self.assertGreaterEqual(result['eval_rougeLsum'] , 7 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , 'summarization_no_trainer' ) ) ) @slow @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def __UpperCAmelCase ( self : Dict ) -> List[str]: lowerCAmelCase = self.get_auto_remove_tmp_dir() lowerCAmelCase = F''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) lowerCAmelCase = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result['eval_bleu'] , 3_0 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , 'epoch_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , 'translation_no_trainer' ) ) ) @slow def __UpperCAmelCase ( self : Dict ) -> int: lowerCAmelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(UpperCAmelCase__ ) lowerCAmelCase = self.get_auto_remove_tmp_dir() lowerCAmelCase = F''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) lowerCAmelCase = get_results(UpperCAmelCase__ ) self.assertGreaterEqual(result['eval_overall_accuracy'] , 0.10 ) @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} ) def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: lowerCAmelCase = self.get_auto_remove_tmp_dir() lowerCAmelCase = F''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append('--fp16' ) run_command(self._launch_args + testargs ) lowerCAmelCase = get_results(UpperCAmelCase__ ) # The base model scores a 25% self.assertGreaterEqual(result['eval_accuracy'] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , 'step_1' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase__ , 'image_classification_no_trainer' ) ) )
513
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __snake_case =logging.get_logger(__name__) class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Union[str, Any] = ['''pixel_values'''] def __init__( self : int , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : bool = True , **UpperCAmelCase__ : Dict , ) -> None: super().__init__(**UpperCAmelCase__ ) lowerCAmelCase = size if size is not None else {'height': 3_8_4, 'width': 3_8_4} lowerCAmelCase = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = resample lowerCAmelCase = do_rescale lowerCAmelCase = rescale_factor lowerCAmelCase = do_normalize lowerCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase = do_convert_rgb def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Union[str, Any] , ) -> np.ndarray: lowerCAmelCase = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) lowerCAmelCase = (size['height'], size['width']) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[int, float] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[int] , ) -> str: return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : str , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : List[Any] , ) -> np.ndarray: return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Dict[str, int]] = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[float] = None , UpperCAmelCase__ : Optional[bool] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : int , ) -> PIL.Image.Image: lowerCAmelCase = do_resize if do_resize is not None else self.do_resize lowerCAmelCase = resample if resample is not None else self.resample lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase = image_mean if image_mean is not None else self.image_mean lowerCAmelCase = image_std if image_std is not None else self.image_std lowerCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase = size if size is not None else self.size lowerCAmelCase = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) lowerCAmelCase = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase = [convert_to_rgb(UpperCAmelCase__ ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: lowerCAmelCase = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_rescale: lowerCAmelCase = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] if do_normalize: lowerCAmelCase = [self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) for image in images] lowerCAmelCase = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] lowerCAmelCase = BatchFeature(data={'pixel_values': images} , tensor_type=UpperCAmelCase__ ) return encoded_outputs
513
1
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if n_term == "": return [] _lowerCAmelCase = [] for temp in range(int(lowerCAmelCase ) ): series.append(f"1/{temp + 1}" if series else """1""" ) return series if __name__ == "__main__": A__ : Union[str, Any] =input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
207
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: A__ : Any =None A__ : Optional[int] =logging.get_logger(__name__) A__ : Union[str, Any] ={'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} A__ : List[str] ={ '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''', }, } A__ : List[str] ={ '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } A__ : List[str] ='''▁''' # Segments (not really needed) A__ : str =0 A__ : str =1 A__ : List[Any] =2 A__ : str =3 A__ : Optional[Any] =4 class UpperCAmelCase ( snake_case_ ): _lowercase: Optional[int] = VOCAB_FILES_NAMES _lowercase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP _lowercase: Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase: Optional[Any] = '''left''' _lowercase: Dict = XLNetTokenizer def __init__( self : List[str] , __snake_case : Optional[Any]=None , __snake_case : str=None , __snake_case : Union[str, Any]=False , __snake_case : str=True , __snake_case : Union[str, Any]=False , __snake_case : List[Any]="<s>" , __snake_case : List[Any]="</s>" , __snake_case : str="<unk>" , __snake_case : int="<sep>" , __snake_case : int="<pad>" , __snake_case : Dict="<cls>" , __snake_case : int="<mask>" , __snake_case : Optional[int]=["<eop>", "<eod>"] , **__snake_case : List[str] , ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( vocab_file=__snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) _lowerCAmelCase = 3 _lowerCAmelCase = do_lower_case _lowerCAmelCase = remove_space _lowerCAmelCase = keep_accents _lowerCAmelCase = vocab_file _lowerCAmelCase = False if not self.vocab_file else True def lowercase__ ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase__ ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ) -> List[int]: _lowerCAmelCase = [self.sep_token_id] _lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase__ ( self : Optional[Any] , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(__snake_case ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return _lowerCAmelCase = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
207
1
"""simple docstring""" from numpy import exp, pi, sqrt def lowercase ( __snake_case : int , __snake_case : float = 0.0 , __snake_case : float = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
700
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowercase ( ): lowercase_ : Union[str, Any] = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 2_0, '''a ''' * 3_0, '''b ''' * 7], } lowercase_ : Any = Dataset.from_dict(__snake_case ) return dataset class _UpperCAmelCase ( _A ): def A ( self : str ) -> str: lowercase_ : Tuple = get_dataset() lowercase_ : Any = make_duplicate_clusters(A , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def A ( self : List[str] ) -> Union[str, Any]: lowercase_ : Any = get_dataset() lowercase_ , lowercase_ : str = deduplicate_dataset(A ) self.assertEqual(len(A ) , 2 ) print(A ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , A )
141
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowercase__ ( __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = FileLock(str(tmpdir / 'foo.lock' ) ) UpperCAmelCase_ : List[Any] = FileLock(str(tmpdir / 'foo.lock' ) ) UpperCAmelCase_ : str = 0.01 with locka.acquire(): with pytest.raises(__snake_case ): UpperCAmelCase_ : Tuple = time.time() locka.acquire(__snake_case ) assert time.time() - _start > timeout def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Dict = 'a' * 1_000 + '.lock' UpperCAmelCase_ : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__snake_case ) assert len(os.path.basename(locka._lock_file ) ) <= 255 UpperCAmelCase_ : Optional[Any] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__snake_case ): locka.acquire(0 )
406
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def lowercase__ ( __snake_case : int , __snake_case : List[Any] , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Dict = LxmertConfig.from_json_file(__snake_case ) print(F"Building PyTorch model from configuration: {config}" ) UpperCAmelCase_ : Union[str, Any] = LxmertForPreTraining(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__snake_case , __snake_case , __snake_case ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , __snake_case ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
406
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def UpperCamelCase ( snake_case__ : Optional[int] ,snake_case__ : Optional[Any]=False ): '''simple docstring''' __snake_case :Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __snake_case :int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def UpperCamelCase ( snake_case__ : Tuple ,snake_case__ : Union[str, Any] ,snake_case__ : Optional[Any]=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: __snake_case :Tuple = """""" else: __snake_case :int = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __snake_case :Any = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) __snake_case :Optional[Any] = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __snake_case :Optional[Any] = in_proj_weight[ : config.hidden_size, : ] __snake_case :str = in_proj_bias[: config.hidden_size] __snake_case :str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __snake_case :str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __snake_case :str = in_proj_weight[ -config.hidden_size :, : ] __snake_case :List[str] = in_proj_bias[-config.hidden_size :] def UpperCamelCase ( snake_case__ : List[str] ): '''simple docstring''' __snake_case :Dict = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(a__ ,a__ ) def UpperCamelCase ( snake_case__ : Optional[Any] ,snake_case__ : List[Any] ,snake_case__ : Union[str, Any] ): '''simple docstring''' __snake_case :Dict = dct.pop(a__ ) __snake_case :int = val def UpperCamelCase ( ): '''simple docstring''' __snake_case :List[str] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __snake_case :Optional[Any] = Image.open(requests.get(a__ ,stream=a__ ).raw ) return im @torch.no_grad() def UpperCamelCase ( snake_case__ : Tuple ,snake_case__ : Optional[Any] ,snake_case__ : int=True ): '''simple docstring''' __snake_case :int = ViTConfig() # patch_size if model_name[-1] == "8": __snake_case :Dict = 8 # set labels if required if not base_model: __snake_case :Optional[Any] = 1000 __snake_case :List[str] = """huggingface/label-files""" __snake_case :List[Any] = """imagenet-1k-id2label.json""" __snake_case :int = json.load(open(hf_hub_download(a__ ,a__ ,repo_type="""dataset""" ) ,"""r""" ) ) __snake_case :Optional[int] = {int(a__ ): v for k, v in idalabel.items()} __snake_case :List[Any] = idalabel __snake_case :str = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: __snake_case :Union[str, Any] = 384 __snake_case :str = 1536 __snake_case :str = 12 __snake_case :Optional[int] = 6 # load original model from torch hub __snake_case :Optional[int] = torch.hub.load("""facebookresearch/dino:main""" ,a__ ) original_model.eval() # load state_dict of original model, remove and rename some keys __snake_case :Optional[Any] = original_model.state_dict() if base_model: remove_classification_head_(a__ ) __snake_case :int = create_rename_keys(a__ ,base_model=a__ ) for src, dest in rename_keys: rename_key(a__ ,a__ ,a__ ) read_in_q_k_v(a__ ,a__ ,a__ ) # load HuggingFace model if base_model: __snake_case :Optional[Any] = ViTModel(a__ ,add_pooling_layer=a__ ).eval() else: __snake_case :Dict = ViTForImageClassification(a__ ).eval() model.load_state_dict(a__ ) # Check outputs on an image, prepared by ViTImageProcessor __snake_case :Dict = ViTImageProcessor() __snake_case :Dict = image_processor(images=prepare_img() ,return_tensors="""pt""" ) __snake_case :int = encoding["""pixel_values"""] __snake_case :List[str] = model(a__ ) if base_model: __snake_case :Tuple = original_model(a__ ) assert torch.allclose(a__ ,outputs.last_hidden_state[:, 0, :] ,atol=1e-1 ) else: __snake_case :List[str] = original_model(a__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(a__ ,outputs.logits ,atol=1e-3 ) Path(a__ ).mkdir(exist_ok=a__ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(a__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(a__ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) lowerCamelCase__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
716
import os def UpperCamelCase ( ): '''simple docstring''' __snake_case :List[str] = os.path.dirname(os.path.realpath(snake_case__ ) ) __snake_case :Union[str, Any] = os.path.join(snake_case__ ,"""triangle.txt""" ) with open(snake_case__ ) as f: __snake_case :int = f.readlines() __snake_case :int = [] for line in triangle: __snake_case :List[Any] = [] for number in line.strip().split(""" """ ): numbers_from_line.append(int(snake_case__ ) ) a.append(snake_case__ ) for i in range(1 ,len(snake_case__ ) ): for j in range(len(a[i] ) ): __snake_case :Union[str, Any] = a[i - 1][j] if j != len(a[i - 1] ) else 0 __snake_case :Dict = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(snake_case__ ,snake_case__ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
291
0
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase_ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase_ : Union[str, Any] = {"vocab_file": "spiece.model"} UpperCamelCase_ : List[Any] = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), } } UpperCamelCase_ : Any = { "google/bigbird-roberta-base": 4_096, "google/bigbird-roberta-large": 4_096, "google/bigbird-base-trivia-itc": 4_096, } class lowerCamelCase__ ( a_ ): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ["input_ids", "attention_mask"] UpperCamelCase__ = [] def __init__( self : List[str] ,a__ : Any ,a__ : List[Any]="<unk>" ,a__ : List[Any]="<s>" ,a__ : List[Any]="</s>" ,a__ : Union[str, Any]="<pad>" ,a__ : Any="[SEP]" ,a__ : Union[str, Any]="[MASK]" ,a__ : Dict="[CLS]" ,a__ : Optional[Any] = None ,**a__ : List[Any] ,): a__ = AddedToken(a__ ,lstrip=a__ ,rstrip=a__ ) if isinstance(a__ ,a__ ) else bos_token a__ = AddedToken(a__ ,lstrip=a__ ,rstrip=a__ ) if isinstance(a__ ,a__ ) else eos_token a__ = AddedToken(a__ ,lstrip=a__ ,rstrip=a__ ) if isinstance(a__ ,a__ ) else unk_token a__ = AddedToken(a__ ,lstrip=a__ ,rstrip=a__ ) if isinstance(a__ ,a__ ) else pad_token a__ = AddedToken(a__ ,lstrip=a__ ,rstrip=a__ ) if isinstance(a__ ,a__ ) else cls_token a__ = AddedToken(a__ ,lstrip=a__ ,rstrip=a__ ) if isinstance(a__ ,a__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it a__ = AddedToken(a__ ,lstrip=a__ ,rstrip=a__ ) if isinstance(a__ ,a__ ) else mask_token a__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a__ ,eos_token=a__ ,unk_token=a__ ,pad_token=a__ ,sep_token=a__ ,mask_token=a__ ,cls_token=a__ ,sp_model_kwargs=self.sp_model_kwargs ,**a__ ,) a__ = vocab_file a__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a__ ) @property def lowerCAmelCase_ ( self : str ): return self.sp_model.get_piece_size() def lowerCAmelCase_ ( self : Union[str, Any] ): a__ = {self.convert_ids_to_tokens(a__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ): a__ = self.__dict__.copy() a__ = None return state def __setstate__( self : int ,a__ : int ): a__ = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): a__ = {} a__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self : str ,a__ : str ): return self.sp_model.encode(a__ ,out_type=a__ ) def lowerCAmelCase_ ( self : str ,a__ : Tuple ): return self.sp_model.piece_to_id(a__ ) def lowerCAmelCase_ ( self : List[str] ,a__ : int ): a__ = self.sp_model.IdToPiece(a__ ) return token def lowerCAmelCase_ ( self : str ,a__ : Dict ): a__ = [] a__ = "" a__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a__ ) + token a__ = True a__ = [] else: current_sub_tokens.append(a__ ) a__ = False out_string += self.sp_model.decode(a__ ) return out_string.strip() def lowerCAmelCase_ ( self : Optional[int] ,a__ : Dict ,a__ : str = False ,a__ : Dict = None ,a__ : Tuple = True ,**a__ : Optional[Any] ,): a__ = kwargs.pop("use_source_tokenizer" ,a__ ) a__ = self.convert_ids_to_tokens(a__ ,skip_special_tokens=a__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 a__ = [] a__ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a__ ) ) a__ = [] sub_texts.append(a__ ) else: current_sub_text.append(a__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(a__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: a__ = re.sub(r" (\[(MASK|SEP)\])" ,r"\1" ," ".join(a__ ) ) else: a__ = "".join(a__ ) a__ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: a__ = self.clean_up_tokenization(a__ ) return clean_text else: return text def lowerCAmelCase_ ( self : List[str] ,a__ : Optional[int] ,a__ : List[str] = None ): if not os.path.isdir(a__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return a__ = os.path.join( a__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,a__ ) elif not os.path.isfile(self.vocab_file ): with open(a__ ,"wb" ) as fi: a__ = self.sp_model.serialized_model_proto() fi.write(a__ ) return (out_vocab_file,) def lowerCAmelCase_ ( self : str ,a__ : Dict ,a__ : Dict = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a__ = [self.cls_token_id] a__ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : int ,a__ : int ,a__ : List[Any] = None ,a__ : str = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ ,token_ids_a=a__ ,already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1] + ([0] * len(a__ )) + [1] def lowerCAmelCase_ ( self : Union[str, Any] ,a__ : List[str] ,a__ : Optional[int] = None ): a__ = [self.sep_token_id] a__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
331
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase : Any = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
457
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { 'configuration_wav2vec2': ['WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Wav2Vec2Config'], 'feature_extraction_wav2vec2': ['Wav2Vec2FeatureExtractor'], 'processing_wav2vec2': ['Wav2Vec2Processor'], 'tokenization_wav2vec2': ['Wav2Vec2CTCTokenizer', 'Wav2Vec2Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Wav2Vec2ForAudioFrameClassification', 'Wav2Vec2ForCTC', 'Wav2Vec2ForMaskedLM', 'Wav2Vec2ForPreTraining', 'Wav2Vec2ForSequenceClassification', 'Wav2Vec2ForXVector', 'Wav2Vec2Model', 'Wav2Vec2PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWav2Vec2ForCTC', 'TFWav2Vec2Model', 'TFWav2Vec2PreTrainedModel', 'TFWav2Vec2ForSequenceClassification', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'FlaxWav2Vec2ForCTC', 'FlaxWav2Vec2ForPreTraining', 'FlaxWav2Vec2Model', 'FlaxWav2Vec2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
715
'''simple docstring''' from ...processing_utils import ProcessorMixin class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" a_ :Dict =["""image_processor""", """feature_extractor"""] a_ :str ="""TvltImageProcessor""" a_ :str ="""TvltFeatureExtractor""" def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' super().__init__(image_processor=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ ) __a = image_processor __a = feature_extractor def __call__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Any=False , SCREAMING_SNAKE_CASE__ : List[str]=False , *SCREAMING_SNAKE_CASE__ : str , **SCREAMING_SNAKE_CASE__ : Optional[int] , ): '''simple docstring''' if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __a = None if images is not None: __a = self.image_processor(SCREAMING_SNAKE_CASE__ , mask_pixel=SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if images_mixed is not None: __a = self.image_processor(SCREAMING_SNAKE_CASE__ , is_mixed=SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) if audio is not None: __a = self.feature_extractor( SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , sampling_rate=SCREAMING_SNAKE_CASE__ , mask_audio=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __a = {} if audio is not None: output_dict.update(SCREAMING_SNAKE_CASE__ ) if images is not None: output_dict.update(SCREAMING_SNAKE_CASE__ ) if images_mixed_dict is not None: output_dict.update(SCREAMING_SNAKE_CASE__ ) return output_dict @property def __a ( self : List[str] ): '''simple docstring''' __a = self.image_processor.model_input_names __a = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
201
0
def UpperCamelCase_( snake_case__: Tuple ) -> Optional[int]: UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 while i * i <= n: UpperCAmelCase__ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def UpperCamelCase_( ) -> Dict: UpperCAmelCase__ = 1 UpperCAmelCase__ = 1 while True: i += 1 t_num += i if count_divisors(snake_case__ ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
146
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """perceiver""" def __init__(self , __a=256 , __a=1280 , __a=768 , __a=1 , __a=26 , __a=8 , __a=8 , __a=None , __a=None , __a="kv" , __a=1 , __a=1 , __a="gelu" , __a=0.1 , __a=0.02 , __a=1E-1_2 , __a=True , __a=262 , __a=2048 , __a=56 , __a=[368, 496] , __a=16 , __a=1920 , __a=16 , __a=[1, 16, 224, 224] , **__a , ) -> Union[str, Any]: """simple docstring""" super().__init__(**__a ) UpperCAmelCase__ = num_latents UpperCAmelCase__ = d_latents UpperCAmelCase__ = d_model UpperCAmelCase__ = num_blocks UpperCAmelCase__ = num_self_attends_per_block UpperCAmelCase__ = num_self_attention_heads UpperCAmelCase__ = num_cross_attention_heads UpperCAmelCase__ = qk_channels UpperCAmelCase__ = v_channels UpperCAmelCase__ = cross_attention_shape_for_attention UpperCAmelCase__ = self_attention_widening_factor UpperCAmelCase__ = cross_attention_widening_factor UpperCAmelCase__ = hidden_act UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = initializer_range UpperCAmelCase__ = layer_norm_eps UpperCAmelCase__ = use_query_residual # masked language modeling attributes UpperCAmelCase__ = vocab_size UpperCAmelCase__ = max_position_embeddings # image classification attributes UpperCAmelCase__ = image_size # flow attributes UpperCAmelCase__ = train_size # multimodal autoencoding attributes UpperCAmelCase__ = num_frames UpperCAmelCase__ = audio_samples_per_frame UpperCAmelCase__ = samples_per_patch UpperCAmelCase__ = output_shape class lowercase ( _UpperCamelCase ): '''simple docstring''' @property def UpperCamelCase__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase__ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCAmelCase__ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def UpperCamelCase__ (self ) -> float: """simple docstring""" return 1E-4 def UpperCamelCase__ (self , __a , __a = -1 , __a = -1 , __a = -1 , __a = False , __a = None , __a = 3 , __a = 40 , __a = 40 , ) -> Mapping[str, Any]: """simple docstring""" if isinstance(__a , __a ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase__ = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCAmelCase__ = preprocessor.num_special_tokens_to_add(__a ) UpperCAmelCase__ = compute_effective_axis_dimension( __a , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__a ) # Generate dummy inputs according to compute batch and sequence UpperCAmelCase__ = [' '.join(['a'] ) * seq_length] * batch_size UpperCAmelCase__ = dict(preprocessor(__a , return_tensors=__a ) ) UpperCAmelCase__ = inputs.pop('input_ids' ) return inputs elif isinstance(__a , __a ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCAmelCase__ = compute_effective_axis_dimension(__a , fixed_dimension=OnnxConfig.default_fixed_batch ) UpperCAmelCase__ = self._generate_dummy_images(__a , __a , __a , __a ) UpperCAmelCase__ = dict(preprocessor(images=__a , return_tensors=__a ) ) UpperCAmelCase__ = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
146
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : List[str] = {"""vocab_file""": """spm_char.model"""} _lowerCamelCase : List[Any] = { """vocab_file""": { """microsoft/speecht5_asr""": """https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model""", """microsoft/speecht5_tts""": """https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model""", """microsoft/speecht5_vc""": """https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model""", } } _lowerCamelCase : str = { """microsoft/speecht5_asr""": 1_024, """microsoft/speecht5_tts""": 1_024, """microsoft/speecht5_vc""": 1_024, } class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' UpperCAmelCase : Any = VOCAB_FILES_NAMES UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self : List[Any] , snake_case : int , snake_case : Dict="<s>" , snake_case : List[str]="</s>" , snake_case : List[str]="<unk>" , snake_case : Optional[Any]="<pad>" , snake_case : Optional[Dict[str, Any]] = None , **snake_case : Union[str, Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , pad_token=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) SCREAMING_SNAKE_CASE : Any = vocab_file SCREAMING_SNAKE_CASE : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case ) @property def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return self.sp_model.get_piece_size() def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = {self.convert_ids_to_tokens(snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.__dict__.copy() SCREAMING_SNAKE_CASE : Union[str, Any] = None return state def __setstate__( self : Optional[int] , snake_case : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase_ ( self : Optional[int] , snake_case : str ): '''simple docstring''' return self.sp_model.encode(snake_case , out_type=snake_case ) def lowerCamelCase_ ( self : str , snake_case : Dict ): '''simple docstring''' return self.sp_model.piece_to_id(snake_case ) def lowerCamelCase_ ( self : int , snake_case : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.sp_model.IdToPiece(snake_case ) return token def lowerCamelCase_ ( self : List[str] , snake_case : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Tuple = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case ) + token SCREAMING_SNAKE_CASE : List[Any] = [] else: current_sub_tokens.append(snake_case ) out_string += self.sp_model.decode(snake_case ) return out_string.strip() def lowerCamelCase_ ( self : Optional[Any] , snake_case : Optional[Any] , snake_case : str=None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Any , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) SCREAMING_SNAKE_CASE : List[Any] = [1] if token_ids_a is None: return ([0] * len(snake_case )) + suffix_ones return ([0] * len(snake_case )) + ([0] * len(snake_case )) + suffix_ones def lowerCamelCase_ ( self : Optional[Any] , snake_case : str , snake_case : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE : Tuple = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case ) elif not os.path.isfile(self.vocab_file ): with open(snake_case , 'wb' ) as fi: SCREAMING_SNAKE_CASE : Tuple = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (out_vocab_file,)
308
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image _lowerCamelCase : Any = ["""text""", """image""", """audio"""] def __a ( __lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE : List[str] = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): inputs.append(create_inputs(__lowerCAmelCase ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def __a ( __lowerCAmelCase ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Any = [] for output in outputs: if isinstance(__lowerCAmelCase , (str, AgentText) ): output_types.append('text' ) elif isinstance(__lowerCAmelCase , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(__lowerCAmelCase , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class lowercase : '''simple docstring''' def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' self.assertTrue(hasattr(self.tool , 'inputs' ) ) self.assertTrue(hasattr(self.tool , 'outputs' ) ) SCREAMING_SNAKE_CASE : Any = self.tool.inputs for _input in inputs: if isinstance(_input , snake_case ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) SCREAMING_SNAKE_CASE : Tuple = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.tool(*snake_case ) # There is a single output if len(self.tool.outputs ) == 1: SCREAMING_SNAKE_CASE : List[Any] = [outputs] self.assertListEqual(output_types(snake_case ) , self.tool.outputs ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' self.assertTrue(hasattr(self.tool , 'description' ) ) self.assertTrue(hasattr(self.tool , 'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE : Any = self.tool(*snake_case ) if not isinstance(snake_case , snake_case ): SCREAMING_SNAKE_CASE : int = [outputs] self.assertEqual(len(snake_case ) , len(self.tool.outputs ) ) for output, output_type in zip(snake_case , self.tool.outputs ): SCREAMING_SNAKE_CASE : int = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(snake_case , snake_case ) ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE : Tuple = [] for _input, input_type in zip(snake_case , self.tool.inputs ): if isinstance(snake_case , snake_case ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error SCREAMING_SNAKE_CASE : Optional[int] = self.tool(*snake_case ) if not isinstance(snake_case , snake_case ): SCREAMING_SNAKE_CASE : List[Any] = [outputs] self.assertEqual(len(snake_case ) , len(self.tool.outputs ) )
308
1
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): __A : Any = True from torch.cuda.amp import autocast __A : Dict = logging.getLogger(__name__) @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase__ = field( default=a_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCamelCase__ = field( default=a_ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) lowerCamelCase__ = field( default=a_ , metadata={"help": "Whether to log verbose messages or not."} , ) lowerCamelCase__ = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) lowerCamelCase__ = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) lowerCamelCase__ = field( default=0.999_995 , metadata={"help": "Decay of gumbel temperature during training."} ) def __a ( A__ : Optional[Any] , A__ : str ): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) SCREAMING_SNAKE_CASE = logging.WARNING if model_args.verbose_logging: SCREAMING_SNAKE_CASE = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): SCREAMING_SNAKE_CASE = logging.INFO logger.setLevel(A__ ) @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase__ = field( default=a_ , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) lowerCamelCase__ = field( default=a_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCamelCase__ = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to \'train\'" } , ) lowerCamelCase__ = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'" ) } , ) lowerCamelCase__ = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to \'file\'"} , ) lowerCamelCase__ = field( default=a_ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) lowerCamelCase__ = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there\'s no validation split" } , ) lowerCamelCase__ = field( default=a_ , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCamelCase__ = field( default=20.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase__ = 4_2 lowerCamelCase__ = 4_2 lowerCamelCase__ = "longest" lowerCamelCase__ = None lowerCamelCase__ = None def __call__( self : Tuple , __lowerCamelCase : List[Dict[str, Union[List[int], torch.Tensor]]] ): SCREAMING_SNAKE_CASE = self.feature_extractor.pad( lowerCAmelCase__ , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) SCREAMING_SNAKE_CASE = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) SCREAMING_SNAKE_CASE = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula SCREAMING_SNAKE_CASE = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) SCREAMING_SNAKE_CASE = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices SCREAMING_SNAKE_CASE = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=lowerCAmelCase__ , min_masks=2 , ) return batch class _SCREAMING_SNAKE_CASE ( a_ ): '''simple docstring''' def __init__( self : str , *__lowerCamelCase : str , __lowerCamelCase : Tuple=1 , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=1.0 , **__lowerCamelCase : Union[str, Any] ): super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = max_gumbel_temp SCREAMING_SNAKE_CASE = min_gumbel_temp SCREAMING_SNAKE_CASE = gumbel_temp_decay def _snake_case ( self : Optional[int] , __lowerCamelCase : nn.Module , __lowerCamelCase : Dict[str, Union[torch.Tensor, Any]] ): model.train() SCREAMING_SNAKE_CASE = self._prepare_inputs(lowerCAmelCase__ ) if self.use_amp: with autocast(): SCREAMING_SNAKE_CASE = self.compute_loss(lowerCAmelCase__ , lowerCAmelCase__ ) else: SCREAMING_SNAKE_CASE = self.compute_loss(lowerCAmelCase__ , lowerCAmelCase__ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": SCREAMING_SNAKE_CASE = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": SCREAMING_SNAKE_CASE = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']" ) if self.args.gradient_accumulation_steps > 1: SCREAMING_SNAKE_CASE = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase__ ).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase__ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase__ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def __a ( ): SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() configure_logger(A__ , A__ ) # Downloading and loading a dataset from the hub. SCREAMING_SNAKE_CASE = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" SCREAMING_SNAKE_CASE = DatasetDict() SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]" , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]" , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" SCREAMING_SNAKE_CASE = DatasetDict() SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"{data_args.train_split_name}" , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=A__ ) def prepare_dataset(A__ : Optional[int] ): # check that all files have the correct sampling rate SCREAMING_SNAKE_CASE = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays SCREAMING_SNAKE_CASE = datasets.map( A__ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long SCREAMING_SNAKE_CASE = vectorized_datasets.filter( lambda A__ : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(A__ : Optional[int] ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` SCREAMING_SNAKE_CASE = vectorized_datasets.map( A__ , batched=A__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 SCREAMING_SNAKE_CASE = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) SCREAMING_SNAKE_CASE = WavaVecaForPreTraining(A__ ) SCREAMING_SNAKE_CASE = DataCollatorForWavaVecaPretraining(model=A__ , feature_extractor=A__ ) SCREAMING_SNAKE_CASE = WavaVecaPreTrainer( model=A__ , data_collator=A__ , args=A__ , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=A__ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
16
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : Dict = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class A_ (a_ ): """simple docstring""" a__ = '''roc_bert''' def __init__( self :Dict , lowerCAmelCase__ :Optional[Any]=30_522 , lowerCAmelCase__ :Dict=768 , lowerCAmelCase__ :str=12 , lowerCAmelCase__ :Optional[int]=12 , lowerCAmelCase__ :Optional[Any]=3_072 , lowerCAmelCase__ :Any="gelu" , lowerCAmelCase__ :int=0.1 , lowerCAmelCase__ :Tuple=0.1 , lowerCAmelCase__ :List[str]=512 , lowerCAmelCase__ :int=2 , lowerCAmelCase__ :Optional[int]=0.0_2 , lowerCAmelCase__ :Tuple=1E-1_2 , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :List[str]=0 , lowerCAmelCase__ :Optional[Any]="absolute" , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :List[str]=768 , lowerCAmelCase__ :Optional[Any]=910 , lowerCAmelCase__ :str=512 , lowerCAmelCase__ :int=24_858 , lowerCAmelCase__ :List[Any]=True , **lowerCAmelCase__ :int , ) -> List[str]: '''simple docstring''' snake_case_ : int = vocab_size snake_case_ : Dict = max_position_embeddings snake_case_ : int = hidden_size snake_case_ : str = num_hidden_layers snake_case_ : Union[str, Any] = num_attention_heads snake_case_ : int = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : Optional[int] = hidden_dropout_prob snake_case_ : List[Any] = attention_probs_dropout_prob snake_case_ : Dict = initializer_range snake_case_ : str = type_vocab_size snake_case_ : Tuple = layer_norm_eps snake_case_ : Optional[Any] = use_cache snake_case_ : Optional[Any] = enable_pronunciation snake_case_ : List[Any] = enable_shape snake_case_ : Optional[int] = pronunciation_embed_dim snake_case_ : Dict = pronunciation_vocab_size snake_case_ : int = shape_embed_dim snake_case_ : Any = shape_vocab_size snake_case_ : Optional[int] = concat_input snake_case_ : List[Any] = position_embedding_type snake_case_ : Any = classifier_dropout super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
653
0
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed snake_case = "true" def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__=82 , lowerCAmelCase__=16 ): """simple docstring""" set_seed(42 ) _lowerCAmelCase : Optional[Any] = RegressionModel() _lowerCAmelCase : Union[str, Any] = deepcopy(lowerCAmelCase__ ) _lowerCAmelCase : Dict = RegressionDataset(length=lowerCAmelCase__ ) _lowerCAmelCase : Optional[int] = DataLoader(lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) model.to(accelerator.device ) _lowerCAmelCase , _lowerCAmelCase : List[str] = accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ ) return model, ddp_model, dataloader def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__=False ): """simple docstring""" _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" ) _lowerCAmelCase : List[Any] = load_dataset("glue" , "mrpc" , split="validation" ) def tokenize_function(lowerCAmelCase__ ): _lowerCAmelCase : Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs with accelerator.main_process_first(): _lowerCAmelCase : Tuple = dataset.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["idx", "sentence1", "sentence2"] , ) _lowerCAmelCase : Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCAmelCase__ ): if use_longest: return tokenizer.pad(lowerCAmelCase__ , padding="longest" , return_tensors="pt" ) return tokenizer.pad(lowerCAmelCase__ , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return DataLoader(lowerCAmelCase__ , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=16 ) def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : Optional[Any] = Accelerator(dispatch_batches=lowerCAmelCase__ , split_batches=lowerCAmelCase__ ) _lowerCAmelCase : Dict = get_dataloader(lowerCAmelCase__ , not dispatch_batches ) _lowerCAmelCase : Dict = AutoModelForSequenceClassification.from_pretrained( "hf-internal-testing/mrpc-bert-base-cased" , return_dict=lowerCAmelCase__ ) _lowerCAmelCase , _lowerCAmelCase : str = accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = [] for batch in dataloader: _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = batch.values() with torch.no_grad(): _lowerCAmelCase : str = model(lowerCAmelCase__ ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) _lowerCAmelCase , _lowerCAmelCase : Dict = [], [] for logit, targ in logits_and_targets: logits.append(lowerCAmelCase__ ) targs.append(lowerCAmelCase__ ) _lowerCAmelCase , _lowerCAmelCase : int = torch.cat(lowerCAmelCase__ ), torch.cat(lowerCAmelCase__ ) return logits, targs def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__=82 , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=16 ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = get_basic_setup(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _lowerCAmelCase , _lowerCAmelCase : str = generate_predictions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) assert ( len(lowerCAmelCase__ ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowerCAmelCase__ )}""" def UpperCamelCase_ ( lowerCAmelCase__ = False , lowerCAmelCase__ = False ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = evaluate.load("glue" , "mrpc" ) _lowerCAmelCase , _lowerCAmelCase : int = get_mrpc_setup(lowerCAmelCase__ , lowerCAmelCase__ ) # First do baseline _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = setup["no"] model.to(lowerCAmelCase__ ) model.eval() for batch in dataloader: batch.to(lowerCAmelCase__ ) with torch.inference_mode(): _lowerCAmelCase : Optional[int] = model(**lowerCAmelCase__ ) _lowerCAmelCase : str = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowerCAmelCase__ , references=batch["labels"] ) _lowerCAmelCase : Optional[int] = metric.compute() # Then do distributed _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): _lowerCAmelCase : Any = model(**lowerCAmelCase__ ) _lowerCAmelCase : int = outputs.logits.argmax(dim=-1 ) _lowerCAmelCase : Union[str, Any] = batch["labels"] _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def UpperCamelCase_ ( ): """simple docstring""" _lowerCAmelCase : int = Accelerator(split_batches=lowerCAmelCase__ , dispatch_batches=lowerCAmelCase__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("**Testing gather_for_metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(lowerCAmelCase__ , lowerCAmelCase__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test torch metrics**" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: _lowerCAmelCase : Tuple = Accelerator(split_batches=lowerCAmelCase__ , dispatch_batches=lowerCAmelCase__ ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(lowerCAmelCase__ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("**Test last batch is not dropped when perfectly divisible**" ) _lowerCAmelCase : List[str] = Accelerator() test_torch_metrics(lowerCAmelCase__ , 5_12 ) accelerator.state._reset_state() def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" main() if __name__ == "__main__": main()
587
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" if isinstance(lowerCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_tf class __A : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): pass def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self ): pass def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): _lowerCAmelCase : Tuple = VisionTextDualEncoderConfig.from_vision_text_configs(_snake_case , _snake_case ) _lowerCAmelCase : Tuple = TFVisionTextDualEncoderModel(_snake_case ) _lowerCAmelCase : Any = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase : Any = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase : Union[str, Any] = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase : Any = {"vision_model": vision_model, "text_model": text_model} _lowerCAmelCase : Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_snake_case ) _lowerCAmelCase : Dict = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): _lowerCAmelCase , _lowerCAmelCase : List[str] = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase : Optional[int] = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase : Tuple = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) _lowerCAmelCase : List[str] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_snake_case ) _lowerCAmelCase : Dict = TFVisionTextDualEncoderModel.from_pretrained(_snake_case ) _lowerCAmelCase : Dict = model(input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case ) _lowerCAmelCase : Optional[int] = after_output[0].numpy() _lowerCAmelCase : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case , 1E-5 ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase : Tuple = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase : List[str] = model( input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , output_attentions=_snake_case ) _lowerCAmelCase : Optional[Any] = output.vision_model_output.attentions self.assertEqual(len(_snake_case ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : List[Any] = to_atuple(vision_model.config.image_size ) _lowerCAmelCase : Optional[int] = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase : Any = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase : int = output.text_model_output.attentions self.assertEqual(len(_snake_case ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case ): _lowerCAmelCase : List[str] = np.abs((a - b) ).max() self.assertLessEqual(_snake_case , _snake_case , F"""Difference between torch and flax is {diff} (>= {tol}).""" ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Any = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Any = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : int = self.prepare_config_and_inputs() self.check_save_load(**_snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : int = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.get_pretrained_model_and_inputs() _lowerCAmelCase : List[str] = model_a(**_snake_case ) _lowerCAmelCase : List[Any] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_snake_case ) _lowerCAmelCase : Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained(_snake_case ) _lowerCAmelCase : List[str] = model_a(**_snake_case ) _lowerCAmelCase : Any = after_outputs[0].numpy() _lowerCAmelCase : Dict = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_snake_case , 1E-5 ) @require_tf class __A ( snake_case__ ,unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : List[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" ) _lowerCAmelCase : Optional[int] = 13 _lowerCAmelCase : Optional[int] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase : Optional[int] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase : Optional[int] = random_attention_mask([batch_size, 4] ) _lowerCAmelCase : Tuple = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): _lowerCAmelCase : Optional[Any] = TFViTModel(_snake_case , name="vision_model" ) _lowerCAmelCase : Union[str, Any] = TFBertModel(_snake_case , name="text_model" ) return vision_model, text_model def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : List[Any] = TFViTModelTester(self ) _lowerCAmelCase : List[str] = TFBertModelTester(self ) _lowerCAmelCase : str = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase : int = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Dict = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __A ( snake_case__ ,unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. _lowerCAmelCase : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" ) _lowerCAmelCase : List[Any] = 13 _lowerCAmelCase : Tuple = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase : List[str] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase : List[Any] = random_attention_mask([batch_size, 4] ) _lowerCAmelCase : Optional[int] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=None , **_snake_case ): _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.get_vision_text_model(_snake_case , _snake_case ) _lowerCAmelCase : Optional[int] = TFVisionTextDualEncoderModel(vision_model=_snake_case , text_model=_snake_case ) _lowerCAmelCase : Tuple = model( input_ids=_snake_case , pixel_values=_snake_case , attention_mask=_snake_case , output_attentions=_snake_case ) _lowerCAmelCase : Tuple = output.vision_model_output.attentions self.assertEqual(len(_snake_case ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCAmelCase : Any = to_atuple(vision_model.config.image_size ) _lowerCAmelCase : List[str] = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase : Dict = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase : str = output.text_model_output.attentions self.assertEqual(len(_snake_case ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): _lowerCAmelCase : Any = TFDeiTModel(_snake_case , name="vision_model" ) _lowerCAmelCase : int = TFRobertaModel(_snake_case , name="text_model" ) return vision_model, text_model def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[int] = TFDeiTModelTester(self ) _lowerCAmelCase : Union[str, Any] = TFRobertaModelTester(self ) _lowerCAmelCase : Any = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase : Union[str, Any] = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __A ( snake_case__ ,unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" ) _lowerCAmelCase : List[str] = 13 _lowerCAmelCase : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase : Tuple = random_attention_mask([batch_size, 4] ) _lowerCAmelCase : Any = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def SCREAMING_SNAKE_CASE__ ( self , _snake_case , _snake_case ): _lowerCAmelCase : Any = TFCLIPVisionModel(_snake_case , name="vision_model" ) _lowerCAmelCase : Any = TFBertModel(_snake_case , name="text_model" ) return vision_model, text_model def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Optional[int] = TFCLIPVisionModelTester(self ) _lowerCAmelCase : Union[str, Any] = TFBertModelTester(self ) _lowerCAmelCase : str = clip_model_tester.prepare_config_and_inputs() _lowerCAmelCase : Dict = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase : Tuple = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __A ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self ): _lowerCAmelCase : Dict = TFVisionTextDualEncoderModel.from_pretrained( "clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=_snake_case ) _lowerCAmelCase : Union[str, Any] = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) _lowerCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCAmelCase : Optional[int] = processor( text=["una foto di un gatto", "una foto di un cane"] , images=_snake_case , padding=_snake_case , return_tensors="np" ) _lowerCAmelCase : List[Any] = model(**_snake_case ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _lowerCAmelCase : Any = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _snake_case , atol=1E-3 ) )
587
1
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def UpperCAmelCase__( __UpperCAmelCase : NDArray[floataa] , __UpperCAmelCase : NDArray[floataa] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int , ): __snake_case , __snake_case : Any = coefficient_matrix.shape __snake_case , __snake_case : List[Any] = constant_matrix.shape if rowsa != colsa: __snake_case : int = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(__UpperCAmelCase ) if colsa != 1: __snake_case : str = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(__UpperCAmelCase ) if rowsa != rowsa: __snake_case : List[str] = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(__UpperCAmelCase ) if len(__UpperCAmelCase ) != rowsa: __snake_case : List[Any] = ( 'Number of initial values must be equal to number of rows in coefficient ' F"""matrix but received {len(__UpperCAmelCase )} and {rowsa}""" ) raise ValueError(__UpperCAmelCase ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) __snake_case : Optional[int] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __snake_case , __snake_case : Tuple = table.shape strictly_diagonally_dominant(__UpperCAmelCase ) # Iterates the whole matrix for given number of times for _ in range(__UpperCAmelCase ): __snake_case : str = [] for row in range(__UpperCAmelCase ): __snake_case : Tuple = 0 for col in range(__UpperCAmelCase ): if col == row: __snake_case : Dict = table[row][col] elif col == cols - 1: __snake_case : Tuple = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __snake_case : Union[str, Any] = (temp + val) / denom new_val.append(__UpperCAmelCase ) __snake_case : int = new_val return [float(__UpperCAmelCase ) for i in new_val] def UpperCAmelCase__( __UpperCAmelCase : NDArray[floataa] ): __snake_case , __snake_case : Dict = table.shape __snake_case : str = True for i in range(0 , __UpperCAmelCase ): __snake_case : int = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
576
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case , snake_case=7 , snake_case=3 , snake_case=10 , snake_case=18 , snake_case=30 , snake_case=400 , snake_case=True , snake_case=None , snake_case=True , snake_case=[0.5, 0.5, 0.5] , snake_case=[0.5, 0.5, 0.5] , snake_case=None , ) -> Optional[Any]: _UpperCAmelCase = size if size is not None else {'shortest_edge': 18} _UpperCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = num_frames _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = crop_size def lowerCamelCase_ ( self ) -> Optional[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowercase__ ( A, unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = VivitImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self ) -> List[Any]: _UpperCAmelCase = VivitImageProcessingTester(self ) @property def lowerCamelCase_ ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self ) -> Any: _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , 'image_mean' ) ) self.assertTrue(hasattr(snake_case , 'image_std' ) ) self.assertTrue(hasattr(snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case , 'do_resize' ) ) self.assertTrue(hasattr(snake_case , 'do_center_crop' ) ) self.assertTrue(hasattr(snake_case , 'size' ) ) def lowerCamelCase_ ( self ) -> Dict: _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowerCamelCase_ ( self ) -> List[str]: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _UpperCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=snake_case ) for video in video_inputs: self.assertIsInstance(snake_case , snake_case ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _UpperCAmelCase = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCamelCase_ ( self ) -> Optional[Any]: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case ) for video in video_inputs: self.assertIsInstance(snake_case , snake_case ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCamelCase_ ( self ) -> str: # Initialize image_processing _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case ) for video in video_inputs: self.assertIsInstance(snake_case , snake_case ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processing(video_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _UpperCAmelCase = image_processing(snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
573
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def lowercase_ ( __A : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase : str =SwinConfig(image_size=1_9_2 ) if "base" in model_name: lowercase : Dict =6 lowercase : Union[str, Any] =1_2_8 lowercase : int =(2, 2, 1_8, 2) lowercase : str =(4, 8, 1_6, 3_2) elif "large" in model_name: lowercase : List[str] =1_2 lowercase : Optional[Any] =1_9_2 lowercase : int =(2, 2, 1_8, 2) lowercase : int =(6, 1_2, 2_4, 4_8) else: raise ValueError('''Model not supported, only supports base and large variants''' ) lowercase : Union[str, Any] =window_size lowercase : List[Any] =embed_dim lowercase : Union[str, Any] =depths lowercase : List[Any] =num_heads return config def lowercase_ ( __A : Tuple ) -> List[str]: """simple docstring""" if "encoder.mask_token" in name: lowercase : List[Any] =name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: lowercase : List[Any] =name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: lowercase : Union[str, Any] =name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: lowercase : Optional[Any] =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowercase : Dict =name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowercase : Any =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase : int =name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase : int =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase : List[str] =name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowercase : List[Any] ='''layernorm.weight''' if name == "encoder.norm.bias": lowercase : Union[str, Any] ='''layernorm.bias''' if "decoder" in name: pass else: lowercase : Optional[int] ='''swin.''' + name return name def lowercase_ ( __A : Optional[Any] , __A : List[Any] ) -> Any: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase : Tuple =orig_state_dict.pop(__A ) if "attn_mask" in key: pass elif "qkv" in key: lowercase : int =key.split('''.''' ) lowercase : Union[str, Any] =int(key_split[2] ) lowercase : Any =int(key_split[4] ) lowercase : str =model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase : Tuple =val[:dim, :] lowercase : str =val[ dim : dim * 2, : ] lowercase : Optional[int] =val[-dim:, :] else: lowercase : int =val[ :dim ] lowercase : List[Any] =val[ dim : dim * 2 ] lowercase : Optional[Any] =val[ -dim: ] else: lowercase : Optional[Any] =val return orig_state_dict def lowercase_ ( __A : List[str] , __A : str , __A : str , __A : List[Any] ) -> int: """simple docstring""" lowercase : Any =torch.load(__A , map_location='''cpu''' )['''model'''] lowercase : Optional[int] =get_swin_config(__A ) lowercase : Optional[Any] =SwinForMaskedImageModeling(__A ) model.eval() lowercase : Optional[Any] =convert_state_dict(__A , __A ) model.load_state_dict(__A ) lowercase : int ='''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase : Union[str, Any] =ViTImageProcessor(size={'''height''': 1_9_2, '''width''': 1_9_2} ) lowercase : Any =Image.open(requests.get(__A , stream=__A ).raw ) lowercase : Any =image_processor(images=__A , return_tensors='''pt''' ) with torch.no_grad(): lowercase : Tuple =model(**__A ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__A ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__A ) if push_to_hub: print(F'Pushing model and image processor for {model_name} to hub' ) model.push_to_hub(F'microsoft/{model_name}' ) image_processor.push_to_hub(F'microsoft/{model_name}' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
8
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : int=7 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : Any=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : str=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Any=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=None , ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Tuple =13 lowercase : Any =7 lowercase : Union[str, Any] =True lowercase : Any =True lowercase : Optional[int] =True lowercase : List[str] =True lowercase : Tuple =99 lowercase : str =32 lowercase : Union[str, Any] =2 lowercase : Dict =4 lowercase : Union[str, Any] =37 lowercase : Union[str, Any] ='''gelu''' lowercase : Any =0.1 lowercase : Dict =0.1 lowercase : Dict =512 lowercase : List[str] =16 lowercase : Dict =2 lowercase : int =0.0_2 lowercase : List[Any] =3 lowercase : List[str] =4 lowercase : Optional[Any] =None def A__ ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : str =None if self.use_input_mask: lowercase : int =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Any =None if self.use_token_type_ids: lowercase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : List[Any] =None lowercase : List[str] =None lowercase : List[str] =None if self.use_labels: lowercase : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : List[Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : List[Any] =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModel(config=UpperCAmelCase ) lowercase : Optional[int] ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase : Tuple =[input_ids, input_mask] lowercase : str =model(UpperCAmelCase ) lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ) -> Any: '''simple docstring''' lowercase : Dict =True lowercase : List[Any] =TFRoFormerForCausalLM(config=UpperCAmelCase ) lowercase : Union[str, Any] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def A__ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' lowercase : List[Any] =TFRoFormerForMaskedLM(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int ) -> Optional[Any]: '''simple docstring''' lowercase : Optional[Any] =self.num_labels lowercase : Optional[int] =TFRoFormerForSequenceClassification(config=UpperCAmelCase ) lowercase : Optional[int] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : Optional[Any] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase : int =self.num_choices lowercase : Tuple =TFRoFormerForMultipleChoice(config=UpperCAmelCase ) lowercase : Union[str, Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : Tuple =tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) lowercase : List[Any] ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase : Dict =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =self.num_labels lowercase : Union[str, Any] =TFRoFormerForTokenClassification(config=UpperCAmelCase ) lowercase : Tuple ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self : int , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ) -> Any: '''simple docstring''' lowercase : Tuple =TFRoFormerForQuestionAnswering(config=UpperCAmelCase ) lowercase : List[str] ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase : List[str] =model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase : Optional[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Optional[int] =config_and_inputs lowercase : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase_ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : str ) -> Tuple: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : List[Any] =TFRoFormerModelTester(self ) lowercase : Union[str, Any] =ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def A__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self : List[str] ) -> List[str]: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*UpperCAmelCase ) def A__ ( self : int ) -> Tuple: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def A__ ( self : Dict ) -> List[str]: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def A__ ( self : Dict ) -> Any: '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def A__ ( self : List[Any] ) -> Tuple: '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def A__ ( self : str ) -> str: '''simple docstring''' lowercase : Union[str, Any] =TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(UpperCAmelCase ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def A__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase : Any =TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase : Optional[Any] =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase : List[str] =model(UpperCAmelCase )[0] # TODO Replace vocab size lowercase : Tuple =5_0000 lowercase : List[str] =[1, 6, vocab_size] self.assertEqual(output.shape , UpperCAmelCase ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase : Dict =tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1e-4 ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : int ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] =tf.constant([[4, 10]] ) lowercase : List[Any] =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase : Any =emba(input_ids.shape ) lowercase : List[str] =tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) def A__ ( self : Optional[Any] ) -> int: '''simple docstring''' lowercase : Optional[Any] =tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase : Tuple =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase : str =emba.weight[:3, :5] tf.debugging.assert_near(UpperCAmelCase , UpperCAmelCase , atol=self.tolerance ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ = 1e-4 def A__ ( self : Dict ) -> Dict: '''simple docstring''' lowercase : str =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase : Any =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase : Optional[Any] =embed_positions([2, 16, 768] )[None, None, :, :] lowercase , lowercase : Optional[int] =TFRoFormerSelfAttention.apply_rotary_position_embeddings( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase : Any =tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase : int =tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , UpperCAmelCase , atol=self.tolerance )
8
1
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class lowerCamelCase_ ( unittest.TestCase ): def lowerCAmelCase_ ( self : Optional[int] ): __A : str = get_activation("""swish""" ) self.assertIsInstance(__A , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowerCAmelCase_ ( self : Optional[int] ): __A : List[str] = get_activation("""silu""" ) self.assertIsInstance(__A , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowerCAmelCase_ ( self : Tuple ): __A : Optional[int] = get_activation("""mish""" ) self.assertIsInstance(__A , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def lowerCAmelCase_ ( self : int ): __A : int = get_activation("""gelu""" ) self.assertIsInstance(__A , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
17
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __A : Tuple = logging.get_logger(__name__) __A : int = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class A_ (a_ , a_ ): UpperCAmelCase__ = '''focalnet''' def __init__( self , _A=2_2_4 , _A=4 , _A=3 , _A=9_6 , _A=False , _A=[1_9_2, 3_8_4, 7_6_8, 7_6_8] , _A=[2, 2, 6, 2] , _A=[2, 2, 2, 2] , _A=[3, 3, 3, 3] , _A="gelu" , _A=4.0 , _A=0.0 , _A=0.1 , _A=False , _A=1E-4 , _A=False , _A=False , _A=False , _A=0.02 , _A=1E-5 , _A=3_2 , _A=None , _A=None , **_A , ): '''simple docstring''' super().__init__(**_A ) UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = embed_dim UpperCAmelCase = use_conv_embed UpperCAmelCase = hidden_sizes UpperCAmelCase = depths UpperCAmelCase = focal_levels UpperCAmelCase = focal_windows UpperCAmelCase = hidden_act UpperCAmelCase = mlp_ratio UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = drop_path_rate UpperCAmelCase = use_layerscale UpperCAmelCase = layerscale_value UpperCAmelCase = use_post_layernorm UpperCAmelCase = use_post_layernorm_in_modulation UpperCAmelCase = normalize_modulator UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = encoder_stride UpperCAmelCase = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] UpperCAmelCase , UpperCAmelCase = get_aligned_output_features_output_indices( out_features=_A , out_indices=_A , stage_names=self.stage_names )
130
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowerCAmelCase__ = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } lowerCAmelCase__ = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } lowerCAmelCase__ = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class __magic_name__ ( _snake_case ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = SqueezeBertTokenizer def __init__( self : Tuple , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Union[str, Any]="[UNK]" , lowerCAmelCase__ : Any="[SEP]" , lowerCAmelCase__ : Optional[Any]="[PAD]" , lowerCAmelCase__ : str="[CLS]" , lowerCAmelCase__ : Dict="[MASK]" , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Union[str, Any]=None , **lowerCAmelCase__ : Any , ) -> List[str]: super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase__ ) != tokenize_chinese_chars ): UpperCAmelCase = getattr(lowerCAmelCase__ , normalizer_state.pop("type" ) ) UpperCAmelCase = do_lower_case UpperCAmelCase = strip_accents UpperCAmelCase = tokenize_chinese_chars UpperCAmelCase = normalizer_class(**lowerCAmelCase__ ) UpperCAmelCase = do_lower_case def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str=None ) -> List[Any]: UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCamelCase ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: UpperCAmelCase = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
1
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class __magic_name__ : def __init__( self : Optional[int] ) -> Optional[Any]: UpperCAmelCase = "" UpperCAmelCase = "" UpperCAmelCase = [] UpperCAmelCase = 0 UpperCAmelCase = 2_5_6 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 0 def _UpperCamelCase ( self : Any , lowerCAmelCase__ : Optional[Any] ) -> List[str]: UpperCAmelCase = cva.imread(lowerCAmelCase__ , 0 ) UpperCAmelCase = copy.deepcopy(self.img ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="x" ) UpperCAmelCase = np.sum(lowerCAmelCase__ ) for i in range(len(lowerCAmelCase__ ) ): UpperCAmelCase = x[i] / self.k self.sk += prk UpperCAmelCase = (self.L - 1) * self.sk if self.rem != 0: UpperCAmelCase = int(last % last ) UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(lowerCAmelCase__ ) UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) UpperCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCAmelCase = self.img[j][i] if num != self.last_list[num]: UpperCAmelCase = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def _UpperCamelCase ( self : str ) -> int: plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def _UpperCamelCase ( self : Dict ) -> Optional[Any]: cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": lowerCAmelCase__ = os.path.join(os.path.basename(__file__), "image_data/input.jpg") lowerCAmelCase__ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
1
1
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): """simple docstring""" lowerCamelCase : List[Any] ="" lowerCamelCase : int =( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowerCamelCase : Union[str, Any] =None # compression type in fsspec. ex: "gzip" lowerCamelCase : str =None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : Any , lowerCAmelCase : str = "" , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[dict] = None , **lowerCAmelCase : Dict ) -> List[str]: """simple docstring""" super().__init__(self , **__snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode __lowerCAmelCase : Any = fsspec.open( __snake_case , mode="""rb""" , protocol=__snake_case , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) __lowerCAmelCase : Union[str, Any] = os.path.basename(self.file.path.split("""::""" )[0] ) __lowerCAmelCase : Optional[int] = ( self.compressed_name[: self.compressed_name.rindex(""".""" )] if """.""" in self.compressed_name else self.compressed_name ) __lowerCAmelCase : Optional[Any] = None @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple , lowerCAmelCase : str ) -> int: """simple docstring""" return super()._strip_protocol(__snake_case ).lstrip("""/""" ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Any: """simple docstring""" if self.dir_cache is None: __lowerCAmelCase : Optional[Any] = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} __lowerCAmelCase : Optional[Any] = {f["""name"""]: f} def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : str ) -> List[str]: """simple docstring""" return self.file.open().read() def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : str = "rb" , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Any=None , **lowerCAmelCase : Any , ) -> int: """simple docstring""" __lowerCAmelCase : Tuple = self._strip_protocol(__snake_case ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): """simple docstring""" lowerCamelCase : Optional[Any] ="bz2" lowerCamelCase : int ="bz2" lowerCamelCase : List[Any] =".bz2" class SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): """simple docstring""" lowerCamelCase : List[Any] ="gzip" lowerCamelCase : Any ="gzip" lowerCamelCase : int =".gz" class SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): """simple docstring""" lowerCamelCase : Union[str, Any] ="lz4" lowerCamelCase : List[str] ="lz4" lowerCamelCase : int =".lz4" class SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): """simple docstring""" lowerCamelCase : int ="xz" lowerCamelCase : str ="xz" lowerCamelCase : Union[str, Any] =".xz" class SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): """simple docstring""" lowerCamelCase : List[str] ="zstd" lowerCamelCase : Any ="zstd" lowerCamelCase : Dict =".zst" def __init__( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : str = "rb" , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[dict] = None , lowerCAmelCase : int = DEFAULT_BLOCK_SIZE , **lowerCAmelCase : List[Any] , ) -> Dict: """simple docstring""" super().__init__( fo=__snake_case , mode=__snake_case , target_protocol=__snake_case , target_options=__snake_case , block_size=__snake_case , **__snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 __lowerCAmelCase : Dict = self.file.__enter__ class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase : List[Any] ) -> List[str]: """simple docstring""" __lowerCAmelCase : int = file_ def __enter__( self : Dict ) -> List[str]: """simple docstring""" self._file.__enter__() return self def __exit__( self : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Any ) -> List[str]: """simple docstring""" self._file.__exit__(*__snake_case , **__snake_case ) def __iter__( self : Tuple ) -> Optional[int]: """simple docstring""" return iter(self._file ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return next(self._file ) def __getattr__( self : Any , lowerCAmelCase : Optional[Any] ) -> str: """simple docstring""" return getattr(self._file , __snake_case ) def fixed_enter(*lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : int ): return WrappedFile(_enter(*__snake_case , **__snake_case ) ) __lowerCAmelCase : List[str] = fixed_enter
651
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __A ( UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase = 1 @register_to_config def __init__( self :Any , __snake_case :Tuple=20_00 , __snake_case :Optional[Any]=0.1 , __snake_case :Any=20 , __snake_case :Optional[int]=1E-3 ): '''simple docstring''' __magic_name__ : Dict =None __magic_name__ : List[str] =None __magic_name__ : str =None def A__ ( self :Dict , __snake_case :Optional[int] , __snake_case :Union[str, torch.device] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =torch.linspace(1 , self.config.sampling_eps , __snake_case , device=__snake_case ) def A__ ( self :List[str] , __snake_case :List[str] , __snake_case :int , __snake_case :int , __snake_case :List[str]=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __magic_name__ : int =( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __magic_name__ : Optional[int] =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __magic_name__ : str =std.flatten() while len(std.shape ) < len(score.shape ): __magic_name__ : List[str] =std.unsqueeze(-1 ) __magic_name__ : Union[str, Any] =-score / std # compute __magic_name__ : Tuple =-1.0 / len(self.timesteps ) __magic_name__ : int =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __magic_name__ : Dict =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __magic_name__ : Any =beta_t.unsqueeze(-1 ) __magic_name__ : Dict =-0.5 * beta_t * x __magic_name__ : Optional[int] =torch.sqrt(__snake_case ) __magic_name__ : int =drift - diffusion**2 * score __magic_name__ : List[str] =x + drift * dt # add noise __magic_name__ : Optional[int] =randn_tensor(x.shape , layout=x.layout , generator=__snake_case , device=x.device , dtype=x.dtype ) __magic_name__ : Optional[Any] =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self :List[Any] ): '''simple docstring''' return self.config.num_train_timesteps
21
0
'''simple docstring''' import os from math import logaa def snake_case ( UpperCAmelCase : str = "base_exp.txt" ): A = 0 A = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(UpperCAmelCase ), UpperCAmelCase ) ) ): A , A = list(map(UpperCAmelCase, line.split(',' ) ) ) if x * logaa(UpperCAmelCase ) > largest: A = x * logaa(UpperCAmelCase ) A = i + 1 return result if __name__ == "__main__": print(solution())
717
def snake_case ( UpperCAmelCase : Optional[int], UpperCAmelCase : Union[str, Any] ): A = '' for i in table: res += inp[i - 1] return res def snake_case ( UpperCAmelCase : Union[str, Any] ): return data[1:] + data[0] def snake_case ( UpperCAmelCase : Union[str, Any], UpperCAmelCase : Dict ): A = '' for i in range(len(UpperCAmelCase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def snake_case ( UpperCAmelCase : int, UpperCAmelCase : Optional[Any] ): A = int('0b' + data[0] + data[-1], 2 ) A = int('0b' + data[1:3], 2 ) return bin(s[row][col] )[2:] def snake_case ( UpperCAmelCase : Optional[Any], UpperCAmelCase : Any, UpperCAmelCase : Union[str, Any], UpperCAmelCase : Optional[Any], UpperCAmelCase : Optional[int] ): A = message[:4] A = message[4:] A = apply_table(UpperCAmelCase, UpperCAmelCase ) A = xor(UpperCAmelCase, UpperCAmelCase ) A = apply_sbox(UpperCAmelCase, temp[:4] ) # noqa: E741 A = apply_sbox(UpperCAmelCase, temp[4:] ) A = '0' * (2 - len(UpperCAmelCase )) + l # noqa: E741 A = '0' * (2 - len(UpperCAmelCase )) + r A = apply_table(l + r, UpperCAmelCase ) A = xor(UpperCAmelCase, UpperCAmelCase ) return temp + right if __name__ == "__main__": lowerCAmelCase_ = input('Enter 10 bit key: ') lowerCAmelCase_ = input('Enter 8 bit message: ') lowerCAmelCase_ = [6, 3, 7, 4, 8, 5, 10, 9] lowerCAmelCase_ = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] lowerCAmelCase_ = [2, 4, 3, 1] lowerCAmelCase_ = [2, 6, 3, 1, 4, 8, 5, 7] lowerCAmelCase_ = [4, 1, 3, 5, 7, 2, 8, 6] lowerCAmelCase_ = [4, 1, 2, 3, 2, 3, 4, 1] lowerCAmelCase_ = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] lowerCAmelCase_ = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation lowerCAmelCase_ = apply_table(key, paa_table) lowerCAmelCase_ = temp[:5] lowerCAmelCase_ = temp[5:] lowerCAmelCase_ = left_shift(left) lowerCAmelCase_ = left_shift(right) lowerCAmelCase_ = apply_table(left + right, pa_table) lowerCAmelCase_ = left_shift(left) lowerCAmelCase_ = left_shift(right) lowerCAmelCase_ = left_shift(left) lowerCAmelCase_ = left_shift(right) lowerCAmelCase_ = apply_table(left + right, pa_table) # encryption lowerCAmelCase_ = apply_table(message, IP) lowerCAmelCase_ = function(expansion, sa, sa, keya, temp) lowerCAmelCase_ = temp[4:] + temp[:4] lowerCAmelCase_ = function(expansion, sa, sa, keya, temp) lowerCAmelCase_ = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption lowerCAmelCase_ = apply_table(CT, IP) lowerCAmelCase_ = function(expansion, sa, sa, keya, temp) lowerCAmelCase_ = temp[4:] + temp[:4] lowerCAmelCase_ = function(expansion, sa, sa, keya, temp) lowerCAmelCase_ = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
110
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {"""vocab_file""": """vocab.txt"""} UpperCamelCase = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } UpperCamelCase = { """YituTech/conv-bert-base""": 512, """YituTech/conv-bert-medium-small""": 512, """YituTech/conv-bert-small""": 512, } UpperCamelCase = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : str = VOCAB_FILES_NAMES A__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A__ : List[str] = PRETRAINED_INIT_CONFIGURATION A__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Union[str, Any] = ConvBertTokenizer def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__="[UNK]" , SCREAMING_SNAKE_CASE__="[SEP]" , SCREAMING_SNAKE_CASE__="[PAD]" , SCREAMING_SNAKE_CASE__="[CLS]" , SCREAMING_SNAKE_CASE__="[MASK]" , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ) -> List[Any]: super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) A__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get("strip_accents" , SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): A__ = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop("type" ) ) A__ = do_lower_case A__ = strip_accents A__ = tokenize_chinese_chars A__ = normalizer_class(**SCREAMING_SNAKE_CASE__ ) A__ = do_lower_case def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ) -> Dict: A__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> List[int]: A__ = [self.sep_token_id] A__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ) -> Tuple[str]: A__ = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
104
from collections.abc import Generator from math import sin def lowercase_ ( __snake_case : bytes ) -> bytes: '''simple docstring''' if len(__snake_case ) != 32: raise ValueError("Input must be of length 32" ) snake_case__ :Any = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def lowercase_ ( __snake_case : int ) -> bytes: '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) snake_case__ :List[str] = format(__snake_case , "08x" )[-8:] snake_case__ :List[str] = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def lowercase_ ( __snake_case : bytes ) -> bytes: '''simple docstring''' snake_case__ :Dict = b"" for char in message: bit_string += format(__snake_case , "08b" ).encode("utf-8" ) snake_case__ :str = format(len(__snake_case ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__snake_case ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def lowercase_ ( __snake_case : bytes ) -> Generator[list[int], None, None]: '''simple docstring''' if len(__snake_case ) % 5_12 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(__snake_case ) , 5_12 ): snake_case__ :Tuple = bit_string[pos : pos + 5_12] snake_case__ :List[Any] = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def lowercase_ ( __snake_case : int ) -> int: '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) snake_case__ :Union[str, Any] = format(__snake_case , "032b" ) snake_case__ :Union[str, Any] = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(__snake_case , 2 ) def lowercase_ ( __snake_case : int , __snake_case : int ) -> int: '''simple docstring''' return (a + b) % 2**32 def lowercase_ ( __snake_case : int , __snake_case : int ) -> int: '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def lowercase_ ( __snake_case : bytes ) -> bytes: '''simple docstring''' snake_case__ :Tuple = preprocess(__snake_case ) snake_case__ :int = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states snake_case__ :Tuple = 0X67_452_301 snake_case__ :str = 0Xef_cda_b89 snake_case__ :Dict = 0X98_bad_cfe snake_case__ :List[str] = 0X10_325_476 snake_case__ :str = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__snake_case ): snake_case__ :List[Any] = aa snake_case__ :List[str] = ba snake_case__ :List[Any] = ca snake_case__ :Tuple = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f snake_case__ :Dict = d ^ (b & (c ^ d)) snake_case__ :List[str] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f snake_case__ :str = c ^ (d & (b ^ c)) snake_case__ :Optional[int] = (5 * i + 1) % 16 elif i <= 47: snake_case__ :Union[str, Any] = b ^ c ^ d snake_case__ :Union[str, Any] = (3 * i + 5) % 16 else: snake_case__ :List[str] = c ^ (b | not_aa(__snake_case )) snake_case__ :Dict = (7 * i) % 16 snake_case__ :Union[str, Any] = (f + a + added_consts[i] + block_words[g]) % 2**32 snake_case__ :Optional[Any] = d snake_case__ :List[str] = c snake_case__ :Union[str, Any] = b snake_case__ :Dict = sum_aa(__snake_case , left_rotate_aa(__snake_case , shift_amounts[i] ) ) # Add hashed chunk to running total snake_case__ :Any = sum_aa(__snake_case , __snake_case ) snake_case__ :List[Any] = sum_aa(__snake_case , __snake_case ) snake_case__ :Any = sum_aa(__snake_case , __snake_case ) snake_case__ :int = sum_aa(__snake_case , __snake_case ) snake_case__ :Optional[Any] = reformat_hex(__snake_case ) + reformat_hex(__snake_case ) + reformat_hex(__snake_case ) + reformat_hex(__snake_case ) return digest if __name__ == "__main__": import doctest doctest.testmod()
241
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
600
"""simple docstring""" from ...processing_utils import ProcessorMixin class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = ["image_processor", "feature_extractor"] SCREAMING_SNAKE_CASE_ : Dict = "TvltImageProcessor" SCREAMING_SNAKE_CASE_ : List[Any] = "TvltFeatureExtractor" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): super().__init__(image_processor=UpperCAmelCase_ ,feature_extractor=UpperCAmelCase_ ) _lowercase : Any = image_processor _lowercase : Any = feature_extractor def __call__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=False ,UpperCAmelCase_=False ,*UpperCAmelCase_ ,**UpperCAmelCase_ ,): if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) _lowercase : int = None if images is not None: _lowercase : Optional[Any] = self.image_processor(UpperCAmelCase_ ,mask_pixel=UpperCAmelCase_ ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) if images_mixed is not None: _lowercase : Optional[int] = self.image_processor(UpperCAmelCase_ ,is_mixed=UpperCAmelCase_ ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) if audio is not None: _lowercase : Tuple = self.feature_extractor( UpperCAmelCase_ ,*UpperCAmelCase_ ,sampling_rate=UpperCAmelCase_ ,mask_audio=UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Dict = {} if audio is not None: output_dict.update(UpperCAmelCase_ ) if images is not None: output_dict.update(UpperCAmelCase_ ) if images_mixed_dict is not None: output_dict.update(UpperCAmelCase_ ) return output_dict @property def lowerCamelCase__ ( self ): _lowercase : List[str] = self.image_processor.model_input_names _lowercase : int = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
600
1
import os from pathlib import Path def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: from torch.utils.cpp_extension import load __A : int = Path(a__ ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" __A : Any = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" ,"""ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" ,"""ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" ,a__ ,with_cuda=a__ ,extra_include_paths=[str(a__ )] ,extra_cflags=["""-DWITH_CUDA=1"""] ,extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] ,) import MultiScaleDeformableAttention as MSDA return MSDA
17
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : int ="Speech2TextFeatureExtractor" a : int ="Speech2TextTokenizer" def __init__( self , snake_case__ , snake_case__ ): """simple docstring""" super().__init__(snake_case__ , snake_case__ ) lowerCAmelCase : Any = self.feature_extractor lowerCAmelCase : str = False def __call__( self , *snake_case__ , **snake_case__ ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*snake_case__ , **snake_case__ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) lowerCAmelCase : Any = kwargs.pop("raw_speech" ) else: lowerCAmelCase : Optional[int] = kwargs.pop("audio" , snake_case__ ) lowerCAmelCase : Union[str, Any] = kwargs.pop("sampling_rate" , snake_case__ ) lowerCAmelCase : str = kwargs.pop("text" , snake_case__ ) if len(snake_case__ ) > 0: lowerCAmelCase : int = args[0] lowerCAmelCase : List[Any] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowerCAmelCase : Dict = self.feature_extractor(snake_case__ , *snake_case__ , sampling_rate=snake_case__ , **snake_case__ ) if text is not None: lowerCAmelCase : int = self.tokenizer(snake_case__ , **snake_case__ ) if text is None: return inputs elif audio is None: return encodings else: lowerCAmelCase : Dict = encodings["input_ids"] return inputs def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @contextmanager def lowercase__ ( self ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) lowerCAmelCase : List[str] = True lowerCAmelCase : Any = self.tokenizer yield lowerCAmelCase : Optional[Any] = self.feature_extractor lowerCAmelCase : Dict = False
645
0
import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input snake_case : Union[str, Any] = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def snake_case__ ( ) -> List[str]: """simple docstring""" A__ : int = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: A__ : Any = get_sagemaker_input() else: A__ : Optional[Any] = get_cluster_input() return config def snake_case__ ( __lowercase=None ) -> int: """simple docstring""" if subparsers is not None: A__ : Tuple = subparsers.add_parser("config" , description=lowerCamelCase_ ) else: A__ : Tuple = argparse.ArgumentParser("Accelerate config command" , description=lowerCamelCase_ ) parser.add_argument( "--config_file" , default=lowerCamelCase_ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have " "such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed " "with \'huggingface\'." ) , ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase_ ) return parser def snake_case__ ( __lowercase ) -> List[Any]: """simple docstring""" A__ : Optional[Any] = get_user_input() if args.config_file is not None: A__ : int = args.config_file else: if not os.path.isdir(lowerCamelCase_ ): os.makedirs(lowerCamelCase_ ) A__ : Tuple = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(lowerCamelCase_ ) else: config.to_yaml_file(lowerCamelCase_ ) print(F'accelerate configuration saved at {config_file}' ) def snake_case__ ( ) -> Dict: """simple docstring""" A__ : Dict = config_command_parser() A__ : Optional[Any] = parser.parse_args() config_command(lowerCamelCase_ ) if __name__ == "__main__": main()
706
from collections import Counter from timeit import timeit def snake_case__ ( __lowercase = "" , ) -> bool: """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2 def snake_case__ ( __lowercase = "" ) -> bool: """simple docstring""" if len(__lowercase ) == 0: return True A__ : Any = input_str.replace(" " , "" ).lower() # character_freq_dict: Stores the frequency of every character in the input string A__ : dict[str, int] = {} for character in lower_case_input_str: A__ : Optional[int] = character_freq_dict.get(__lowercase , 0 ) + 1 A__ : List[Any] = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def snake_case__ ( __lowercase = "" ) -> None: """simple docstring""" print("\nFor string = " , __lowercase , ":" ) print( "> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(__lowercase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) print( "> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(__lowercase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) if __name__ == "__main__": snake_case : Dict = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) snake_case : Dict = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
182
0
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __magic_name__ ( snake_case ): UpperCamelCase_ :Dict = ["""image_processor""", """tokenizer"""] UpperCamelCase_ :str = """BridgeTowerImageProcessor""" UpperCamelCase_ :Tuple = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self , _lowercase , _lowercase )-> Any: super().__init__(_lowercase , _lowercase ) def __call__( self , _lowercase , _lowercase = None , _lowercase = True , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = 0 , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = False , _lowercase = False , _lowercase = True , _lowercase = None , **_lowercase , )-> BatchEncoding: UpperCamelCase_ = self.tokenizer( text=_lowercase , add_special_tokens=_lowercase , padding=_lowercase , truncation=_lowercase , max_length=_lowercase , stride=_lowercase , pad_to_multiple_of=_lowercase , return_token_type_ids=_lowercase , return_attention_mask=_lowercase , return_overflowing_tokens=_lowercase , return_special_tokens_mask=_lowercase , return_offsets_mapping=_lowercase , return_length=_lowercase , verbose=_lowercase , return_tensors=_lowercase , **_lowercase , ) # add pixel_values + pixel_mask UpperCamelCase_ = self.image_processor( _lowercase , return_tensors=_lowercase , do_normalize=_lowercase , do_center_crop=_lowercase , **_lowercase ) encoding.update(_lowercase ) return encoding def UpperCAmelCase_ ( self , *_lowercase , **_lowercase )-> Union[str, Any]: return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def UpperCAmelCase_ ( self , *_lowercase , **_lowercase )-> List[Any]: return self.tokenizer.decode(*_lowercase , **_lowercase ) @property def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = self.tokenizer.model_input_names UpperCamelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
628
from __future__ import annotations import math def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int: """simple docstring""" if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(SCREAMING_SNAKE_CASE_ ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , ) return min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , ) def lowerCAmelCase( )-> None: """simple docstring""" UpperCamelCase_ = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] UpperCamelCase_ = math.log(len(SCREAMING_SNAKE_CASE_ ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
628
1
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCAmelCase ): A_ : Tuple = ['note_seq'] def __init__(self : List[Any] , *a__ : Tuple , **a__ : Union[str, Any] ): """simple docstring""" requires_backends(self , ['''note_seq'''] ) @classmethod def a (cls : Optional[int] , *a__ : Optional[int] , **a__ : Optional[int] ): """simple docstring""" requires_backends(cls , ['''note_seq'''] ) @classmethod def a (cls : Optional[int] , *a__ : Optional[Any] , **a__ : int ): """simple docstring""" requires_backends(cls , ['''note_seq'''] )
388
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
388
1
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging a_ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCamelCase ( lowerCamelCase__ ): def __init__( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, ): """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( speech_model=lowerCAmelCase, speech_processor=lowerCAmelCase, vae=lowerCAmelCase, text_encoder=lowerCAmelCase, tokenizer=lowerCAmelCase, unet=lowerCAmelCase, scheduler=lowerCAmelCase, feature_extractor=lowerCAmelCase, ) def lowercase__ ( self, lowerCAmelCase = "auto" ): """simple docstring""" if slice_size == "auto": lowerCamelCase_ =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" self.enable_attention_slicing(lowerCAmelCase ) @torch.no_grad() def __call__( self, lowerCAmelCase, lowerCAmelCase=16_000, lowerCAmelCase = 512, lowerCAmelCase = 512, lowerCAmelCase = 50, lowerCAmelCase = 7.5, lowerCAmelCase = None, lowerCAmelCase = 1, lowerCAmelCase = 0.0, lowerCAmelCase = None, lowerCAmelCase = None, lowerCAmelCase = "pil", lowerCAmelCase = True, lowerCAmelCase = None, lowerCAmelCase = 1, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =self.speech_processor.feature_extractor( lowerCAmelCase, return_tensors='''pt''', sampling_rate=lowerCAmelCase ).input_features.to(self.device ) lowerCamelCase_ =self.speech_model.generate(lowerCAmelCase, max_length=480_000 ) lowerCamelCase_ =self.speech_processor.tokenizer.batch_decode(lowerCAmelCase, skip_special_tokens=lowerCAmelCase, normalize=lowerCAmelCase )[ 0 ] if isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =1 elif isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =len(lowerCAmelCase ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCAmelCase, lowerCAmelCase ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(lowerCAmelCase )}.''' ) # get prompt text embeddings lowerCamelCase_ =self.tokenizer( lowerCAmelCase, padding='''max_length''', max_length=self.tokenizer.model_max_length, return_tensors='''pt''', ) lowerCamelCase_ =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase_ =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowerCamelCase_ =text_input_ids[:, : self.tokenizer.model_max_length] lowerCamelCase_ =self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ =text_embeddings.shape lowerCamelCase_ =text_embeddings.repeat(1, lowerCAmelCase, 1 ) lowerCamelCase_ =text_embeddings.view(bs_embed * num_images_per_prompt, lowerCAmelCase, -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase_ =guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase_ =42 if negative_prompt is None: lowerCamelCase_ =[''''''] * batch_size elif type(lowerCAmelCase ) is not type(lowerCAmelCase ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(lowerCAmelCase )} !=''' f''' {type(lowerCAmelCase )}.''' ) elif isinstance(lowerCAmelCase, lowerCAmelCase ): lowerCamelCase_ =[negative_prompt] elif batch_size != len(lowerCAmelCase ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(lowerCAmelCase )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ''' the batch size of `prompt`.''' ) else: lowerCamelCase_ =negative_prompt lowerCamelCase_ =text_input_ids.shape[-1] lowerCamelCase_ =self.tokenizer( lowerCAmelCase, padding='''max_length''', max_length=lowerCAmelCase, truncation=lowerCAmelCase, return_tensors='''pt''', ) lowerCamelCase_ =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase_ =uncond_embeddings.shape[1] lowerCamelCase_ =uncond_embeddings.repeat(1, lowerCAmelCase, 1 ) lowerCamelCase_ =uncond_embeddings.view(batch_size * num_images_per_prompt, lowerCAmelCase, -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase_ =torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase_ =(batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase_ =text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCamelCase_ =torch.randn(lowerCAmelCase, generator=lowerCAmelCase, device='''cpu''', dtype=lowerCAmelCase ).to( self.device ) else: lowerCamelCase_ =torch.randn(lowerCAmelCase, generator=lowerCAmelCase, device=self.device, dtype=lowerCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowerCamelCase_ =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(lowerCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCamelCase_ =self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase_ =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase_ ='''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase_ ={} if accepts_eta: lowerCamelCase_ =eta for i, t in enumerate(self.progress_bar(lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase_ =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase_ =self.scheduler.scale_model_input(lowerCAmelCase, lowerCAmelCase ) # predict the noise residual lowerCamelCase_ =self.unet(lowerCAmelCase, lowerCAmelCase, encoder_hidden_states=lowerCAmelCase ).sample # perform guidance if do_classifier_free_guidance: lowerCamelCase_, lowerCamelCase_ =noise_pred.chunk(2 ) lowerCamelCase_ =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ =self.scheduler.step(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, **lowerCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =1 / 0.1_8_2_1_5 * latents lowerCamelCase_ =self.vae.decode(lowerCAmelCase ).sample lowerCamelCase_ =(image / 2 + 0.5).clamp(0, 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase_ =image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": lowerCamelCase_ =self.numpy_to_pil(lowerCAmelCase ) if not return_dict: return image return StableDiffusionPipelineOutput(images=lowerCAmelCase, nsfw_content_detected=lowerCAmelCase )
676
'''simple docstring''' from __future__ import annotations a_ : int = list[list[int]] # assigning initial values to the grid a_ : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution a_ : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def a_ ( __snake_case : Matrix , __snake_case : int , __snake_case : int , __snake_case : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def a_ ( __snake_case : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def a_ ( __snake_case : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(__snake_case ): lowerCamelCase_, lowerCamelCase_ =location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(__snake_case , __snake_case , __snake_case , __snake_case ): lowerCamelCase_ =digit if sudoku(__snake_case ) is not None: return grid lowerCamelCase_ =0 return None def a_ ( __snake_case : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(__snake_case , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") a_ : Union[str, Any] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
676
1
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE = 50 ): lowerCAmelCase_ : str =[1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
703
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class _snake_case ( lowerCAmelCase_ ): """simple docstring""" _UpperCamelCase : Optional[Any] = '''owlvit_text_model''' def __init__( self : Union[str, Any] , UpperCamelCase_ : str=49408 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=2048 , UpperCamelCase_ : Optional[int]=12 , UpperCamelCase_ : List[str]=8 , UpperCamelCase_ : List[str]=16 , UpperCamelCase_ : List[str]="quick_gelu" , UpperCamelCase_ : Any=1E-5 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : Optional[Any]=0.0_2 , UpperCamelCase_ : Tuple=1.0 , UpperCamelCase_ : int=0 , UpperCamelCase_ : Optional[int]=49406 , UpperCamelCase_ : str=49407 , **UpperCamelCase_ : Tuple , ): super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) lowerCAmelCase_ : Dict =vocab_size lowerCAmelCase_ : Any =hidden_size lowerCAmelCase_ : List[Any] =intermediate_size lowerCAmelCase_ : Union[str, Any] =num_hidden_layers lowerCAmelCase_ : List[str] =num_attention_heads lowerCAmelCase_ : Optional[Any] =max_position_embeddings lowerCAmelCase_ : str =hidden_act lowerCAmelCase_ : Dict =layer_norm_eps lowerCAmelCase_ : Dict =attention_dropout lowerCAmelCase_ : Tuple =initializer_range lowerCAmelCase_ : str =initializer_factor @classmethod def __A ( cls : str , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : Any ): cls._set_token_in_kwargs(UpperCamelCase_ ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] =cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": lowerCAmelCase_ : Optional[Any] =config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class _snake_case ( lowerCAmelCase_ ): """simple docstring""" _UpperCamelCase : Optional[int] = '''owlvit_vision_model''' def __init__( self : int , UpperCamelCase_ : Tuple=768 , UpperCamelCase_ : Union[str, Any]=3072 , UpperCamelCase_ : Any=12 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Any=3 , UpperCamelCase_ : str=768 , UpperCamelCase_ : Dict=32 , UpperCamelCase_ : str="quick_gelu" , UpperCamelCase_ : int=1E-5 , UpperCamelCase_ : str=0.0 , UpperCamelCase_ : str=0.0_2 , UpperCamelCase_ : Optional[Any]=1.0 , **UpperCamelCase_ : Dict , ): super().__init__(**UpperCamelCase_ ) lowerCAmelCase_ : Dict =hidden_size lowerCAmelCase_ : List[str] =intermediate_size lowerCAmelCase_ : Union[str, Any] =num_hidden_layers lowerCAmelCase_ : str =num_attention_heads lowerCAmelCase_ : Any =num_channels lowerCAmelCase_ : Optional[Any] =image_size lowerCAmelCase_ : Union[str, Any] =patch_size lowerCAmelCase_ : int =hidden_act lowerCAmelCase_ : Optional[int] =layer_norm_eps lowerCAmelCase_ : Dict =attention_dropout lowerCAmelCase_ : Tuple =initializer_range lowerCAmelCase_ : Tuple =initializer_factor @classmethod def __A ( cls : Any , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[Any] ): cls._set_token_in_kwargs(UpperCamelCase_ ) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] =cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": lowerCAmelCase_ : Tuple =config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class _snake_case ( lowerCAmelCase_ ): """simple docstring""" _UpperCamelCase : Dict = '''owlvit''' _UpperCamelCase : int = True def __init__( self : List[Any] , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : List[str]=512 , UpperCamelCase_ : Union[str, Any]=2.6_5_9_2 , UpperCamelCase_ : Optional[Any]=True , **UpperCamelCase_ : int , ): super().__init__(**UpperCamelCase_ ) if text_config is None: lowerCAmelCase_ : Any ={} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: lowerCAmelCase_ : int ={} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) lowerCAmelCase_ : List[str] =OwlViTTextConfig(**UpperCamelCase_ ) lowerCAmelCase_ : Optional[int] =OwlViTVisionConfig(**UpperCamelCase_ ) lowerCAmelCase_ : List[str] =projection_dim lowerCAmelCase_ : Optional[Any] =logit_scale_init_value lowerCAmelCase_ : str =return_dict lowerCAmelCase_ : Union[str, Any] =1.0 @classmethod def __A ( cls : str , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : Optional[Any] ): cls._set_token_in_kwargs(UpperCamelCase_ ) lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] =cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def __A ( cls : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , **UpperCamelCase_ : Union[str, Any] ): lowerCAmelCase_ : List[str] ={} lowerCAmelCase_ : Optional[int] =text_config lowerCAmelCase_ : Optional[int] =vision_config return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) def __A ( self : Optional[int] ): lowerCAmelCase_ : List[Any] =copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : str =self.text_config.to_dict() lowerCAmelCase_ : Any =self.vision_config.to_dict() lowerCAmelCase_ : str =self.__class__.model_type return output class _snake_case ( lowerCAmelCase_ ): """simple docstring""" @property def __A ( self : int ): return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def __A ( self : int ): return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def __A ( self : Any ): return 1E-4 def __A ( self : Tuple , UpperCamelCase_ : "ProcessorMixin" , UpperCamelCase_ : int = -1 , UpperCamelCase_ : int = -1 , UpperCamelCase_ : Optional["TensorType"] = None , ): lowerCAmelCase_ : Optional[int] =super().generate_dummy_inputs( processor.tokenizer , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , framework=UpperCamelCase_ ) lowerCAmelCase_ : Union[str, Any] =super().generate_dummy_inputs( processor.image_processor , batch_size=UpperCamelCase_ , framework=UpperCamelCase_ ) return {**text_input_dict, **image_input_dict} @property def __A ( self : List[Any] ): return 14
305
0
'''simple docstring''' from __future__ import annotations def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase , _UpperCamelCase : Dict = position _UpperCamelCase : Any = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _UpperCamelCase : Optional[Any] = [] for position in positions: _UpperCamelCase , _UpperCamelCase : Any = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(UpperCAmelCase_ ) return permissible_positions def A__ ( UpperCAmelCase_ ): return not any(elem == 0 for row in board for elem in row ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if is_complete(UpperCAmelCase_ ): return True for position in get_valid_pos(UpperCAmelCase_ , len(UpperCAmelCase_ ) ): _UpperCamelCase , _UpperCamelCase : Any = position if board[y][x] == 0: _UpperCamelCase : int = curr + 1 if open_knight_tour_helper(UpperCAmelCase_ , UpperCAmelCase_ , curr + 1 ): return True _UpperCamelCase : Union[str, Any] = 0 return False def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Dict = [[0 for i in range(UpperCAmelCase_ )] for j in range(UpperCAmelCase_ )] for i in range(UpperCAmelCase_ ): for j in range(UpperCAmelCase_ ): _UpperCamelCase : Tuple = 1 if open_knight_tour_helper(UpperCAmelCase_ , (i, j) , 1 ): return board _UpperCamelCase : Union[str, Any] = 0 _UpperCamelCase : int = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
195
'''simple docstring''' def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): return base * power(UpperCAmelCase_ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print('Raise base to the power of exponent using recursion...') snake_case_ : int = int(input('Enter the base: ').strip()) snake_case_ : Optional[int] = int(input('Enter the exponent: ').strip()) snake_case_ : Optional[int] = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents snake_case_ : List[Any] = 1 / result print(F"""{base} to the power of {exponent} is {result}""")
195
1
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType A_ : int = logging.get_logger(__name__) class lowerCamelCase (A__ ): lowerCamelCase__ : Any = 'vision-encoder-decoder' lowerCamelCase__ : Any = True def __init__( self : int , **__UpperCAmelCase : Tuple ) -> Optional[int]: super().__init__(**__UpperCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"""A configuraton of type {self.model_type} cannot be instantiated because """ F"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""encoder""" ) SCREAMING_SNAKE_CASE__ = encoder_config.pop("""model_type""" ) SCREAMING_SNAKE_CASE__ = kwargs.pop("""decoder""" ) SCREAMING_SNAKE_CASE__ = decoder_config.pop("""model_type""" ) SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = True @classmethod def SCREAMING_SNAKE_CASE ( cls : Tuple , __UpperCAmelCase : PretrainedConfig , __UpperCAmelCase : PretrainedConfig , **__UpperCAmelCase : Optional[int] ) -> PretrainedConfig: logger.info("""Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ = self.encoder.to_dict() SCREAMING_SNAKE_CASE__ = self.decoder.to_dict() SCREAMING_SNAKE_CASE__ = self.__class__.model_type return output class lowerCamelCase (A__ ): lowerCamelCase__ : List[str] = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def SCREAMING_SNAKE_CASE ( self : int ) -> float: return 1e-4 @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({"""last_hidden_state""": {0: """batch""", 1: """encoder_sequence"""}} ) class lowerCamelCase (A__ ): @property def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: SCREAMING_SNAKE_CASE__ = OrderedDict() SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """past_decoder_sequence + sequence"""} SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """past_decoder_sequence + sequence"""} SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """encoder_sequence"""} return common_inputs def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : "PreTrainedTokenizerBase" , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional["TensorType"] = None , ) -> Mapping[str, Any]: import torch SCREAMING_SNAKE_CASE__ = OrderedDict() SCREAMING_SNAKE_CASE__ = super().generate_dummy_inputs( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = dummy_input["""input_ids"""].shape SCREAMING_SNAKE_CASE__ = (batch, encoder_sequence, self._config.encoder_hidden_size) SCREAMING_SNAKE_CASE__ = dummy_input.pop("""input_ids""" ) SCREAMING_SNAKE_CASE__ = dummy_input.pop("""attention_mask""" ) SCREAMING_SNAKE_CASE__ = torch.zeros(__UpperCAmelCase ) return common_inputs class lowerCamelCase (A__ ): @property def SCREAMING_SNAKE_CASE ( self : Tuple ) -> None: pass def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : PretrainedConfig ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : PretrainedConfig , __UpperCAmelCase : PretrainedConfig , __UpperCAmelCase : str = "default" ) -> OnnxConfig: SCREAMING_SNAKE_CASE__ = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__UpperCAmelCase , __UpperCAmelCase )
616
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration A_ : Optional[Any] = pytest.mark.integration A_ : Union[str, Any] = {"comet"} A_ : str = importlib.util.find_spec("fairseq") is not None A_ : Any = {"code_eval"} A_ : Tuple = os.name == "nt" A_ : List[Any] = {"bertscore", "frugalscore", "perplexity"} A_ : Any = importlib.util.find_spec("transformers") is not None def A ( snake_case__ ): '''simple docstring''' @wraps(snake_case__ ) def wrapper(self , snake_case__ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("""\"test requires Fairseq\"""" ) else: test_case(self , snake_case__ ) return wrapper def A ( snake_case__ ): '''simple docstring''' @wraps(snake_case__ ) def wrapper(self , snake_case__ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("""\"test requires transformers\"""" ) else: test_case(self , snake_case__ ) return wrapper def A ( snake_case__ ): '''simple docstring''' @wraps(snake_case__ ) def wrapper(self , snake_case__ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("""\"test not supported on Windows\"""" ) else: test_case(self , snake_case__ ) return wrapper def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("""./metrics/*/""" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( A__ ,A__ ,A__ ) @local class lowerCamelCase (parameterized.TestCase ): lowerCamelCase__ : int = {} lowerCamelCase__ : Dict = None @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:load_metric is deprecated:FutureWarning""" ) def SCREAMING_SNAKE_CASE ( self : str , __UpperCAmelCase : str ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = """[...]""" SCREAMING_SNAKE_CASE__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , __UpperCAmelCase ) ).module_path ) SCREAMING_SNAKE_CASE__ = datasets.load.import_main_class(metric_module.__name__ , dataset=__UpperCAmelCase ) # check parameters SCREAMING_SNAKE_CASE__ = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(__UpperCAmelCase , metric_module.__name__ ): with self.use_local_metrics(): try: SCREAMING_SNAKE_CASE__ = doctest.testmod(__UpperCAmelCase , verbose=__UpperCAmelCase , raise_on_error=__UpperCAmelCase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : Optional[Any] ) -> str: SCREAMING_SNAKE_CASE__ = """[...]""" SCREAMING_SNAKE_CASE__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("""metrics""" , __UpperCAmelCase ) ).module_path ) # run doctest with self.use_local_metrics(): SCREAMING_SNAKE_CASE__ = doctest.testmod(__UpperCAmelCase , verbose=__UpperCAmelCase , raise_on_error=__UpperCAmelCase ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ) -> str: if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](__UpperCAmelCase ): yield else: yield @contextmanager def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]: def load_local_metric(__UpperCAmelCase : int , *__UpperCAmelCase : int , **__UpperCAmelCase : Optional[int] ): return load_metric(os.path.join("""metrics""" , __UpperCAmelCase ) , *__UpperCAmelCase , **__UpperCAmelCase ) with patch("""datasets.load_metric""" ) as mock_load_metric: SCREAMING_SNAKE_CASE__ = load_local_metric yield @classmethod def SCREAMING_SNAKE_CASE ( cls : Dict , __UpperCAmelCase : int ) -> Optional[Any]: def wrapper(__UpperCAmelCase : List[str] ): SCREAMING_SNAKE_CASE__ = contextmanager(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("""bleurt""" ) def A ( snake_case__ ): '''simple docstring''' import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("""sv""" , """""" , """""" ) # handle pytest cli flags class lowerCamelCase (A__ ): def SCREAMING_SNAKE_CASE ( self : Any , __UpperCAmelCase : Union[str, Any] ) -> List[str]: assert len(input_dict["""input_ids"""] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("""bleurt.score._create_predictor""" ) as mock_create_predictor: SCREAMING_SNAKE_CASE__ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("""bertscore""" ) def A ( snake_case__ ): '''simple docstring''' import torch def bert_cos_score_idf(snake_case__ , snake_case__ , *snake_case__ , **snake_case__ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(snake_case__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("""bert_score.scorer.get_model""" ), patch( """bert_score.scorer.bert_cos_score_idf""" ) as mock_bert_cos_score_idf: SCREAMING_SNAKE_CASE__ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("""comet""" ) def A ( snake_case__ ): '''simple docstring''' def load_from_checkpoint(snake_case__ ): class lowerCamelCase : def SCREAMING_SNAKE_CASE ( self : List[str] , __UpperCAmelCase : Any , *__UpperCAmelCase : str , **__UpperCAmelCase : List[Any] ) -> Optional[int]: assert len(__UpperCAmelCase ) == 2 SCREAMING_SNAKE_CASE__ = [0.19, 0.92] return scores, sum(__UpperCAmelCase ) / len(__UpperCAmelCase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("""comet.download_model""" ) as mock_download_model: SCREAMING_SNAKE_CASE__ = None with patch("""comet.load_from_checkpoint""" ) as mock_load_from_checkpoint: SCREAMING_SNAKE_CASE__ = load_from_checkpoint yield def A ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = load_metric(os.path.join("""metrics""" , """seqeval""" ) ) SCREAMING_SNAKE_CASE__ = """ERROR""" SCREAMING_SNAKE_CASE__ = f"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(snake_case__ , match=re.escape(snake_case__ ) ): metric.compute(predictions=[] , references=[] , scheme=snake_case__ )
616
1
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __magic_name__ (snake_case_ ,snake_case_ ,snake_case_ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = StableUnCLIPPipeline __lowercase : Any = TEXT_TO_IMAGE_PARAMS __lowercase : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS __lowercase : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS __lowercase : Any = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __lowercase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = 32 snake_case__ = embedder_hidden_size # prior components torch.manual_seed(0 ) snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) snake_case__ = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_a , projection_dim=_a , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) snake_case__ = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_a , num_layers=1 , ) torch.manual_seed(0 ) snake_case__ = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=10_00 , clip_sample=_a , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) snake_case__ = StableUnCLIPImageNormalizer(embedding_dim=_a ) snake_case__ = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) snake_case__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) snake_case__ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_a , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) snake_case__ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_a , layers_per_block=1 , upcast_attention=_a , use_linear_projection=_a , ) torch.manual_seed(0 ) snake_case__ = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.00085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_a , steps_offset=1 , ) torch.manual_seed(0 ) snake_case__ = AutoencoderKL() snake_case__ = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Tuple , _a:Any=0 ): if str(_a ).startswith('''mps''' ): snake_case__ = torch.manual_seed(_a ) else: snake_case__ = torch.Generator(device=_a ).manual_seed(_a ) snake_case__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): snake_case__ = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_a ) @slow @require_torch_gpu class __magic_name__ (unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): snake_case__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) snake_case__ = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() snake_case__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) snake_case__ = pipe('''anime turle''' , generator=_a , output_type='''np''' ) snake_case__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(_a , _a ) def SCREAMING_SNAKE_CASE__ ( self:Dict ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() snake_case__ = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) snake_case__ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() snake_case__ = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) snake_case__ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
33
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCamelCase = (KDPMaDiscreteScheduler,) __UpperCamelCase = 10 def __lowerCAmelCase ( self : Optional[Any] , **A__ : Optional[int] ) -> int: '''simple docstring''' a__ : Optional[int] = { '''num_train_timesteps''': 1_1_0_0, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**A__ ) return config def __lowerCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=A__ ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=A__ , beta_end=A__ ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A__ ) def __lowerCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A__ ) def __lowerCAmelCase ( self : str ) -> Optional[int]: '''simple docstring''' a__ : Any = self.scheduler_classes[0] a__ : str = self.get_scheduler_config(prediction_type='''v_prediction''' ) a__ : Dict = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps ) a__ : Tuple = self.dummy_model() a__ : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma a__ : Dict = sample.to(A__ ) for i, t in enumerate(scheduler.timesteps ): a__ : Optional[Any] = scheduler.scale_model_input(A__ , A__ ) a__ : Union[str, Any] = model(A__ , A__ ) a__ : List[str] = scheduler.step(A__ , A__ , A__ ) a__ : Optional[Any] = output.prev_sample a__ : Tuple = torch.sum(torch.abs(A__ ) ) a__ : Optional[int] = torch.mean(torch.abs(A__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0_002 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' if torch_device == "mps": return a__ : List[Any] = self.scheduler_classes[0] a__ : Tuple = self.get_scheduler_config() a__ : Tuple = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps ) a__ : List[Any] = self.dummy_model() a__ : Any = self.dummy_sample_deter * scheduler.init_noise_sigma a__ : Any = sample.to(A__ ) for i, t in enumerate(scheduler.timesteps ): a__ : str = scheduler.scale_model_input(A__ , A__ ) a__ : List[str] = model(A__ , A__ ) a__ : str = scheduler.step(A__ , A__ , A__ ) a__ : List[Any] = output.prev_sample a__ : Dict = torch.sum(torch.abs(A__ ) ) a__ : Optional[Any] = torch.mean(torch.abs(A__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 def __lowerCAmelCase ( self : str ) -> int: '''simple docstring''' if torch_device == "mps": return a__ : Optional[int] = self.scheduler_classes[0] a__ : Tuple = self.get_scheduler_config() a__ : List[Any] = scheduler_class(**A__ ) scheduler.set_timesteps(self.num_inference_steps , device=A__ ) a__ : Union[str, Any] = self.dummy_model() a__ : List[Any] = self.dummy_sample_deter.to(A__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: a__ : Optional[int] = scheduler.scale_model_input(A__ , A__ ) a__ : List[Any] = model(A__ , A__ ) a__ : Any = scheduler.step(A__ , A__ , A__ ) a__ : List[str] = output.prev_sample a__ : Any = torch.sum(torch.abs(A__ ) ) a__ : Union[str, Any] = torch.mean(torch.abs(A__ ) ) if str(A__ ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3
688
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[int] = logging.get_logger(__name__) __lowerCAmelCase : int = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class lowerCamelCase ( __snake_case ): __lowerCamelCase = 'luke' def __init__( self , __lowerCamelCase=5_02_67 , __lowerCamelCase=50_00_00 , __lowerCamelCase=7_68 , __lowerCamelCase=2_56 , __lowerCamelCase=12 , __lowerCamelCase=12 , __lowerCamelCase=30_72 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_12 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=1e-12 , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=1 , __lowerCamelCase=0 , __lowerCamelCase=2 , **__lowerCamelCase , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) snake_case: List[Any] = vocab_size snake_case: Optional[Any] = entity_vocab_size snake_case: Optional[int] = hidden_size snake_case: int = entity_emb_size snake_case: Tuple = num_hidden_layers snake_case: List[Any] = num_attention_heads snake_case: int = hidden_act snake_case: Optional[Any] = intermediate_size snake_case: List[str] = hidden_dropout_prob snake_case: Tuple = attention_probs_dropout_prob snake_case: Any = max_position_embeddings snake_case: List[Any] = type_vocab_size snake_case: Union[str, Any] = initializer_range snake_case: Optional[Any] = layer_norm_eps snake_case: Union[str, Any] = use_entity_aware_attention snake_case: Any = classifier_dropout
714
def a_ (_lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int )-> int: if exponent == 1: return base if exponent % 2 == 0: snake_case: Dict = _modexpt(_lowerCAmelCase , exponent // 2 , _lowerCAmelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(_lowerCAmelCase , exponent - 1 , _lowerCAmelCase )) % modulo_value def a_ (_lowerCAmelCase : int = 1777 , _lowerCAmelCase : int = 1855 , _lowerCAmelCase : int = 8 )-> int: snake_case: Dict = base for _ in range(1 , _lowerCAmelCase ): snake_case: int = _modexpt(_lowerCAmelCase , _lowerCAmelCase , 10**digits ) return result if __name__ == "__main__": print(F"""{solution() = }""")
164
0
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def __magic_name__ ( __a : Any ): '''simple docstring''' UpperCamelCase__ = VideoMAEConfig() set_architecture_configs(__a , __a ) if "finetuned" not in model_name: UpperCamelCase__ = False if "finetuned" in model_name: UpperCamelCase__ = """huggingface/label-files""" if "kinetics" in model_name: UpperCamelCase__ = 400 UpperCamelCase__ = """kinetics400-id2label.json""" elif "ssv2" in model_name: UpperCamelCase__ = 174 UpperCamelCase__ = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) UpperCamelCase__ = json.load(open(hf_hub_download(__a , __a , repo_type="""dataset""" ) , """r""" ) ) UpperCamelCase__ = {int(__a ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} return config def __magic_name__ ( __a : Optional[Any] , __a : Any ): '''simple docstring''' if "small" in model_name: UpperCamelCase__ = 384 UpperCamelCase__ = 1_536 UpperCamelCase__ = 12 UpperCamelCase__ = 16 UpperCamelCase__ = 12 UpperCamelCase__ = 3 UpperCamelCase__ = 192 UpperCamelCase__ = 768 elif "large" in model_name: UpperCamelCase__ = 1_024 UpperCamelCase__ = 4_096 UpperCamelCase__ = 24 UpperCamelCase__ = 16 UpperCamelCase__ = 12 UpperCamelCase__ = 8 UpperCamelCase__ = 512 UpperCamelCase__ = 2_048 elif "huge" in model_name: UpperCamelCase__ = 1_280 UpperCamelCase__ = 5_120 UpperCamelCase__ = 32 UpperCamelCase__ = 16 UpperCamelCase__ = 12 UpperCamelCase__ = 8 UpperCamelCase__ = 640 UpperCamelCase__ = 2_560 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def __magic_name__ ( __a : Tuple ): '''simple docstring''' if "encoder." in name: UpperCamelCase__ = name.replace("""encoder.""" , """""" ) if "cls_token" in name: UpperCamelCase__ = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: UpperCamelCase__ = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase__ = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: UpperCamelCase__ = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: UpperCamelCase__ = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: UpperCamelCase__ = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: UpperCamelCase__ = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: UpperCamelCase__ = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: UpperCamelCase__ = name.replace("""attn""" , """attention.self""" ) if "attn" in name: UpperCamelCase__ = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: UpperCamelCase__ = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: UpperCamelCase__ = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: UpperCamelCase__ = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: UpperCamelCase__ = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: UpperCamelCase__ = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: UpperCamelCase__ = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: UpperCamelCase__ = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: UpperCamelCase__ = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: UpperCamelCase__ = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: UpperCamelCase__ = name.replace("""head""" , """classifier""" ) return name def __magic_name__ ( __a : List[Any] , __a : List[Any] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCamelCase__ = orig_state_dict.pop(__a ) if key.startswith("""encoder.""" ): UpperCamelCase__ = key.replace("""encoder.""" , """""" ) if "qkv" in key: UpperCamelCase__ = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): UpperCamelCase__ = config.decoder_hidden_size UpperCamelCase__ = int(key_split[2] ) UpperCamelCase__ = """decoder.decoder_layers.""" if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[dim : dim * 2, :] UpperCamelCase__ = val[-dim:, :] else: UpperCamelCase__ = config.hidden_size UpperCamelCase__ = int(key_split[1] ) UpperCamelCase__ = """videomae.encoder.layer.""" if "weight" in key: UpperCamelCase__ = val[:dim, :] UpperCamelCase__ = val[dim : dim * 2, :] UpperCamelCase__ = val[-dim:, :] else: UpperCamelCase__ = val return orig_state_dict def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) UpperCamelCase__ = np.load(__a ) return list(__a ) def __magic_name__ ( __a : Optional[int] , __a : Tuple , __a : Tuple , __a : Optional[int] ): '''simple docstring''' UpperCamelCase__ = get_videomae_config(__a ) if "finetuned" in model_name: UpperCamelCase__ = VideoMAEForVideoClassification(__a ) else: UpperCamelCase__ = VideoMAEForPreTraining(__a ) # download original checkpoint, hosted on Google Drive UpperCamelCase__ = """pytorch_model.bin""" gdown.cached_download(__a , __a , quiet=__a ) UpperCamelCase__ = torch.load(__a , map_location="""cpu""" ) if "model" in files: UpperCamelCase__ = files["""model"""] else: UpperCamelCase__ = files["""module"""] UpperCamelCase__ = convert_state_dict(__a , __a ) model.load_state_dict(__a ) model.eval() # verify model on basic input UpperCamelCase__ = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) UpperCamelCase__ = prepare_video() UpperCamelCase__ = image_processor(__a , return_tensors="""pt""" ) if "finetuned" not in model_name: UpperCamelCase__ = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) UpperCamelCase__ = torch.load(__a ) UpperCamelCase__ = model(**__a ) UpperCamelCase__ = outputs.logits UpperCamelCase__ = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": UpperCamelCase__ = torch.Size([1, 400] ) UpperCamelCase__ = torch.tensor([-0.9_291, -0.4_061, -0.9_307] ) elif model_name == "videomae-small-finetuned-ssv2": UpperCamelCase__ = torch.Size([1, 174] ) UpperCamelCase__ = torch.tensor([0.2_671, -0.4_689, -0.8_235] ) elif model_name == "videomae-base": UpperCamelCase__ = torch.Size([1, 1_408, 1_536] ) UpperCamelCase__ = torch.tensor([[0.7_739, 0.7_968, 0.7_089], [0.6_701, 0.7_487, 0.6_209], [0.4_287, 0.5_158, 0.4_773]] ) elif model_name == "videomae-base-short": UpperCamelCase__ = torch.Size([1, 1_408, 1_536] ) UpperCamelCase__ = torch.tensor([[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] ) # we verified the loss both for normalized and unnormalized targets for this one UpperCamelCase__ = torch.tensor([0.5_142] ) if config.norm_pix_loss else torch.tensor([0.6_469] ) elif model_name == "videomae-large": UpperCamelCase__ = torch.Size([1, 1_408, 1_536] ) UpperCamelCase__ = torch.tensor([[0.7_149, 0.7_997, 0.6_966], [0.6_768, 0.7_869, 0.6_948], [0.5_139, 0.6_221, 0.5_605]] ) elif model_name == "videomae-large-finetuned-kinetics": UpperCamelCase__ = torch.Size([1, 400] ) UpperCamelCase__ = torch.tensor([0.0_771, 0.0_011, -0.3_625] ) elif model_name == "videomae-huge-finetuned-kinetics": UpperCamelCase__ = torch.Size([1, 400] ) UpperCamelCase__ = torch.tensor([0.2_433, 0.1_632, -0.4_894] ) elif model_name == "videomae-base-short-finetuned-kinetics": UpperCamelCase__ = torch.Size([1, 400] ) UpperCamelCase__ = torch.tensor([0.6_588, 0.0_990, -0.2_493] ) elif model_name == "videomae-base-finetuned-kinetics": UpperCamelCase__ = torch.Size([1, 400] ) UpperCamelCase__ = torch.tensor([0.3_669, -0.0_688, -0.2_421] ) elif model_name == "videomae-base-short-ssv2": UpperCamelCase__ = torch.Size([1, 1_408, 1_536] ) UpperCamelCase__ = torch.tensor([[0.4_712, 0.5_296, 0.5_786], [0.2_278, 0.2_729, 0.4_026], [0.0_352, 0.0_730, 0.2_506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": UpperCamelCase__ = torch.Size([1, 174] ) UpperCamelCase__ = torch.tensor([-0.0_537, -0.1_539, -0.3_266] ) elif model_name == "videomae-base-ssv2": UpperCamelCase__ = torch.Size([1, 1_408, 1_536] ) UpperCamelCase__ = torch.tensor([[0.8_131, 0.8_727, 0.8_546], [0.7_366, 0.9_377, 0.8_870], [0.5_935, 0.8_874, 0.8_564]] ) elif model_name == "videomae-base-finetuned-ssv2": UpperCamelCase__ = torch.Size([1, 174] ) UpperCamelCase__ = torch.tensor([0.1_961, -0.8_337, -0.6_389] ) else: raise ValueError(f"Model name not supported. Should be one of {model_names}" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , __a , atol=1E-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , __a , atol=1E-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": UpperCamelCase__ = outputs.loss assert torch.allclose(__a , __a , atol=1E-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f"Saving model and image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__a ) model.save_pretrained(__a ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(__a , organization="""nielsr""" ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4''', type=str, help=( '''URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct''' ''' download link.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''/Users/nielsrogge/Documents/VideoMAE/Test''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--model_name''', default='''videomae-base''', type=str, help='''Name of the model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase_ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
513
from cva import destroyAllWindows, imread, imshow, waitKey def __magic_name__ ( __a : List[Any] ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(__a ): for j in range(__a ): UpperCamelCase__ = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image lowerCamelCase_ = imread('''image_data/lena.jpg''', 1) # convert to its negative lowerCamelCase_ = convert_to_negative(img) # show result image imshow('''negative of original image''', img) waitKey(0) destroyAllWindows()
513
1
from torch import nn def A ( snake_case__ : Optional[int] ) -> List[Any]: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"Unsupported activation function: {act_fn}" )
721
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCAmelCase__ : Optional[Any] = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def A ( snake_case__ : List[Any] ) -> str: '''simple docstring''' for pegasus_name, hf_name in PATTERNS: __snake_case = k.replace(snake_case__ , snake_case__ ) return k def A ( snake_case__ : dict , snake_case__ : dict ) -> PegasusForConditionalGeneration: '''simple docstring''' __snake_case = DEFAULTS.copy() cfg_kwargs.update(snake_case__ ) __snake_case = PegasusConfig(**snake_case__ ) __snake_case = PegasusForConditionalGeneration(snake_case__ ) __snake_case = torch_model.model.state_dict() __snake_case = {} for k, v in tf_weights.items(): __snake_case = rename_state_dict_key(snake_case__ ) if new_k not in sd: raise ValueError(f"could not find new key {new_k} in state dict. (converted from {k})" ) if "dense" in k or "proj" in new_k: __snake_case = v.T __snake_case = torch.tensor(snake_case__ , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"{new_k}, {k}, {v.shape}, {sd[new_k].shape}" # make sure embedding.padding_idx is respected __snake_case = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __snake_case = mapping['shared.weight'] __snake_case = mapping['shared.weight'] __snake_case = {k: torch.zeros_like(snake_case__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**snake_case__ ) __snake_case , __snake_case = torch_model.model.load_state_dict(snake_case__ , strict=snake_case__ ) __snake_case = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f"no matches found for the following torch keys {unexpected_missing}" assert extra == [], f"no matches found for the following tf keys {extra}" return torch_model def A ( snake_case__ : Optional[int]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: '''simple docstring''' __snake_case = tf.train.list_variables(snake_case__ ) __snake_case = {} __snake_case = ['Adafactor', 'global_step'] for name, shape in tqdm(snake_case__ , desc='converting tf checkpoint to dict' ): __snake_case = any(pat in name for pat in ignore_name ) if skip_key: continue __snake_case = tf.train.load_variable(snake_case__ , snake_case__ ) __snake_case = array return tf_weights def A ( snake_case__ : str , snake_case__ : str ) -> Tuple: '''simple docstring''' # save tokenizer first __snake_case = Path(snake_case__ ).parent.name __snake_case = task_specific_params[f"summarization_{dataset}"]['max_position_embeddings'] __snake_case = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=snake_case__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case__ ) # convert model __snake_case = get_tf_weights_as_numpy(snake_case__ ) __snake_case = task_specific_params[f"summarization_{dataset}"] if dataset == "large": __snake_case = task_specific_params __snake_case = convert_pegasus(snake_case__ , snake_case__ ) torch_model.save_pretrained(snake_case__ ) __snake_case = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(snake_case__ , Path(snake_case__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") UpperCAmelCase__ : int = parser.parse_args() if args.save_dir is None: UpperCAmelCase__ : List[str] = Path(args.tf_ckpt_path).parent.name UpperCAmelCase__ : str = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
676
0
from __future__ import annotations from collections import Counter from random import random class _snake_case : def __init__( self): '''simple docstring''' lowercase__ : List[Any] = {} def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Optional[int] = {} def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if nodea not in self.connections: self.add_node(SCREAMING_SNAKE_CASE_) if nodea not in self.connections: self.add_node(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = probability def lowercase__ ( self): '''simple docstring''' return list(self.connections) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = 0 lowercase__ : List[Any] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> dict[str, int]: '''simple docstring''' lowercase__ : List[Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(lowercase_ , lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = Counter(graph.get_nodes() ) lowercase__ : Tuple = start for _ in range(lowercase_ ): lowercase__ : Optional[Any] = graph.transition(lowercase_ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
12
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 100 ) -> int: snake_case__ = set() snake_case__ = 0 snake_case__ = n + 1 # maximum limit for a in range(2 , __lowerCAmelCase ): for b in range(2 , __lowerCAmelCase ): snake_case__ = a**b # calculates the current power collect_powers.add(__lowerCAmelCase ) # adds the result to the set return len(__lowerCAmelCase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
33
0
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _UpperCAmelCase : Union[str, Any] =sys.version_info >= (3, 10) def lowerCAmelCase ( lowerCAmelCase_=None , lowerCAmelCase_=None )-> Union[str, Any]: return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class snake_case__: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = 42 SCREAMING_SNAKE_CASE__ : Dict = 42 SCREAMING_SNAKE_CASE__ : str = 42 SCREAMING_SNAKE_CASE__ : int = 42 @dataclass class snake_case__: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = 42 SCREAMING_SNAKE_CASE__ : Optional[int] = field(default="""toto""", metadata={"""help""": """help message"""} ) @dataclass class snake_case__: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : int = None class snake_case__( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = """titi""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = """toto""" class snake_case__( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = """titi""" SCREAMING_SNAKE_CASE__ : Dict = """toto""" SCREAMING_SNAKE_CASE__ : List[Any] = 42 @dataclass class snake_case__: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = """toto""" def lowercase_ ( self ) -> Optional[int]: lowerCAmelCase_ : Optional[Any] = BasicEnum(self.foo ) @dataclass class snake_case__: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = """toto""" def lowercase_ ( self ) -> Optional[Any]: lowerCAmelCase_ : List[str] = MixedTypeEnum(self.foo ) @dataclass class snake_case__: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = None SCREAMING_SNAKE_CASE__ : int = field(default=_UpperCamelCase, metadata={"""help""": """help message"""} ) SCREAMING_SNAKE_CASE__ : List[str] = None SCREAMING_SNAKE_CASE__ : Dict = list_field(default=[] ) SCREAMING_SNAKE_CASE__ : List[Any] = list_field(default=[] ) @dataclass class snake_case__: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = list_field(default=[] ) SCREAMING_SNAKE_CASE__ : List[str] = list_field(default=[1, 2, 3] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case__: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = field() SCREAMING_SNAKE_CASE__ : List[Any] = field() SCREAMING_SNAKE_CASE__ : Any = field() def lowercase_ ( self ) -> Dict: lowerCAmelCase_ : List[Any] = BasicEnum(self.required_enum ) @dataclass class snake_case__: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = 42 SCREAMING_SNAKE_CASE__ : Union[str, Any] = field() SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Union[str, Any] = field(default="""toto""", metadata={"""help""": """help message"""} ) SCREAMING_SNAKE_CASE__ : Optional[Any] = list_field(default=["""Hallo""", """Bonjour""", """Hello"""] ) if is_python_no_less_than_3_10: @dataclass class snake_case__: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : Optional[int] = True SCREAMING_SNAKE_CASE__ : Any = None @dataclass class snake_case__: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = None SCREAMING_SNAKE_CASE__ : List[str] = field(default=_UpperCamelCase, metadata={"""help""": """help message"""} ) SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Any = list_field(default=[] ) SCREAMING_SNAKE_CASE__ : int = list_field(default=[] ) class snake_case__( unittest.TestCase ): '''simple docstring''' def lowercase_ ( self , __lowercase , __lowercase ) -> List[Any]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowerCAmelCase_ : Tuple = {k: v for k, v in vars(__lowercase ).items() if k != "container"} lowerCAmelCase_ : Optional[Any] = {k: v for k, v in vars(__lowercase ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , __lowercase ) and yy.get('''choices''' , __lowercase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](__lowercase ) , yy['''type'''](__lowercase ) ) del xx["type"], yy["type"] self.assertEqual(__lowercase , __lowercase ) def lowercase_ ( self ) -> Dict: lowerCAmelCase_ : Any = HfArgumentParser(__lowercase ) lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=__lowercase , required=__lowercase ) expected.add_argument('''--bar''' , type=__lowercase , required=__lowercase ) expected.add_argument('''--baz''' , type=__lowercase , required=__lowercase ) expected.add_argument('''--flag''' , type=__lowercase , default=__lowercase , const=__lowercase , nargs='''?''' ) self.argparsersEqual(__lowercase , __lowercase ) lowerCAmelCase_ : Tuple = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] (lowerCAmelCase_ ) : Optional[Any] = parser.parse_args_into_dataclasses(__lowercase , look_for_args_file=__lowercase ) self.assertFalse(example.flag ) def lowercase_ ( self ) -> str: lowerCAmelCase_ : List[Any] = HfArgumentParser(__lowercase ) lowerCAmelCase_ : Tuple = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=__lowercase ) expected.add_argument('''--baz''' , default='''toto''' , type=__lowercase , help='''help message''' ) self.argparsersEqual(__lowercase , __lowercase ) def lowercase_ ( self ) -> int: lowerCAmelCase_ : List[str] = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=__lowercase , default=__lowercase , const=__lowercase , nargs='''?''' ) expected.add_argument('''--baz''' , type=__lowercase , default=__lowercase , const=__lowercase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=__lowercase , dest='''baz''' ) expected.add_argument('''--opt''' , type=__lowercase , default=__lowercase ) lowerCAmelCase_ : Optional[int] = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__lowercase ) for dataclass_type in dataclass_types: lowerCAmelCase_ : int = HfArgumentParser(__lowercase ) self.argparsersEqual(__lowercase , __lowercase ) lowerCAmelCase_ : str = parser.parse_args([] ) self.assertEqual(__lowercase , Namespace(foo=__lowercase , baz=__lowercase , opt=__lowercase ) ) lowerCAmelCase_ : Dict = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(__lowercase , Namespace(foo=__lowercase , baz=__lowercase , opt=__lowercase ) ) lowerCAmelCase_ : Any = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(__lowercase , Namespace(foo=__lowercase , baz=__lowercase , opt=__lowercase ) ) lowerCAmelCase_ : int = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(__lowercase , Namespace(foo=__lowercase , baz=__lowercase , opt=__lowercase ) ) lowerCAmelCase_ : Optional[int] = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(__lowercase , Namespace(foo=__lowercase , baz=__lowercase , opt=__lowercase ) ) def lowercase_ ( self ) -> str: lowerCAmelCase_ : Any = HfArgumentParser(__lowercase ) lowerCAmelCase_ : List[Any] = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(__lowercase , __lowercase ) lowerCAmelCase_ : List[Any] = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) lowerCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowerCAmelCase_ : List[Any] = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) lowerCAmelCase_ : Optional[int] = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowerCAmelCase_ : Optional[Any] = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) lowerCAmelCase_ : Dict = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowercase_ ( self ) -> int: @dataclass class snake_case__: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = """toto""" lowerCAmelCase_ : Dict = HfArgumentParser(__lowercase ) lowerCAmelCase_ : List[str] = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(__lowercase , __lowercase ) lowerCAmelCase_ : int = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) lowerCAmelCase_ : Optional[int] = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) lowerCAmelCase_ : Union[str, Any] = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) def lowercase_ ( self ) -> int: lowerCAmelCase_ : Union[str, Any] = HfArgumentParser(__lowercase ) lowerCAmelCase_ : List[Any] = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=__lowercase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=__lowercase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=__lowercase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=__lowercase ) self.argparsersEqual(__lowercase , __lowercase ) lowerCAmelCase_ : Any = parser.parse_args([] ) self.assertEqual( __lowercase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) lowerCAmelCase_ : Any = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(__lowercase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def lowercase_ ( self ) -> Optional[int]: lowerCAmelCase_ : List[str] = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=__lowercase , type=__lowercase ) expected.add_argument('''--bar''' , default=__lowercase , type=__lowercase , help='''help message''' ) expected.add_argument('''--baz''' , default=__lowercase , type=__lowercase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=__lowercase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=__lowercase ) lowerCAmelCase_ : str = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__lowercase ) for dataclass_type in dataclass_types: lowerCAmelCase_ : Dict = HfArgumentParser(__lowercase ) self.argparsersEqual(__lowercase , __lowercase ) lowerCAmelCase_ : Any = parser.parse_args([] ) self.assertEqual(__lowercase , Namespace(foo=__lowercase , bar=__lowercase , baz=__lowercase , ces=[] , des=[] ) ) lowerCAmelCase_ : Optional[Any] = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(__lowercase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def lowercase_ ( self ) -> str: lowerCAmelCase_ : str = HfArgumentParser(__lowercase ) lowerCAmelCase_ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=__lowercase , required=__lowercase ) expected.add_argument('''--required_str''' , type=__lowercase , required=__lowercase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=__lowercase , ) self.argparsersEqual(__lowercase , __lowercase ) def lowercase_ ( self ) -> Union[str, Any]: lowerCAmelCase_ : str = HfArgumentParser(__lowercase ) lowerCAmelCase_ : int = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=__lowercase , required=__lowercase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=__lowercase , ) expected.add_argument('''--opt''' , type=__lowercase , default=__lowercase ) expected.add_argument('''--baz''' , default='''toto''' , type=__lowercase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=__lowercase ) self.argparsersEqual(__lowercase , __lowercase ) def lowercase_ ( self ) -> Dict: lowerCAmelCase_ : Optional[Any] = HfArgumentParser(__lowercase ) lowerCAmelCase_ : Dict = { "foo": 1_2, "bar": 3.14, "baz": "42", "flag": True, } lowerCAmelCase_ : Optional[int] = parser.parse_dict(__lowercase )[0] lowerCAmelCase_ : Optional[int] = BasicExample(**__lowercase ) self.assertEqual(__lowercase , __lowercase ) def lowercase_ ( self ) -> Dict: lowerCAmelCase_ : str = HfArgumentParser(__lowercase ) lowerCAmelCase_ : List[Any] = { "foo": 1_2, "bar": 3.14, "baz": "42", "flag": True, "extra": 4_2, } self.assertRaises(__lowercase , parser.parse_dict , __lowercase , allow_extra_keys=__lowercase ) def lowercase_ ( self ) -> Optional[Any]: lowerCAmelCase_ : Union[str, Any] = HfArgumentParser(__lowercase ) lowerCAmelCase_ : Optional[Any] = { "foo": 1_2, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ : Dict = os.path.join(__lowercase , '''temp_json''' ) os.mkdir(__lowercase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(__lowercase , __lowercase ) lowerCAmelCase_ : List[Any] = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] lowerCAmelCase_ : str = BasicExample(**__lowercase ) self.assertEqual(__lowercase , __lowercase ) def lowercase_ ( self ) -> Optional[Any]: lowerCAmelCase_ : str = HfArgumentParser(__lowercase ) lowerCAmelCase_ : str = { "foo": 1_2, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ : str = os.path.join(__lowercase , '''temp_yaml''' ) os.mkdir(__lowercase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(__lowercase , __lowercase ) lowerCAmelCase_ : int = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] lowerCAmelCase_ : Union[str, Any] = BasicExample(**__lowercase ) self.assertEqual(__lowercase , __lowercase ) def lowercase_ ( self ) -> List[Any]: lowerCAmelCase_ : Union[str, Any] = HfArgumentParser(__lowercase ) self.assertIsNotNone(__lowercase )
715
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _UpperCAmelCase : Any ="""src/transformers""" # This is to make sure the transformers module imported is the one in the repo. _UpperCAmelCase : Optional[Any] =direct_transformers_import(PATH_TO_TRANSFORMERS) _UpperCAmelCase : List[str] =transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _UpperCAmelCase : Dict =re.compile(R"""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") _UpperCAmelCase : Any ={ """DecisionTransformerConfig""", """EncoderDecoderConfig""", """MusicgenConfig""", """RagConfig""", """SpeechEncoderDecoderConfig""", """TimmBackboneConfig""", """VisionEncoderDecoderConfig""", """VisionTextDualEncoderConfig""", """LlamaConfig""", } def lowerCAmelCase ( lowerCAmelCase_ )-> str: lowerCAmelCase_ : Any = None # source code of `config_class` lowerCAmelCase_ : Optional[int] = inspect.getsource(lowerCAmelCase_ ) lowerCAmelCase_ : str = _re_checkpoint.findall(lowerCAmelCase_ ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('''/''' ): lowerCAmelCase_ : Optional[Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link lowerCAmelCase_ : Tuple = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: lowerCAmelCase_ : List[str] = ckpt_name break return checkpoint def lowerCAmelCase ( )-> Optional[Any]: lowerCAmelCase_ : Tuple = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue lowerCAmelCase_ : int = get_checkpoint_from_config_class(lowerCAmelCase_ ) lowerCAmelCase_ : Tuple = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: lowerCAmelCase_ : List[Any] = '''\n'''.join(sorted(lowerCAmelCase_ ) ) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
619
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json""", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :Dict = 'gpt_neox' def __init__( self : Optional[int] , _lowerCAmelCase : str=5_0432 , _lowerCAmelCase : Optional[Any]=6144 , _lowerCAmelCase : List[Any]=44 , _lowerCAmelCase : Union[str, Any]=64 , _lowerCAmelCase : List[str]=2_4576 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : str=0.25 , _lowerCAmelCase : List[Any]=1_0000 , _lowerCAmelCase : str=0.0 , _lowerCAmelCase : Any=0.0 , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : List[str]=2048 , _lowerCAmelCase : Union[str, Any]=0.02 , _lowerCAmelCase : List[str]=1e-5 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : List[str]=0 , _lowerCAmelCase : Dict=2 , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=None , **_lowerCAmelCase : str , ) -> Optional[Any]: """simple docstring""" super().__init__(bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = rotary_pct __lowercase = rotary_emb_base __lowercase = attention_dropout __lowercase = hidden_dropout __lowercase = classifier_dropout __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = use_cache __lowercase = tie_word_embeddings __lowercase = use_parallel_residual __lowercase = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( """The hidden size is not divisble by the number of attention heads! Make sure to update them!""" ) def _a ( self : Any ) -> int: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _lowerCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F'got {self.rope_scaling}' ) __lowercase = self.rope_scaling.get("""type""" , _lowerCAmelCase ) __lowercase = self.rope_scaling.get("""factor""" , _lowerCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(_lowerCAmelCase , _lowerCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
80
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowercase : Any = HUGGINGFACE_HUB_CACHE lowercase : Any = "config.json" lowercase : Any = "diffusion_pytorch_model.bin" lowercase : Optional[Any] = "diffusion_flax_model.msgpack" lowercase : Optional[Any] = "model.onnx" lowercase : List[str] = "diffusion_pytorch_model.safetensors" lowercase : Any = "weights.pb" lowercase : Tuple = "https://huggingface.co" lowercase : int = default_cache_path lowercase : List[str] = "diffusers_modules" lowercase : Tuple = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) lowercase : Tuple = ["fp16", "non-ema"] lowercase : str = ".self_attn"
327
0
"""simple docstring""" from __future__ import annotations def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list[int]: """simple docstring""" __snake_case = 0 __snake_case = len(SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __snake_case = i + 1 else: __snake_case = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
614
"""simple docstring""" from __future__ import annotations from collections.abc import Callable def __UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1_00 , ) -> float: """simple docstring""" __snake_case = x_start __snake_case = fnc(SCREAMING_SNAKE_CASE ) __snake_case = 0.0 for _ in range(SCREAMING_SNAKE_CASE ): # Approximates small segments of curve as linear and solve # for trapezoidal area __snake_case = (x_end - x_start) / steps + xa __snake_case = fnc(SCREAMING_SNAKE_CASE ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step __snake_case = xa __snake_case = fxa return area if __name__ == "__main__": def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") _SCREAMING_SNAKE_CASE = 10 while i <= 100_000: print(F"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 10
614
1
'''simple docstring''' def snake_case_ ( lowercase__ , lowercase__ ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) UpperCAmelCase__ : int = str(bin(lowercase__ ) )[2:] # remove the leading "0b" UpperCAmelCase__ : Optional[Any] = str(bin(lowercase__ ) )[2:] # remove the leading "0b" UpperCAmelCase__ : List[Any] = max(len(lowercase__ ) , len(lowercase__ ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(lowercase__ ) , b_binary.zfill(lowercase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
199
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCAmelCase_ ( A ): '''simple docstring''' lowercase_ : torch.FloatTensor class UpperCAmelCase_ ( A , A ): '''simple docstring''' @register_to_config def __init__( self : List[str] , snake_case__ : int = 3 , snake_case__ : int = 3 , snake_case__ : Tuple[str] = ("DownEncoderBlock2D",) , snake_case__ : Tuple[str] = ("UpDecoderBlock2D",) , snake_case__ : Tuple[int] = (64,) , snake_case__ : int = 1 , snake_case__ : str = "silu" , snake_case__ : int = 3 , snake_case__ : int = 32 , snake_case__ : int = 2_56 , snake_case__ : int = 32 , snake_case__ : Optional[int] = None , snake_case__ : float = 0.18215 , snake_case__ : str = "group" , ): '''simple docstring''' super().__init__() # pass init params to Encoder UpperCAmelCase__ : Tuple = Encoder( in_channels=snake_case__ , out_channels=snake_case__ , down_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , double_z=snake_case__ , ) UpperCAmelCase__ : str = vq_embed_dim if vq_embed_dim is not None else latent_channels UpperCAmelCase__ : Tuple = nn.Convad(snake_case__ , snake_case__ , 1 ) UpperCAmelCase__ : int = VectorQuantizer(snake_case__ , snake_case__ , beta=0.25 , remap=snake_case__ , sane_index_shape=snake_case__ ) UpperCAmelCase__ : Tuple = nn.Convad(snake_case__ , snake_case__ , 1 ) # pass init params to Decoder UpperCAmelCase__ : Union[str, Any] = Decoder( in_channels=snake_case__ , out_channels=snake_case__ , up_block_types=snake_case__ , block_out_channels=snake_case__ , layers_per_block=snake_case__ , act_fn=snake_case__ , norm_num_groups=snake_case__ , norm_type=snake_case__ , ) @apply_forward_hook def UpperCamelCase ( self : Union[str, Any] , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.encoder(snake_case__ ) UpperCAmelCase__ : List[str] = self.quant_conv(snake_case__ ) if not return_dict: return (h,) return VQEncoderOutput(latents=snake_case__ ) @apply_forward_hook def UpperCamelCase ( self : List[str] , snake_case__ : torch.FloatTensor , snake_case__ : bool = False , snake_case__ : bool = True ): '''simple docstring''' if not force_not_quantize: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = self.quantize(snake_case__ ) else: UpperCAmelCase__ : Tuple = h UpperCAmelCase__ : int = self.post_quant_conv(snake_case__ ) UpperCAmelCase__ : Optional[int] = self.decoder(snake_case__ , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ ) def UpperCamelCase ( self : Any , snake_case__ : torch.FloatTensor , snake_case__ : bool = True ): '''simple docstring''' UpperCAmelCase__ : Dict = sample UpperCAmelCase__ : int = self.encode(snake_case__ ).latents UpperCAmelCase__ : Any = self.decode(snake_case__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=snake_case__ )
199
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): __lowercase = KandinskyVaaControlnetPipeline __lowercase = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowercase = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowercase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowercase = False @property def lowerCamelCase ( self ): """simple docstring""" return 32 @property def lowerCamelCase ( self ): """simple docstring""" return 32 @property def lowerCamelCase ( self ): """simple docstring""" return self.time_input_dim @property def lowerCamelCase ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowerCamelCase ( self ): """simple docstring""" return 1_00 @property def lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _snake_case = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _snake_case = UNetaDConditionModel(**lowerCAmelCase_ ) return model @property def lowerCamelCase ( self ): """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) _snake_case = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.dummy_unet _snake_case = self.dummy_movq _snake_case = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule='linear' , beta_start=0.00085 , beta_end=0.012 , clip_sample=lowerCAmelCase_ , set_alpha_to_one=lowerCAmelCase_ , steps_offset=1 , prediction_type='epsilon' , thresholding=lowerCAmelCase_ , ) _snake_case = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=0 ): """simple docstring""" _snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) _snake_case = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCAmelCase_ ) # create hint _snake_case = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) if str(lowerCAmelCase_ ).startswith('mps' ): _snake_case = torch.manual_seed(lowerCAmelCase_ ) else: _snake_case = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _snake_case = { 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'guidance_scale': 4.0, 'num_inference_steps': 2, 'output_type': 'np', } return inputs def lowerCamelCase ( self ): """simple docstring""" _snake_case = 'cpu' _snake_case = self.get_dummy_components() _snake_case = self.pipeline_class(**lowerCAmelCase_ ) _snake_case = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = pipe(**self.get_dummy_inputs(lowerCAmelCase_ ) ) _snake_case = output.images _snake_case = pipe( **self.get_dummy_inputs(lowerCAmelCase_ ) , return_dict=lowerCAmelCase_ , )[0] _snake_case = image[0, -3:, -3:, -1] _snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): """simple docstring""" _snake_case = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' ) _snake_case = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) _snake_case = torch.from_numpy(np.array(lowerCAmelCase_ ) ).float() / 255.0 _snake_case = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _snake_case = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase_ ) _snake_case = KandinskyVaaControlnetPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) _snake_case = pipeline.to(lowerCAmelCase_ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase_ ) _snake_case = 'A robot, 4k photo' _snake_case = torch.Generator(device='cuda' ).manual_seed(0 ) _snake_case , _snake_case = pipe_prior( lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _snake_case = torch.Generator(device='cuda' ).manual_seed(0 ) _snake_case = pipeline( image_embeds=lowerCAmelCase_ , negative_image_embeds=lowerCAmelCase_ , hint=lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=1_00 , output_type='np' , ) _snake_case = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_ )
542
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class __UpperCAmelCase ( _lowerCamelCase ): @staticmethod @abstractmethod def lowerCamelCase ( lowerCAmelCase_ ): """simple docstring""" raise NotImplementedError() @abstractmethod def lowerCamelCase ( self ): """simple docstring""" raise NotImplementedError()
542
1
import random from typing import Any def __lowercase ( snake_case ): """simple docstring""" for _ in range(len(snake_case ) ): __magic_name__ :Optional[int] = random.randint(0, len(snake_case ) - 1 ) __magic_name__ :Union[str, Any] = random.randint(0, len(snake_case ) - 1 ) __magic_name__ , __magic_name__ :List[Any] = data[b], data[a] return data if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : List[Any] = [0, 1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE__ : int = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable __a: Tuple = {"""configuration_gpt_neox""": ["""GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXConfig"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: int = ["""GPTNeoXTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Optional[Any] = [ """GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXForCausalLM""", """GPTNeoXForQuestionAnswering""", """GPTNeoXForSequenceClassification""", """GPTNeoXForTokenClassification""", """GPTNeoXLayer""", """GPTNeoXModel""", """GPTNeoXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys __a: Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
152
0
"""simple docstring""" def lowercase ( lowerCAmelCase__ : int ) -> int: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''Input must be an integer''' ) if input_num <= 0: raise ValueError('''Input must be positive''' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
716
"""simple docstring""" from sklearn.metrics import fa_score import datasets lowercase_ = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" lowercase_ = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" lowercase_ = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def __UpperCAmelCase ( self , _a , _a , _a=None , _a=1 , _a="binary" , _a=None ): __a = fa_score( _a , _a , labels=_a , pos_label=_a , average=_a , sample_weight=_a ) return {"f1": float(_a ) if score.size == 1 else score}
65
0
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params SCREAMING_SNAKE_CASE : Tuple = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["memory_attention", "encoder_attn"], ["attention", "attn"], ["/", "."], [".LayerNorm.gamma", "_layer_norm.weight"], [".LayerNorm.beta", "_layer_norm.bias"], ["r.layer_", "r.layers."], ["output_proj", "out_proj"], ["ffn.dense_1.", "fc2."], ["ffn.dense.", "fc1."], ["ffn_layer_norm", "final_layer_norm"], ["kernel", "weight"], ["encoder_layer_norm.", "encoder.layer_norm."], ["decoder_layer_norm.", "decoder.layer_norm."], ["embeddings.weights", "shared.weight"], ] def _UpperCamelCase ( lowerCAmelCase__: Optional[int] ) -> Tuple: for pegasus_name, hf_name in PATTERNS: SCREAMING_SNAKE_CASE_ = k.replace(lowerCAmelCase__ ,lowerCAmelCase__ ) return k def _UpperCamelCase ( lowerCAmelCase__: dict ,lowerCAmelCase__: dict ) -> List[str]: SCREAMING_SNAKE_CASE_ = DEFAULTS.copy() cfg_kwargs.update(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = PegasusConfig(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = PegasusForConditionalGeneration(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = torch_model.model.state_dict() SCREAMING_SNAKE_CASE_ = {} for k, v in tf_weights.items(): SCREAMING_SNAKE_CASE_ = rename_state_dict_key(lowerCAmelCase__ ) if new_k not in sd: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: SCREAMING_SNAKE_CASE_ = v.T SCREAMING_SNAKE_CASE_ = torch.tensor(lowerCAmelCase__ ,dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, F"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected SCREAMING_SNAKE_CASE_ = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) SCREAMING_SNAKE_CASE_ = mapping["""shared.weight"""] SCREAMING_SNAKE_CASE_ = mapping["""shared.weight"""] SCREAMING_SNAKE_CASE_ = {k: torch.zeros_like(lowerCAmelCase__ ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = torch_model.model.load_state_dict(lowerCAmelCase__ ,strict=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = [ k for k in missing if k not in ["""encoder.embed_positions.weight""", """decoder.embed_positions.weight"""] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def _UpperCamelCase ( lowerCAmelCase__: str="./ckpt/aeslc/model.ckpt-32000" ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = tf.train.list_variables(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = ["""Adafactor""", """global_step"""] for name, shape in tqdm(lowerCAmelCase__ ,desc='converting tf checkpoint to dict' ): SCREAMING_SNAKE_CASE_ = any(pat in name for pat in ignore_name ) if skip_key: continue SCREAMING_SNAKE_CASE_ = tf.train.load_variable(lowerCAmelCase__ ,lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = array return tf_weights def _UpperCamelCase ( lowerCAmelCase__: str ,lowerCAmelCase__: str ) -> Optional[Any]: # save tokenizer first SCREAMING_SNAKE_CASE_ = Path(lowerCAmelCase__ ).parent.name SCREAMING_SNAKE_CASE_ = task_specific_params[F"""summarization_{dataset}"""]["""max_position_embeddings"""] SCREAMING_SNAKE_CASE_ = PegasusTokenizer.from_pretrained('sshleifer/pegasus' ,model_max_length=lowerCAmelCase__ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(lowerCAmelCase__ ) # convert model SCREAMING_SNAKE_CASE_ = get_tf_weights_as_numpy(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = task_specific_params[F"""summarization_{dataset}"""] if dataset == "large": SCREAMING_SNAKE_CASE_ = task_specific_params SCREAMING_SNAKE_CASE_ = convert_pegasus(lowerCAmelCase__ ,lowerCAmelCase__ ) torch_model.save_pretrained(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(lowerCAmelCase__ ,Path(lowerCAmelCase__ ) / 'pytorch_model.bin' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.") SCREAMING_SNAKE_CASE : int = parser.parse_args() if args.save_dir is None: SCREAMING_SNAKE_CASE : List[str] = Path(args.tf_ckpt_path).parent.name SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join("pegasus", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
294
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'vocab_file': 'spiece.model'} __magic_name__ = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } __magic_name__ = { 'google/bigbird-roberta-base': 4_096, 'google/bigbird-roberta-large': 4_096, 'google/bigbird-base-trivia-itc': 4_096, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["""input_ids""", """attention_mask"""] a_ = [] def __init__( self : Optional[int] ,_a : int ,_a : Optional[Any]="<unk>" ,_a : int="<s>" ,_a : str="</s>" ,_a : Optional[Any]="<pad>" ,_a : Tuple="[SEP]" ,_a : Tuple="[MASK]" ,_a : Union[str, Any]="[CLS]" ,_a : Optional[Dict[str, Any]] = None ,**_a : Any ,): '''simple docstring''' A_ : Dict = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else bos_token A_ : Union[str, Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else eos_token A_ : Optional[Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else unk_token A_ : Union[str, Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else pad_token A_ : Any = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else cls_token A_ : Optional[int] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else sep_token # Mask token behave like a normal word, i.e. include the space before it A_ : List[Any] = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else mask_token A_ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a ,eos_token=_a ,unk_token=_a ,pad_token=_a ,sep_token=_a ,mask_token=_a ,cls_token=_a ,sp_model_kwargs=self.sp_model_kwargs ,**_a ,) A_ : Optional[int] = vocab_file A_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_a ) @property def _a ( self : Union[str, Any] ): '''simple docstring''' return self.sp_model.get_piece_size() def _a ( self : Optional[Any] ): '''simple docstring''' A_ : Tuple = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ): '''simple docstring''' A_ : Union[str, Any] = self.__dict__.copy() A_ : Union[str, Any] = None return state def __setstate__( self : List[Any] ,_a : Any ): '''simple docstring''' A_ : Tuple = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): A_ : Tuple = {} A_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self : Union[str, Any] ,_a : str ): '''simple docstring''' return self.sp_model.encode(_a ,out_type=_a ) def _a ( self : Optional[int] ,_a : str ): '''simple docstring''' return self.sp_model.piece_to_id(_a ) def _a ( self : int ,_a : Optional[int] ): '''simple docstring''' A_ : List[str] = self.sp_model.IdToPiece(_a ) return token def _a ( self : Dict ,_a : int ): '''simple docstring''' A_ : int = [] A_ : Any = """""" A_ : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a ) + token A_ : Dict = True A_ : Union[str, Any] = [] else: current_sub_tokens.append(_a ) A_ : str = False out_string += self.sp_model.decode(_a ) return out_string.strip() def _a ( self : int ,_a : List[int] ,_a : bool = False ,_a : bool = None ,_a : bool = True ,**_a : str ,): '''simple docstring''' A_ : Any = kwargs.pop("""use_source_tokenizer""" ,_a ) A_ : Union[str, Any] = self.convert_ids_to_tokens(_a ,skip_special_tokens=_a ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A_ : str = [] A_ : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) A_ : List[str] = [] sub_texts.append(_a ) else: current_sub_text.append(_a ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_a ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: A_ : Optional[int] = re.sub(r""" (\[(MASK|SEP)\])""" ,r"""\1""" ,""" """.join(_a ) ) else: A_ : Tuple = """""".join(_a ) A_ : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A_ : Optional[Any] = self.clean_up_tokenization(_a ) return clean_text else: return text def _a ( self : int ,_a : str ,_a : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A_ : int = os.path.join( _a ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_a ) elif not os.path.isfile(self.vocab_file ): with open(_a ,"""wb""" ) as fi: A_ : str = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,) def _a ( self : Optional[Any] ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A_ : List[Any] = [self.cls_token_id] A_ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def _a ( self : Optional[int] ,_a : List[int] ,_a : Optional[List[int]] = None ,_a : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a ,token_ids_a=_a ,already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] def _a ( self : Tuple ,_a : List[int] ,_a : Optional[List[int]] = None ): '''simple docstring''' A_ : Tuple = [self.sep_token_id] A_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
665
0
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset __snake_case = pd.read_csv( 'https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/' 'position_salaries.csv' ) __snake_case = dataset.iloc[:, 1:2].values __snake_case = dataset.iloc[:, 2].values __snake_case , __snake_case , __snake_case , __snake_case = train_test_split(X, y, test_size=0.2, random_state=0) __snake_case = PolynomialFeatures(degree=4) __snake_case = poly_reg.fit_transform(X) __snake_case = LinearRegression() pol_reg.fit(X_poly, y) def _lowerCamelCase ( ): plt.scatter(lowerCamelCase__ , lowerCamelCase__ , color="""red""" ) plt.plot(lowerCamelCase__ , pol_reg.predict(poly_reg.fit_transform(lowerCamelCase__ ) ) , color="""blue""" ) plt.title("""Truth or Bluff (Linear Regression)""" ) plt.xlabel("""Position level""" ) plt.ylabel("""Salary""" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
128
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 __snake_case = sys.version_info >= (3, 10) def _lowerCamelCase ( lowerCamelCase__ : Tuple=None , lowerCamelCase__ : Any=None ): return field(default_factory=lambda: default , metadata=lowerCamelCase__ ) @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : int _a : float _a : str _a : bool @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : int = 42 _a : str = field(default='''toto''' , metadata={'''help''': '''help message'''} ) @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : bool = False _a : bool = True _a : Optional[bool] = None class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" _a : Optional[Any] = '''titi''' _a : str = '''toto''' class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): """simple docstring""" _a : Union[str, Any] = '''titi''' _a : Union[str, Any] = '''toto''' _a : Tuple = 42 @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : BasicEnum = "toto" def UpperCAmelCase__( self ) -> Optional[Any]: lowercase__ : List[str] = BasicEnum(self.foo ) @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : MixedTypeEnum = "toto" def UpperCAmelCase__( self ) -> Union[str, Any]: lowercase__ : Any = MixedTypeEnum(self.foo ) @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : Optional[int] = None _a : Optional[float] = field(default=__UpperCAmelCase , metadata={'''help''': '''help message'''} ) _a : Optional[str] = None _a : Optional[List[str]] = list_field(default=[] ) _a : Optional[List[int]] = list_field(default=[] ) @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : List[int] = list_field(default=[] ) _a : List[int] = list_field(default=[1, 2, 3] ) _a : List[str] = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) _a : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : List[int] = field() _a : str = field() _a : BasicEnum = field() def UpperCAmelCase__( self ) -> Optional[int]: lowercase__ : Optional[Any] = BasicEnum(self.required_enum ) @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : int _a : "BasicEnum" = field() _a : "Optional[bool]" = None _a : "str" = field(default='''toto''' , metadata={'''help''': '''help message'''} ) _a : "List[str]" = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) if is_python_no_less_than_3_10: @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : bool = False _a : bool = True _a : bool | None = None @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : int | None = None _a : float | None = field(default=__UpperCAmelCase , metadata={'''help''': '''help message'''} ) _a : str | None = None _a : list[str] | None = list_field(default=[] ) _a : list[int] | None = list_field(default=[] ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowercase__ : int = {k: v for k, v in vars(lowerCamelCase__ ).items() if k != """container"""} lowercase__ : Any = {k: v for k, v in vars(lowerCamelCase__ ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("""choices""" , lowerCamelCase__ ) and yy.get("""choices""" , lowerCamelCase__ ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["""type"""](lowerCamelCase__ ) , yy["""type"""](lowerCamelCase__ ) ) del xx["type"], yy["type"] self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Tuple: lowercase__ : Any = HfArgumentParser(lowerCamelCase__ ) lowercase__ : int = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowerCamelCase__ , required=lowerCamelCase__ ) expected.add_argument("""--bar""" , type=lowerCamelCase__ , required=lowerCamelCase__ ) expected.add_argument("""--baz""" , type=lowerCamelCase__ , required=lowerCamelCase__ ) expected.add_argument("""--flag""" , type=lowerCamelCase__ , default=lowerCamelCase__ , const=lowerCamelCase__ , nargs="""?""" ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Tuple = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] ((lowercase__) , ) : Optional[int] = parser.parse_args_into_dataclasses(lowerCamelCase__ , look_for_args_file=lowerCamelCase__ ) self.assertFalse(example.flag ) def UpperCAmelCase__( self ) -> List[Any]: lowercase__ : List[str] = HfArgumentParser(lowerCamelCase__ ) lowercase__ : int = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=42 , type=lowerCamelCase__ ) expected.add_argument("""--baz""" , default="""toto""" , type=lowerCamelCase__ , help="""help message""" ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> List[Any]: lowercase__ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowerCamelCase__ , default=lowerCamelCase__ , const=lowerCamelCase__ , nargs="""?""" ) expected.add_argument("""--baz""" , type=lowerCamelCase__ , default=lowerCamelCase__ , const=lowerCamelCase__ , nargs="""?""" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("""--no_baz""" , action="""store_false""" , default=lowerCamelCase__ , dest="""baz""" ) expected.add_argument("""--opt""" , type=lowerCamelCase__ , default=lowerCamelCase__ ) lowercase__ : Any = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowerCamelCase__ ) for dataclass_type in dataclass_types: lowercase__ : Optional[int] = HfArgumentParser(lowerCamelCase__ ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Optional[Any] = parser.parse_args([] ) self.assertEqual(lowerCamelCase__ , Namespace(foo=lowerCamelCase__ , baz=lowerCamelCase__ , opt=lowerCamelCase__ ) ) lowercase__ : Optional[Any] = parser.parse_args(["""--foo""", """--no_baz"""] ) self.assertEqual(lowerCamelCase__ , Namespace(foo=lowerCamelCase__ , baz=lowerCamelCase__ , opt=lowerCamelCase__ ) ) lowercase__ : str = parser.parse_args(["""--foo""", """--baz"""] ) self.assertEqual(lowerCamelCase__ , Namespace(foo=lowerCamelCase__ , baz=lowerCamelCase__ , opt=lowerCamelCase__ ) ) lowercase__ : List[str] = parser.parse_args(["""--foo""", """True""", """--baz""", """True""", """--opt""", """True"""] ) self.assertEqual(lowerCamelCase__ , Namespace(foo=lowerCamelCase__ , baz=lowerCamelCase__ , opt=lowerCamelCase__ ) ) lowercase__ : Dict = parser.parse_args(["""--foo""", """False""", """--baz""", """False""", """--opt""", """False"""] ) self.assertEqual(lowerCamelCase__ , Namespace(foo=lowerCamelCase__ , baz=lowerCamelCase__ , opt=lowerCamelCase__ ) ) def UpperCAmelCase__( self ) -> Optional[int]: lowercase__ : Dict = HfArgumentParser(lowerCamelCase__ ) lowercase__ : Tuple = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=["""titi""", """toto""", 42] , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Optional[int] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) lowercase__ : Optional[int] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowercase__ : Union[str, Any] = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) lowercase__ : List[str] = parser.parse_args_into_dataclasses(["""--foo""", """titi"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowercase__ : Tuple = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) lowercase__ : List[str] = parser.parse_args_into_dataclasses(["""--foo""", """42"""] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def UpperCAmelCase__( self ) -> List[str]: @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : Literal["titi", "toto", 42] = "toto" lowercase__ : Tuple = HfArgumentParser(lowerCamelCase__ ) lowercase__ : Tuple = argparse.ArgumentParser() expected.add_argument( """--foo""" , default="""toto""" , choices=("""titi""", """toto""", 42) , type=make_choice_type_function(["""titi""", """toto""", 42] ) , ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Union[str, Any] = parser.parse_args([] ) self.assertEqual(args.foo , """toto""" ) lowercase__ : Any = parser.parse_args(["""--foo""", """titi"""] ) self.assertEqual(args.foo , """titi""" ) lowercase__ : int = parser.parse_args(["""--foo""", """42"""] ) self.assertEqual(args.foo , 42 ) def UpperCAmelCase__( self ) -> int: lowercase__ : Optional[Any] = HfArgumentParser(lowerCamelCase__ ) lowercase__ : Optional[Any] = argparse.ArgumentParser() expected.add_argument("""--foo_int""" , nargs="""+""" , default=[] , type=lowerCamelCase__ ) expected.add_argument("""--bar_int""" , nargs="""+""" , default=[1, 2, 3] , type=lowerCamelCase__ ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=lowerCamelCase__ ) expected.add_argument("""--foo_float""" , nargs="""+""" , default=[0.1, 0.2, 0.3] , type=lowerCamelCase__ ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : str = parser.parse_args([] ) self.assertEqual( lowerCamelCase__ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["""Hallo""", """Bonjour""", """Hello"""] , foo_float=[0.1, 0.2, 0.3] ) , ) lowercase__ : List[str] = parser.parse_args("""--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7""".split() ) self.assertEqual(lowerCamelCase__ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["""a""", """b""", """c"""] , foo_float=[0.1, 0.7] ) ) def UpperCAmelCase__( self ) -> Dict: lowercase__ : Any = argparse.ArgumentParser() expected.add_argument("""--foo""" , default=lowerCamelCase__ , type=lowerCamelCase__ ) expected.add_argument("""--bar""" , default=lowerCamelCase__ , type=lowerCamelCase__ , help="""help message""" ) expected.add_argument("""--baz""" , default=lowerCamelCase__ , type=lowerCamelCase__ ) expected.add_argument("""--ces""" , nargs="""+""" , default=[] , type=lowerCamelCase__ ) expected.add_argument("""--des""" , nargs="""+""" , default=[] , type=lowerCamelCase__ ) lowercase__ : Tuple = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowerCamelCase__ ) for dataclass_type in dataclass_types: lowercase__ : Dict = HfArgumentParser(lowerCamelCase__ ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : List[Any] = parser.parse_args([] ) self.assertEqual(lowerCamelCase__ , Namespace(foo=lowerCamelCase__ , bar=lowerCamelCase__ , baz=lowerCamelCase__ , ces=[] , des=[] ) ) lowercase__ : Optional[Any] = parser.parse_args("""--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3""".split() ) self.assertEqual(lowerCamelCase__ , Namespace(foo=12 , bar=3.14 , baz="""42""" , ces=["""a""", """b""", """c"""] , des=[1, 2, 3] ) ) def UpperCAmelCase__( self ) -> Union[str, Any]: lowercase__ : Optional[int] = HfArgumentParser(lowerCamelCase__ ) lowercase__ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("""--required_list""" , nargs="""+""" , type=lowerCamelCase__ , required=lowerCamelCase__ ) expected.add_argument("""--required_str""" , type=lowerCamelCase__ , required=lowerCamelCase__ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=lowerCamelCase__ , ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> List[Any]: lowercase__ : List[Any] = HfArgumentParser(lowerCamelCase__ ) lowercase__ : Union[str, Any] = argparse.ArgumentParser() expected.add_argument("""--foo""" , type=lowerCamelCase__ , required=lowerCamelCase__ ) expected.add_argument( """--required_enum""" , type=make_choice_type_function(["""titi""", """toto"""] ) , choices=["""titi""", """toto"""] , required=lowerCamelCase__ , ) expected.add_argument("""--opt""" , type=lowerCamelCase__ , default=lowerCamelCase__ ) expected.add_argument("""--baz""" , default="""toto""" , type=lowerCamelCase__ , help="""help message""" ) expected.add_argument("""--foo_str""" , nargs="""+""" , default=["""Hallo""", """Bonjour""", """Hello"""] , type=lowerCamelCase__ ) self.argparsersEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> str: lowercase__ : Any = HfArgumentParser(lowerCamelCase__ ) lowercase__ : Tuple = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } lowercase__ : int = parser.parse_dict(lowerCamelCase__ )[0] lowercase__ : List[str] = BasicExample(**lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Tuple: lowercase__ : Union[str, Any] = HfArgumentParser(lowerCamelCase__ ) lowercase__ : Dict = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(lowerCamelCase__ , parser.parse_dict , lowerCamelCase__ , allow_extra_keys=lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Tuple: lowercase__ : List[str] = HfArgumentParser(lowerCamelCase__ ) lowercase__ : List[Any] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : int = os.path.join(lowerCamelCase__ , """temp_json""" ) os.mkdir(lowerCamelCase__ ) with open(temp_local_path + """.json""" , """w+""" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Dict = parser.parse_yaml_file(Path(temp_local_path + """.json""" ) )[0] lowercase__ : Any = BasicExample(**lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Union[str, Any]: lowercase__ : Union[str, Any] = HfArgumentParser(lowerCamelCase__ ) lowercase__ : Union[str, Any] = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ : Any = os.path.join(lowerCamelCase__ , """temp_yaml""" ) os.mkdir(lowerCamelCase__ ) with open(temp_local_path + """.yaml""" , """w+""" ) as f: yaml.dump(lowerCamelCase__ , lowerCamelCase__ ) lowercase__ : Optional[int] = parser.parse_yaml_file(Path(temp_local_path + """.yaml""" ) )[0] lowercase__ : Dict = BasicExample(**lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Optional[int]: lowercase__ : Optional[int] = HfArgumentParser(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ )
128
1
def _a ( __lowercase ) -> List[str]: """simple docstring""" __UpperCamelCase = [] if len(__lowercase ) == 1: return [nums.copy()] for _ in range(len(__lowercase ) ): __UpperCamelCase = nums.pop(0 ) __UpperCamelCase = permute(__lowercase ) for perm in permutations: perm.append(__lowercase ) result.extend(__lowercase ) nums.append(__lowercase ) return result def _a ( __lowercase ) -> Optional[int]: """simple docstring""" def backtrack(__lowercase ): if start == len(__lowercase ) - 1: output.append(nums[:] ) else: for i in range(__lowercase , len(__lowercase ) ): __UpperCamelCase = nums[i], nums[start] backtrack(start + 1 ) __UpperCamelCase = nums[i], nums[start] # backtrack __UpperCamelCase = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function _snake_case = permutea([1, 2, 3]) print(res) doctest.testmod()
383
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase : List[str] = {'configuration_encoder_decoder': ['EncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['EncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = ['TFEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] = ['FlaxEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
170
0
from typing import Any class A : '''simple docstring''' def __init__( self : str , __lowerCAmelCase : Any ) -> Tuple: """simple docstring""" A__ = data A__ = None class A : '''simple docstring''' def __init__( self : str ) -> Union[str, Any]: """simple docstring""" A__ = None def a_ ( self : Dict ) -> Dict: """simple docstring""" A__ = self.head while temp is not None: print(temp.data , end=""" """ ) A__ = temp.next print() def a_ ( self : int , __lowerCAmelCase : Any ) -> Tuple: """simple docstring""" A__ = Node(__lowerCAmelCase ) A__ = self.head A__ = new_node def a_ ( self : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Dict ) -> Tuple: """simple docstring""" if node_data_a == node_data_a: return else: A__ = self.head while node_a is not None and node_a.data != node_data_a: A__ = node_a.next A__ = self.head while node_a is not None and node_a.data != node_data_a: A__ = node_a.next if node_a is None or node_a is None: return A__ , A__ = node_a.data, node_a.data if __name__ == "__main__": A : Optional[int] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('''After swapping''') ll.print_list()
247
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : Any = 1_6 A : List[Any] = 3_2 def __lowerCamelCase ( __a :Accelerator , __a :int = 1_6 ) -> str: """simple docstring""" A__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) A__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__a :Union[str, Any] ): # max_length=None => use the model max length (it's actually the default) A__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ = datasets.map( __a , batched=__a , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__a :Any ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ = 1_6 elif accelerator.mixed_precision != "no": A__ = 8 else: A__ = None return tokenizer.pad( __a , padding="""longest""" , max_length=__a , pad_to_multiple_of=__a , return_tensors="""pt""" , ) # Instantiate dataloaders. A__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__a , collate_fn=__a , batch_size=__a ) A__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders A : Optional[Any] = mocked_dataloaders # noqa: F811 def __lowerCamelCase ( __a :List[Any] , __a :Optional[Any] ) -> List[Any]: """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __a ) == "1": A__ = 2 # New Code # A__ = int(args.gradient_accumulation_steps ) # Initialize accelerator A__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__a ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ = config["""lr"""] A__ = int(config["""num_epochs"""] ) A__ = int(config["""seed"""] ) A__ = int(config["""batch_size"""] ) A__ = evaluate.load("""glue""" , """mrpc""" ) set_seed(__a ) A__ , A__ = get_dataloaders(__a , __a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ = model.to(accelerator.device ) # Instantiate optimizer A__ = AdamW(params=model.parameters() , lr=__a ) # Instantiate scheduler A__ = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=1_0_0 , num_training_steps=(len(__a ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ = accelerator.prepare( __a , __a , __a , __a , __a ) # Now we train the model for epoch in range(__a ): model.train() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__a ): A__ = model(**__a ) A__ = output.loss accelerator.backward(__a ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ = model(**__a ) A__ = outputs.logits.argmax(dim=-1 ) A__ , A__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__a , references=__a , ) A__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , __a ) def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" A__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__a , default=__a , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__a , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) A__ = parser.parse_args() A__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(__a , __a ) if __name__ == "__main__": main()
247
1
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __magic_name__ : Tuple =logging.get_logger(__name__) __magic_name__ : Optional[int] ={ 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } __magic_name__ : Union[str, Any] ={ 'b0': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 2_24, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 12_80, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 2_40, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 14_08, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 2_60, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 15_36, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 3_00, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 17_92, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 3_80, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 20_48, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 4_56, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 23_04, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 5_28, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 25_60, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 6_00, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def __snake_case ( lowerCamelCase_ : List[str] ): '''simple docstring''' __magic_name__ = EfficientNetConfig() __magic_name__ = CONFIG_MAP[model_name]["hidden_dim"] __magic_name__ = CONFIG_MAP[model_name]["width_coef"] __magic_name__ = CONFIG_MAP[model_name]["depth_coef"] __magic_name__ = CONFIG_MAP[model_name]["image_size"] __magic_name__ = CONFIG_MAP[model_name]["dropout_rate"] __magic_name__ = CONFIG_MAP[model_name]["dw_padding"] __magic_name__ = "huggingface/label-files" __magic_name__ = "imagenet-1k-id2label.json" __magic_name__ = 1000 __magic_name__ = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="dataset" ) , "r" ) ) __magic_name__ = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} __magic_name__ = idalabel __magic_name__ = {v: k for k, v in idalabel.items()} return config def __snake_case ( ): '''simple docstring''' __magic_name__ = "http://images.cocodataset.org/val2017/000000039769.jpg" __magic_name__ = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im def __snake_case ( lowerCamelCase_ : List[Any] ): '''simple docstring''' __magic_name__ = CONFIG_MAP[model_name]["image_size"] __magic_name__ = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.4785_3944, 0.473_2864, 0.4743_4163] , do_center_crop=lowerCamelCase_ , ) return preprocessor def __snake_case ( lowerCamelCase_ : Tuple ): '''simple docstring''' __magic_name__ = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] __magic_name__ = sorted(set(lowerCamelCase_ ) ) __magic_name__ = len(lowerCamelCase_ ) __magic_name__ = {b: str(lowerCamelCase_ ) for b, i in zip(lowerCamelCase_ , range(lowerCamelCase_ ) )} __magic_name__ = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: __magic_name__ = block_name_mapping[b] rename_keys.append((F'block{b}_expand_conv/kernel:0', F'encoder.blocks.{hf_b}.expansion.expand_conv.weight') ) rename_keys.append((F'block{b}_expand_bn/gamma:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.weight') ) rename_keys.append((F'block{b}_expand_bn/beta:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.bias') ) rename_keys.append( (F'block{b}_expand_bn/moving_mean:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.running_mean') ) rename_keys.append( (F'block{b}_expand_bn/moving_variance:0', F'encoder.blocks.{hf_b}.expansion.expand_bn.running_var') ) rename_keys.append( (F'block{b}_dwconv/depthwise_kernel:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight') ) rename_keys.append((F'block{b}_bn/gamma:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight') ) rename_keys.append((F'block{b}_bn/beta:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias') ) rename_keys.append( (F'block{b}_bn/moving_mean:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean') ) rename_keys.append( (F'block{b}_bn/moving_variance:0', F'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var') ) rename_keys.append((F'block{b}_se_reduce/kernel:0', F'encoder.blocks.{hf_b}.squeeze_excite.reduce.weight') ) rename_keys.append((F'block{b}_se_reduce/bias:0', F'encoder.blocks.{hf_b}.squeeze_excite.reduce.bias') ) rename_keys.append((F'block{b}_se_expand/kernel:0', F'encoder.blocks.{hf_b}.squeeze_excite.expand.weight') ) rename_keys.append((F'block{b}_se_expand/bias:0', F'encoder.blocks.{hf_b}.squeeze_excite.expand.bias') ) rename_keys.append( (F'block{b}_project_conv/kernel:0', F'encoder.blocks.{hf_b}.projection.project_conv.weight') ) rename_keys.append((F'block{b}_project_bn/gamma:0', F'encoder.blocks.{hf_b}.projection.project_bn.weight') ) rename_keys.append((F'block{b}_project_bn/beta:0', F'encoder.blocks.{hf_b}.projection.project_bn.bias') ) rename_keys.append( (F'block{b}_project_bn/moving_mean:0', F'encoder.blocks.{hf_b}.projection.project_bn.running_mean') ) rename_keys.append( (F'block{b}_project_bn/moving_variance:0', F'encoder.blocks.{hf_b}.projection.project_bn.running_var') ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) __magic_name__ = {} for item in rename_keys: if item[0] in original_param_names: __magic_name__ = "efficientnet." + item[1] __magic_name__ = "classifier.weight" __magic_name__ = "classifier.bias" return key_mapping def __snake_case ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : int ): '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue __magic_name__ = key_mapping[key] if "_conv" in key and "kernel" in key: __magic_name__ = torch.from_numpy(lowerCamelCase_ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __magic_name__ = torch.from_numpy(lowerCamelCase_ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __magic_name__ = torch.from_numpy(np.transpose(lowerCamelCase_ ) ) else: __magic_name__ = torch.from_numpy(lowerCamelCase_ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCamelCase_ ) @torch.no_grad() def __snake_case ( lowerCamelCase_ : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' __magic_name__ = model_classes[model_name]( include_top=lowerCamelCase_ , weights="imagenet" , input_tensor=lowerCamelCase_ , input_shape=lowerCamelCase_ , pooling=lowerCamelCase_ , classes=1000 , classifier_activation="softmax" , ) __magic_name__ = original_model.trainable_variables __magic_name__ = original_model.non_trainable_variables __magic_name__ = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __magic_name__ = param.numpy() __magic_name__ = list(tf_params.keys() ) # Load HuggingFace model __magic_name__ = get_efficientnet_config(lowerCamelCase_ ) __magic_name__ = EfficientNetForImageClassification(lowerCamelCase_ ).eval() __magic_name__ = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) __magic_name__ = rename_keys(lowerCamelCase_ ) replace_params(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Initialize preprocessor and preprocess input image __magic_name__ = convert_image_processor(lowerCamelCase_ ) __magic_name__ = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): __magic_name__ = hf_model(**lowerCamelCase_ ) __magic_name__ = outputs.logits.detach().numpy() # Original model inference __magic_name__ = False __magic_name__ = CONFIG_MAP[model_name]["image_size"] __magic_name__ = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __magic_name__ = image.img_to_array(lowerCamelCase_ ) __magic_name__ = np.expand_dims(lowerCamelCase_ , axis=0 ) __magic_name__ = original_model.predict(lowerCamelCase_ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(lowerCamelCase_ ): os.mkdir(lowerCamelCase_ ) # Save converted model and image processor hf_model.save_pretrained(lowerCamelCase_ ) preprocessor.save_pretrained(lowerCamelCase_ ) if push_to_hub: # Push model and image processor to hub print(F'Pushing converted {model_name} to the hub...' ) __magic_name__ = F'efficientnet-{model_name}' preprocessor.push_to_hub(lowerCamelCase_ ) hf_model.push_to_hub(lowerCamelCase_ ) if __name__ == "__main__": __magic_name__ : Any =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') __magic_name__ : Any =parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
664
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" def __A ( self : List[str] ) -> str: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __magic_name__ = [[1, 2, 4], [1, 2, 3, 4]] __magic_name__ = DisjunctiveConstraint(_lowerCamelCase ) self.assertTrue(isinstance(dc.token_ids , _lowerCamelCase ) ) with self.assertRaises(_lowerCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_lowerCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __A ( self : List[Any] ) -> str: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __magic_name__ = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_lowerCamelCase ): DisjunctiveConstraint(_lowerCamelCase ) # fails here def __A ( self : List[Any] ) -> int: __magic_name__ = [[1, 2, 3], [1, 2, 4]] __magic_name__ = DisjunctiveConstraint(_lowerCamelCase ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(1 ) __magic_name__ = stepped is True and completed is False and reset is False self.assertTrue(_lowerCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(2 ) __magic_name__ = stepped is True and completed is False and reset is False self.assertTrue(_lowerCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(3 ) __magic_name__ = stepped is True and completed is True and reset is False self.assertTrue(_lowerCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __A ( self : Any ) -> Union[str, Any]: __magic_name__ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __magic_name__ = DisjunctiveConstraint(_lowerCamelCase ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __magic_name__ , __magic_name__ , __magic_name__ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __magic_name__ , __magic_name__ , __magic_name__ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
664
1
"""simple docstring""" class a : """simple docstring""" def __init__( self: Any ): """simple docstring""" A__ = """""" A__ = """""" A__ = [] def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: List[Any] , UpperCamelCase: Any ): """simple docstring""" if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: A__ = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: A__ = self.__min_dist_top_down_dp(_SCREAMING_SNAKE_CASE , n - 1 ) A__ = self.__min_dist_top_down_dp(m - 1 , _SCREAMING_SNAKE_CASE ) A__ = self.__min_dist_top_down_dp(m - 1 , n - 1 ) A__ = 1 + min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return self.dp[m][n] def UpperCamelCase ( self: Tuple , UpperCamelCase: Tuple , UpperCamelCase: str ): """simple docstring""" A__ = worda A__ = worda A__ = [[-1 for _ in range(len(_SCREAMING_SNAKE_CASE ) )] for _ in range(len(_SCREAMING_SNAKE_CASE ) )] return self.__min_dist_top_down_dp(len(_SCREAMING_SNAKE_CASE ) - 1 , len(_SCREAMING_SNAKE_CASE ) - 1 ) def UpperCamelCase ( self: List[str] , UpperCamelCase: int , UpperCamelCase: Optional[Any] ): """simple docstring""" A__ = worda A__ = worda A__ = len(_SCREAMING_SNAKE_CASE ) A__ = len(_SCREAMING_SNAKE_CASE ) A__ = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty A__ = j elif j == 0: # second string is empty A__ = i elif worda[i - 1] == worda[j - 1]: # last characters are equal A__ = self.dp[i - 1][j - 1] else: A__ = self.dp[i][j - 1] A__ = self.dp[i - 1][j] A__ = self.dp[i - 1][j - 1] A__ = 1 + min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return self.dp[m][n] if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : str = EditDistance() print('****************** Testing Edit Distance DP Algorithm ******************') print() SCREAMING_SNAKE_CASE_ : Union[str, Any] = input('Enter the first string: ').strip() SCREAMING_SNAKE_CASE_ : str = input('Enter the second string: ').strip() print() print(f"""The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}""") print(f"""The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}""") print() print('*************** End of Testing Edit Distance DP Algorithm ***************')
713
"""simple docstring""" from __future__ import annotations class a : """simple docstring""" def __init__( self: Any , UpperCamelCase: str , UpperCamelCase: str ): """simple docstring""" A__ , A__ = text, pattern A__ , A__ = len(UpperCamelCase ), len(UpperCamelCase ) def UpperCamelCase ( self: Dict , UpperCamelCase: str ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def UpperCamelCase ( self: str , UpperCamelCase: int ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = [] for i in range(self.textLen - self.patLen + 1 ): A__ = self.mismatch_in_text(UpperCamelCase ) if mismatch_index == -1: positions.append(UpperCamelCase ) else: A__ = self.match_in_pattern(self.text[mismatch_index] ) A__ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE_ : List[Any] = 'ABAABA' SCREAMING_SNAKE_CASE_ : List[Any] = 'AB' SCREAMING_SNAKE_CASE_ : Union[str, Any] = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE_ : int = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
500
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class _A ( unittest.TestCase ): """simple docstring""" def __init__( self : str , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str=7 , __SCREAMING_SNAKE_CASE : Union[str, Any]=3 , __SCREAMING_SNAKE_CASE : Tuple=18 , __SCREAMING_SNAKE_CASE : Tuple=30 , __SCREAMING_SNAKE_CASE : Union[str, Any]=400 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : int=None , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=[0.48_145_466, 0.4_578_275, 0.40_821_073] , __SCREAMING_SNAKE_CASE : int=[0.26_862_954, 0.26_130_258, 0.27_577_711] , __SCREAMING_SNAKE_CASE : Dict=True , ) -> Optional[Any]: __UpperCAmelCase =size if size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase =crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __UpperCAmelCase =parent __UpperCAmelCase =batch_size __UpperCAmelCase =num_channels __UpperCAmelCase =image_size __UpperCAmelCase =min_resolution __UpperCAmelCase =max_resolution __UpperCAmelCase =do_resize __UpperCAmelCase =size __UpperCAmelCase =do_center_crop __UpperCAmelCase =crop_size __UpperCAmelCase =do_normalize __UpperCAmelCase =image_mean __UpperCAmelCase =image_std __UpperCAmelCase =do_convert_rgb def _a ( self : Any ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def _a ( self : str , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : List[str]=False , __SCREAMING_SNAKE_CASE : int=False ) -> List[Any]: assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: __UpperCAmelCase =[] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: __UpperCAmelCase =[] for i in range(self.batch_size ): __UpperCAmelCase , __UpperCAmelCase =np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension __UpperCAmelCase =[Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] if torchify: __UpperCAmelCase =[torch.from_numpy(__SCREAMING_SNAKE_CASE ) for x in image_inputs] return image_inputs @require_torch @require_vision class _A ( UpperCamelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Dict = ChineseCLIPImageProcessor if is_vision_available() else None def _a ( self : List[Any] ) -> List[Any]: __UpperCAmelCase =ChineseCLIPImageProcessingTester(self , do_center_crop=__SCREAMING_SNAKE_CASE ) @property def _a ( self : Optional[int] ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """size""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_center_crop""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """center_crop""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_normalize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_mean""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_std""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_convert_rgb""" ) ) def _a ( self : Optional[int] ) -> str: __UpperCAmelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 224, """width""": 224} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) __UpperCAmelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def _a ( self : Optional[int] ) -> Optional[int]: pass def _a ( self : Optional[int] ) -> Optional[int]: # Initialize image_processing __UpperCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase =self.image_processor_tester.prepare_inputs(equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input __UpperCAmelCase =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __UpperCAmelCase =image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self : Tuple ) -> Union[str, Any]: # Initialize image_processing __UpperCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase =self.image_processor_tester.prepare_inputs(equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input __UpperCAmelCase =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __UpperCAmelCase =image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def _a ( self : Tuple ) -> Any: # Initialize image_processing __UpperCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase =self.image_processor_tester.prepare_inputs(equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input __UpperCAmelCase =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __UpperCAmelCase =image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) @require_torch @require_vision class _A ( UpperCamelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ChineseCLIPImageProcessor if is_vision_available() else None def _a ( self : Tuple ) -> Union[str, Any]: __UpperCAmelCase =ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =3 @property def _a ( self : Optional[Any] ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self : Dict ) -> Optional[int]: __UpperCAmelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """size""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_center_crop""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """center_crop""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_normalize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_mean""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_std""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_convert_rgb""" ) ) def _a ( self : List[Any] ) -> Tuple: pass def _a ( self : List[Any] ) -> Dict: # Initialize image_processing __UpperCAmelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase =self.image_processor_tester.prepare_inputs(equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input __UpperCAmelCase =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __UpperCAmelCase =image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
68
def lowercase__ ( A_: int , A_: int ) -> int: """simple docstring""" return 1 if input_a == input_a else 0 def lowercase__ ( ) -> None: """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
68
1
from ...processing_utils import ProcessorMixin class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" _A = 'SpeechT5FeatureExtractor' _A = 'SpeechT5Tokenizer' def __init__(self , __a , __a ): '''simple docstring''' super().__init__(__a , __a ) def __call__(self , *__a , **__a ): '''simple docstring''' lowerCamelCase = kwargs.pop("audio" , __a ) lowerCamelCase = kwargs.pop("text" , __a ) lowerCamelCase = kwargs.pop("text_target" , __a ) lowerCamelCase = kwargs.pop("audio_target" , __a ) lowerCamelCase = kwargs.pop("sampling_rate" , __a ) if audio is not None and text is not None: raise ValueError( "Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?" ) if audio_target is not None and text_target is not None: raise ValueError( "Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?" ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( "You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process." ) if audio is not None: lowerCamelCase = self.feature_extractor(__a , *__a , sampling_rate=__a , **__a ) elif text is not None: lowerCamelCase = self.tokenizer(__a , **__a ) else: lowerCamelCase = None if audio_target is not None: lowerCamelCase = self.feature_extractor(audio_target=__a , *__a , sampling_rate=__a , **__a ) lowerCamelCase = targets["input_values"] elif text_target is not None: lowerCamelCase = self.tokenizer(__a , **__a ) lowerCamelCase = targets["input_ids"] else: lowerCamelCase = None if inputs is None: return targets if targets is not None: lowerCamelCase = labels lowerCamelCase = targets.get("attention_mask" ) if decoder_attention_mask is not None: lowerCamelCase = decoder_attention_mask return inputs def _a (self , *__a , **__a ): '''simple docstring''' lowerCamelCase = kwargs.pop("input_values" , __a ) lowerCamelCase = kwargs.pop("input_ids" , __a ) lowerCamelCase = kwargs.pop("labels" , __a ) if input_values is not None and input_ids is not None: raise ValueError("Cannot process both `input_values` and `input_ids` inputs." ) if input_values is None and input_ids is None and labels is None: raise ValueError( "You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded." ) if input_values is not None: lowerCamelCase = self.feature_extractor.pad(__a , *__a , **__a ) elif input_ids is not None: lowerCamelCase = self.tokenizer.pad(__a , **__a ) else: lowerCamelCase = None if labels is not None: if "input_ids" in labels or (isinstance(__a , __a ) and "input_ids" in labels[0]): lowerCamelCase = self.tokenizer.pad(__a , **__a ) lowerCamelCase = targets["input_ids"] else: lowerCamelCase = self.feature_extractor.feature_size lowerCamelCase = self.feature_extractor.num_mel_bins lowerCamelCase = self.feature_extractor.pad(__a , *__a , **__a ) lowerCamelCase = feature_size_hack lowerCamelCase = targets["input_values"] else: lowerCamelCase = None if inputs is None: return targets if targets is not None: lowerCamelCase = labels lowerCamelCase = targets.get("attention_mask" ) if decoder_attention_mask is not None: lowerCamelCase = decoder_attention_mask return inputs def _a (self , *__a , **__a ): '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a ) def _a (self , *__a , **__a ): '''simple docstring''' return self.tokenizer.decode(*__a , **__a )
484
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" def _a (self ): '''simple docstring''' lowerCamelCase = SMALL_MODEL_IDENTIFIER lowerCamelCase = "pt" lowerCamelCase = "tf" def _a (self , __a ): '''simple docstring''' lowerCamelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__a ) def _a (self , __a ): '''simple docstring''' lowerCamelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=__a ) model_tf.save_pretrained(__a ) def _a (self ): '''simple docstring''' lowerCamelCase = "mock_framework" # Framework provided - return whatever the user provides lowerCamelCase = FeaturesManager.determine_framework(self.test_model , __a ) self.assertEqual(__a , __a ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) lowerCamelCase = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) lowerCamelCase = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) def _a (self ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) lowerCamelCase = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) lowerCamelCase = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__a ): lowerCamelCase = FeaturesManager.determine_framework(__a ) def _a (self ): '''simple docstring''' lowerCamelCase = MagicMock(return_value=__a ) with patch("transformers.onnx.features.is_tf_available" , __a ): lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # PyTorch not in environment -> use TensorFlow lowerCamelCase = MagicMock(return_value=__a ) with patch("transformers.onnx.features.is_torch_available" , __a ): lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_tf ) # Both in environment -> use PyTorch lowerCamelCase = MagicMock(return_value=__a ) lowerCamelCase = MagicMock(return_value=__a ) with patch("transformers.onnx.features.is_tf_available" , __a ), patch( "transformers.onnx.features.is_torch_available" , __a ): lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # Both not in environment -> raise error lowerCamelCase = MagicMock(return_value=__a ) lowerCamelCase = MagicMock(return_value=__a ) with patch("transformers.onnx.features.is_tf_available" , __a ), patch( "transformers.onnx.features.is_torch_available" , __a ): with self.assertRaises(__a ): lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
484
1
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class a ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class a ( unittest.TestCase ): """simple docstring""" @property def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __magic_name__ ( self : str ): '''simple docstring''' snake_case__ : List[Any] = ort.SessionOptions() snake_case__ : Any = False return options def __magic_name__ ( self : Dict ): '''simple docstring''' snake_case__ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) snake_case__ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) snake_case__ : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case__ : List[str] = '''A red cat sitting on a park bench''' snake_case__ : str = np.random.RandomState(0 ) snake_case__ : Tuple = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=1_0 , generator=_lowercase , output_type='''np''' , ) snake_case__ : str = output.images snake_case__ : Dict = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : int = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __magic_name__ ( self : Optional[int] ): '''simple docstring''' snake_case__ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) snake_case__ : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) snake_case__ : List[Any] = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) snake_case__ : Tuple = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowercase ) snake_case__ : str = '''A red cat sitting on a park bench''' snake_case__ : List[Any] = np.random.RandomState(0 ) snake_case__ : Dict = pipe( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , guidance_scale=7.5 , num_inference_steps=2_0 , generator=_lowercase , output_type='''np''' , ) snake_case__ : int = output.images snake_case__ : Tuple = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) snake_case__ : List[str] = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
347
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowercase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self : Optional[int] , _lowercase : int = 1_28 , _lowercase : int = 2_56 , _lowercase : float = 2_0_0_0.0 , _lowercase : int = 7_68 , _lowercase : int = 12 , _lowercase : int = 12 , _lowercase : int = 64 , _lowercase : int = 20_48 , _lowercase : float = 0.1 , ): """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Sequential( nn.Linear(_lowercase , d_model * 4 , bias=_lowercase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_lowercase ) , nn.SiLU() , ) UpperCAmelCase__ = nn.Embedding(_lowercase , _lowercase ) UpperCAmelCase__ = False UpperCAmelCase__ = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) UpperCAmelCase__ = nn.Dropout(p=_lowercase ) UpperCAmelCase__ = nn.ModuleList() for lyr_num in range(_lowercase ): # FiLM conditional T5 decoder UpperCAmelCase__ = DecoderLayer(d_model=_lowercase , d_kv=_lowercase , num_heads=_lowercase , d_ff=_lowercase , dropout_rate=_lowercase ) self.decoders.append(_lowercase ) UpperCAmelCase__ = TaLayerNorm(_lowercase ) UpperCAmelCase__ = nn.Dropout(p=_lowercase ) UpperCAmelCase__ = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) def _UpperCAmelCase ( self : List[str] , _lowercase : Dict , _lowercase : Any ): """simple docstring""" UpperCAmelCase__ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def _UpperCAmelCase ( self : Dict , _lowercase : List[Any] , _lowercase : Union[str, Any] , _lowercase : List[str] ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. UpperCAmelCase__ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) UpperCAmelCase__ = self.conditioning_emb(_lowercase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) UpperCAmelCase__ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. UpperCAmelCase__ = torch.broadcast_to( torch.arange(_lowercase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) UpperCAmelCase__ = self.position_encoding(_lowercase ) UpperCAmelCase__ = self.continuous_inputs_projection(_lowercase ) inputs += position_encodings UpperCAmelCase__ = self.dropout(_lowercase ) # decoder: No padding present. UpperCAmelCase__ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. UpperCAmelCase__ = [(x, self.encoder_decoder_mask(_lowercase , _lowercase )) for x, y in encodings_and_masks] # cross attend style: concat encodings UpperCAmelCase__ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) UpperCAmelCase__ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: UpperCAmelCase__ = lyr( _lowercase , conditioning_emb=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , )[0] UpperCAmelCase__ = self.decoder_norm(_lowercase ) UpperCAmelCase__ = self.post_dropout(_lowercase ) UpperCAmelCase__ = self.spec_out(_lowercase ) return spec_out class lowercase__ ( nn.Module ): def __init__( self : str , _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : int , _lowercase : int , _lowercase : Optional[int] , _lowercase : Union[str, Any]=1E-6 ): """simple docstring""" super().__init__() UpperCAmelCase__ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_lowercase , d_kv=_lowercase , num_heads=_lowercase , dropout_rate=_lowercase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_lowercase , d_kv=_lowercase , num_heads=_lowercase , dropout_rate=_lowercase , layer_norm_epsilon=_lowercase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_lowercase , d_ff=_lowercase , dropout_rate=_lowercase , layer_norm_epsilon=_lowercase ) ) def _UpperCAmelCase ( self : Optional[Any] , _lowercase : List[Any] , _lowercase : Union[str, Any]=None , _lowercase : Dict=None , _lowercase : int=None , _lowercase : Optional[int]=None , _lowercase : Any=None , ): """simple docstring""" UpperCAmelCase__ = self.layer[0]( _lowercase , conditioning_emb=_lowercase , attention_mask=_lowercase , ) if encoder_hidden_states is not None: UpperCAmelCase__ = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) UpperCAmelCase__ = self.layer[1]( _lowercase , key_value_states=_lowercase , attention_mask=_lowercase , ) # Apply Film Conditional Feed Forward layer UpperCAmelCase__ = self.layer[-1](_lowercase , _lowercase ) return (hidden_states,) class lowercase__ ( nn.Module ): def __init__( self : List[str] , _lowercase : List[Any] , _lowercase : Any , _lowercase : Union[str, Any] , _lowercase : str ): """simple docstring""" super().__init__() UpperCAmelCase__ = TaLayerNorm(_lowercase ) UpperCAmelCase__ = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowercase ) UpperCAmelCase__ = Attention(query_dim=_lowercase , heads=_lowercase , dim_head=_lowercase , out_bias=_lowercase , scale_qk=_lowercase ) UpperCAmelCase__ = nn.Dropout(_lowercase ) def _UpperCAmelCase ( self : Tuple , _lowercase : Tuple , _lowercase : Optional[Any]=None , _lowercase : int=None , ): """simple docstring""" UpperCAmelCase__ = self.layer_norm(_lowercase ) if conditioning_emb is not None: UpperCAmelCase__ = self.FiLMLayer(_lowercase , _lowercase ) # Self-attention block UpperCAmelCase__ = self.attention(_lowercase ) UpperCAmelCase__ = hidden_states + self.dropout(_lowercase ) return hidden_states class lowercase__ ( nn.Module ): def __init__( self : Dict , _lowercase : Optional[int] , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[Any] , _lowercase : Dict ): """simple docstring""" super().__init__() UpperCAmelCase__ = Attention(query_dim=_lowercase , heads=_lowercase , dim_head=_lowercase , out_bias=_lowercase , scale_qk=_lowercase ) UpperCAmelCase__ = TaLayerNorm(_lowercase , eps=_lowercase ) UpperCAmelCase__ = nn.Dropout(_lowercase ) def _UpperCAmelCase ( self : List[str] , _lowercase : List[str] , _lowercase : Dict=None , _lowercase : Dict=None , ): """simple docstring""" UpperCAmelCase__ = self.layer_norm(_lowercase ) UpperCAmelCase__ = self.attention( _lowercase , encoder_hidden_states=_lowercase , attention_mask=attention_mask.squeeze(1 ) , ) UpperCAmelCase__ = hidden_states + self.dropout(_lowercase ) return layer_output class lowercase__ ( nn.Module ): def __init__( self : Dict , _lowercase : List[str] , _lowercase : Optional[Any] , _lowercase : List[Any] , _lowercase : Tuple ): """simple docstring""" super().__init__() UpperCAmelCase__ = TaDenseGatedActDense(d_model=_lowercase , d_ff=_lowercase , dropout_rate=_lowercase ) UpperCAmelCase__ = TaFiLMLayer(in_features=d_model * 4 , out_features=_lowercase ) UpperCAmelCase__ = TaLayerNorm(_lowercase , eps=_lowercase ) UpperCAmelCase__ = nn.Dropout(_lowercase ) def _UpperCAmelCase ( self : Union[str, Any] , _lowercase : Any , _lowercase : int=None ): """simple docstring""" UpperCAmelCase__ = self.layer_norm(_lowercase ) if conditioning_emb is not None: UpperCAmelCase__ = self.film(_lowercase , _lowercase ) UpperCAmelCase__ = self.DenseReluDense(_lowercase ) UpperCAmelCase__ = hidden_states + self.dropout(_lowercase ) return hidden_states class lowercase__ ( nn.Module ): def __init__( self : Optional[Any] , _lowercase : List[Any] , _lowercase : Dict , _lowercase : Dict ): """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) UpperCAmelCase__ = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) UpperCAmelCase__ = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) UpperCAmelCase__ = nn.Dropout(_lowercase ) UpperCAmelCase__ = NewGELUActivation() def _UpperCAmelCase ( self : Any , _lowercase : Tuple ): """simple docstring""" UpperCAmelCase__ = self.act(self.wi_a(_lowercase ) ) UpperCAmelCase__ = self.wi_a(_lowercase ) UpperCAmelCase__ = hidden_gelu * hidden_linear UpperCAmelCase__ = self.dropout(_lowercase ) UpperCAmelCase__ = self.wo(_lowercase ) return hidden_states class lowercase__ ( nn.Module ): def __init__( self : str , _lowercase : List[Any] , _lowercase : List[str]=1E-6 ): """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Parameter(torch.ones(_lowercase ) ) UpperCAmelCase__ = eps def _UpperCAmelCase ( self : int , _lowercase : List[Any] ): """simple docstring""" UpperCAmelCase__ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=_lowercase ) UpperCAmelCase__ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: UpperCAmelCase__ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowercase__ ( nn.Module ): def _UpperCAmelCase ( self : int , _lowercase : torch.Tensor ): """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.0_4_4_7_1_5 * torch.pow(_lowercase , 3.0 )) )) class lowercase__ ( nn.Module ): def __init__( self : Optional[Any] , _lowercase : List[str] , _lowercase : Dict ): """simple docstring""" super().__init__() UpperCAmelCase__ = nn.Linear(_lowercase , out_features * 2 , bias=_lowercase ) def _UpperCAmelCase ( self : List[str] , _lowercase : Any , _lowercase : List[str] ): """simple docstring""" UpperCAmelCase__ = self.scale_bias(_lowercase ) UpperCAmelCase__ , UpperCAmelCase__ = torch.chunk(_lowercase , 2 , -1 ) UpperCAmelCase__ = x * (1 + scale) + shift return x
475
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def lowerCamelCase_ ( lowercase__): lowerCamelCase__ = 384 lowerCamelCase__ = 7 if "tiny" in model_name: lowerCamelCase__ = 96 lowerCamelCase__ = (2, 2, 6, 2) lowerCamelCase__ = (3, 6, 12, 24) elif "small" in model_name: lowerCamelCase__ = 96 lowerCamelCase__ = (2, 2, 18, 2) lowerCamelCase__ = (3, 6, 12, 24) elif "base" in model_name: lowerCamelCase__ = 128 lowerCamelCase__ = (2, 2, 18, 2) lowerCamelCase__ = (4, 8, 16, 32) lowerCamelCase__ = 12 lowerCamelCase__ = 512 elif "large" in model_name: lowerCamelCase__ = 192 lowerCamelCase__ = (2, 2, 18, 2) lowerCamelCase__ = (6, 12, 24, 48) lowerCamelCase__ = 12 lowerCamelCase__ = 768 # set label information lowerCamelCase__ = 150 lowerCamelCase__ = "huggingface/label-files" lowerCamelCase__ = "ade20k-id2label.json" lowerCamelCase__ = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="dataset") , "r")) lowerCamelCase__ = {int(lowercase__): v for k, v in idalabel.items()} lowerCamelCase__ = {v: k for k, v in idalabel.items()} lowerCamelCase__ = SwinConfig( embed_dim=lowercase__ , depths=lowercase__ , num_heads=lowercase__ , window_size=lowercase__ , out_features=["stage1", "stage2", "stage3", "stage4"] , ) lowerCamelCase__ = UperNetConfig( backbone_config=lowercase__ , auxiliary_in_channels=lowercase__ , num_labels=lowercase__ , idalabel=lowercase__ , labelaid=lowercase__ , ) return config def lowerCamelCase_ ( lowercase__): lowerCamelCase__ = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight")) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias")) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight")) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias")) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''')) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''')) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''')) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''')) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''')) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''')) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''')) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''')) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''')) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''')) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''')) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''')) if i < 3: rename_keys.append((F'''backbone.stages.{i}.downsample.reduction.weight''', F'''backbone.encoder.layers.{i}.downsample.reduction.weight''')) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.weight''', F'''backbone.encoder.layers.{i}.downsample.norm.weight''')) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.bias''', F'''backbone.encoder.layers.{i}.downsample.norm.bias''')) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''')) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''')) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ]) # fmt: on return rename_keys def lowerCamelCase_ ( lowercase__ , lowercase__ , lowercase__): lowerCamelCase__ = dct.pop(lowercase__) lowerCamelCase__ = val def lowerCamelCase_ ( lowercase__ , lowercase__): lowerCamelCase__ = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): lowerCamelCase__ = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCamelCase__ = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''') lowerCamelCase__ = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ = in_proj_weight[:dim, :] lowerCamelCase__ = in_proj_bias[: dim] lowerCamelCase__ = in_proj_weight[ dim : dim * 2, : ] lowerCamelCase__ = in_proj_bias[ dim : dim * 2 ] lowerCamelCase__ = in_proj_weight[ -dim :, : ] lowerCamelCase__ = in_proj_bias[-dim :] # fmt: on def lowerCamelCase_ ( lowercase__): lowerCamelCase__ , lowerCamelCase__ = x.shape lowerCamelCase__ = x.reshape(lowercase__ , 4 , in_channel // 4) lowerCamelCase__ = x[:, [0, 2, 1, 3], :].transpose(1 , 2).reshape(lowercase__ , lowercase__) return x def lowerCamelCase_ ( lowercase__): lowerCamelCase__ , lowerCamelCase__ = x.shape lowerCamelCase__ = x.reshape(lowercase__ , in_channel // 4 , 4) lowerCamelCase__ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2).reshape(lowercase__ , lowercase__) return x def lowerCamelCase_ ( lowercase__): lowerCamelCase__ = x.shape[0] lowerCamelCase__ = x.reshape(4 , in_channel // 4) lowerCamelCase__ = x[[0, 2, 1, 3], :].transpose(0 , 1).reshape(lowercase__) return x def lowerCamelCase_ ( lowercase__): lowerCamelCase__ = x.shape[0] lowerCamelCase__ = x.reshape(in_channel // 4 , 4) lowerCamelCase__ = x[:, [0, 2, 1, 3]].transpose(0 , 1).reshape(lowercase__) return x def lowerCamelCase_ ( lowercase__ , lowercase__ , lowercase__): lowerCamelCase__ = { "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } lowerCamelCase__ = model_name_to_url[model_name] lowerCamelCase__ = torch.hub.load_state_dict_from_url(lowercase__ , map_location="cpu" , file_name=lowercase__)[ "state_dict" ] for name, param in state_dict.items(): print(lowercase__ , param.shape) lowerCamelCase__ = get_upernet_config(lowercase__) lowerCamelCase__ = UperNetForSemanticSegmentation(lowercase__) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowerCamelCase__ = state_dict.pop(lowercase__) if "bn" in key: lowerCamelCase__ = key.replace("bn" , "batch_norm") lowerCamelCase__ = val # rename keys lowerCamelCase__ = create_rename_keys(lowercase__) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__) read_in_q_k_v(lowercase__ , config.backbone_config) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowerCamelCase__ = reverse_correct_unfold_reduction_order(lowercase__) if "norm" in key: lowerCamelCase__ = reverse_correct_unfold_norm_order(lowercase__) model.load_state_dict(lowercase__) # verify on image lowerCamelCase__ = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" lowerCamelCase__ = Image.open(requests.get(lowercase__ , stream=lowercase__).raw).convert("RGB") lowerCamelCase__ = SegformerImageProcessor() lowerCamelCase__ = processor(lowercase__ , return_tensors="pt").pixel_values with torch.no_grad(): lowerCamelCase__ = model(lowercase__) lowerCamelCase__ = outputs.logits print(logits.shape) print("First values of logits:" , logits[0, 0, :3, :3]) # assert values if model_name == "upernet-swin-tiny": lowerCamelCase__ = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]]) elif model_name == "upernet-swin-small": lowerCamelCase__ = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]]) elif model_name == "upernet-swin-base": lowerCamelCase__ = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]]) elif model_name == "upernet-swin-large": lowerCamelCase__ = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]]) print("Logits:" , outputs.logits[0, 0, :3, :3]) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase__ , atol=1E-4) print("Looks ok!") if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''') model.save_pretrained(lowercase__) print(F'''Saving processor to {pytorch_dump_folder_path}''') processor.save_pretrained(lowercase__) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''') model.push_to_hub(F'''openmmlab/{model_name}''') processor.push_to_hub(F'''openmmlab/{model_name}''') if __name__ == "__main__": __A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-swin-tiny""", type=str, choices=[F"""upernet-swin-{size}""" for size in ["""tiny""", """small""", """base""", """large"""]], help="""Name of the Swin + UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __A : Optional[int] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
187
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Optional[Any] = logging.get_logger(__name__) __A : int = { """google/vit-base-patch16-224""": """https://huggingface.co/vit-base-patch16-224/resolve/main/config.json""", # See all ViT models at https://huggingface.co/models?filter=vit } class lowercase ( _lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = "vit" def __init__( self : Optional[int] , __lowerCamelCase : Tuple=768 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : Optional[Any]="gelu" , __lowerCamelCase : Optional[int]=0.0 , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : Optional[Any]=0.0_2 , __lowerCamelCase : int=1E-12 , __lowerCamelCase : Tuple=224 , __lowerCamelCase : int=16 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : List[str]=True , __lowerCamelCase : str=16 , **__lowerCamelCase : Optional[int] , ) -> str: '''simple docstring''' super().__init__(**__lowerCamelCase ) lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = qkv_bias lowerCamelCase__ = encoder_stride class lowercase ( _lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = version.parse("1.11" ) @property def a__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def a__ ( self : Optional[int] ) -> float: '''simple docstring''' return 1E-4
187
1
import os from distutils.util import strtobool def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] ) -> int: for e in env_keys: UpperCAmelCase_ = int(os.environ.get(__UpperCamelCase , -1 ) ) if val >= 0: return val return default def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any]=False ) -> int: UpperCAmelCase_ = os.environ.get(__UpperCamelCase , str(__UpperCamelCase ) ) return strtobool(__UpperCamelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : Dict="no" ) -> List[str]: UpperCAmelCase_ = os.environ.get(__UpperCamelCase , str(__UpperCamelCase ) ) return value
144
import gc import unittest import numpy as np import torch from diffusers import ( AudioDiffusionPipeline, AutoencoderKL, DDIMScheduler, DDPMScheduler, DiffusionPipeline, Mel, UNetaDConditionModel, UNetaDModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase_ ( self : List[Any] ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDModel( sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return model @property def lowerCamelCase_ ( self : List[str] ): torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , cross_attention_dim=10 , ) return model @property def lowerCamelCase_ ( self : Tuple ): torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( sample_size=(1_28, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , ) UpperCAmelCase_ = UNetaDModel( sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(1_28, 1_28) , down_block_types=('''AttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''AttnUpBlock2D''') , ) return vqvae, unet @slow def lowerCamelCase_ ( self : int ): UpperCAmelCase_ = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = Mel( x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , ) UpperCAmelCase_ = DDPMScheduler() UpperCAmelCase_ = AudioDiffusionPipeline(vqvae=__snake_case , unet=self.dummy_unet , mel=__snake_case , scheduler=__snake_case ) UpperCAmelCase_ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ = torch.Generator(device=__snake_case ).manual_seed(42 ) UpperCAmelCase_ = pipe(generator=__snake_case , steps=4 ) UpperCAmelCase_ = output.audios[0] UpperCAmelCase_ = output.images[0] UpperCAmelCase_ = torch.Generator(device=__snake_case ).manual_seed(42 ) UpperCAmelCase_ = pipe(generator=__snake_case , steps=4 , return_dict=__snake_case ) UpperCAmelCase_ = output[0][0] assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length) assert ( image.height == self.dummy_unet.config.sample_size[0] and image.width == self.dummy_unet.config.sample_size[1] ) UpperCAmelCase_ = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] UpperCAmelCase_ = np.frombuffer(image_from_tuple.tobytes() , dtype='''uint8''' )[:10] UpperCAmelCase_ = np.array([69, 2_55, 2_55, 2_55, 0, 0, 77, 1_81, 12, 1_27] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0 UpperCAmelCase_ = Mel( x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , ) UpperCAmelCase_ = DDIMScheduler() UpperCAmelCase_ = self.dummy_vqvae_and_unet UpperCAmelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__snake_case , scheduler=__snake_case ) UpperCAmelCase_ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) np.random.seed(0 ) UpperCAmelCase_ = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) ) UpperCAmelCase_ = torch.Generator(device=__snake_case ).manual_seed(42 ) UpperCAmelCase_ = pipe(raw_audio=__snake_case , generator=__snake_case , start_step=5 , steps=10 ) UpperCAmelCase_ = output.images[0] assert ( image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0] and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1] ) UpperCAmelCase_ = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] UpperCAmelCase_ = np.array([1_20, 1_17, 1_10, 1_09, 1_38, 1_67, 1_38, 1_48, 1_32, 1_21] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 UpperCAmelCase_ = self.dummy_unet_condition UpperCAmelCase_ = AudioDiffusionPipeline( vqvae=self.dummy_vqvae_and_unet[0] , unet=__snake_case , mel=__snake_case , scheduler=__snake_case ) UpperCAmelCase_ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) np.random.seed(0 ) UpperCAmelCase_ = torch.rand((1, 1, 10) ) UpperCAmelCase_ = pipe(generator=__snake_case , encoding=__snake_case ) UpperCAmelCase_ = output.images[0] UpperCAmelCase_ = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] UpperCAmelCase_ = np.array([1_07, 1_03, 1_20, 1_27, 1_42, 1_22, 1_13, 1_22, 97, 1_11] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 @slow @require_torch_gpu class a ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Union[str, Any] ): UpperCAmelCase_ = torch_device UpperCAmelCase_ = DiffusionPipeline.from_pretrained('''teticio/audio-diffusion-ddim-256''' ) UpperCAmelCase_ = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ = torch.Generator(device=__snake_case ).manual_seed(42 ) UpperCAmelCase_ = pipe(generator=__snake_case ) UpperCAmelCase_ = output.audios[0] UpperCAmelCase_ = output.images[0] assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length) assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1] UpperCAmelCase_ = np.frombuffer(image.tobytes() , dtype='''uint8''' )[:10] UpperCAmelCase_ = np.array([1_51, 1_67, 1_54, 1_44, 1_22, 1_34, 1_21, 1_05, 70, 26] ) assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
144
1
"""simple docstring""" from __future__ import annotations def _snake_case ( lowerCamelCase__ : list[int | float] , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> int | float: if len(lowerCamelCase__ ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(lowerCamelCase__ ) or left < -len(lowerCamelCase__ ) or right >= len(lowerCamelCase__ ) or right < -len(lowerCamelCase__ ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] lowerCamelCase_ : Dict =(left + right) >> 1 # the middle lowerCamelCase_ : Optional[int] =find_max(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # find max in range[left, mid] lowerCamelCase_ : Optional[int] =find_max(lowerCamelCase__ , mid + 1 , lowerCamelCase__ ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
244
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record A__ : int = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' A__ : Dict = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' A__ : Optional[int] = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def _snake_case ( lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[Any] ) -> List[Any]: return float((preds == labels).mean() ) def _snake_case ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any , lowerCamelCase__ : Tuple="binary" ) -> Tuple: lowerCamelCase_ : Optional[int] =simple_accuracy(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : Optional[Any] =float(fa_score(y_true=lowerCamelCase__ , y_pred=lowerCamelCase__ , average=lowerCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def _snake_case ( lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] ) -> int: lowerCamelCase_ : Optional[int] ={} for id_pred, label in zip(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ : Union[str, Any] =F"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" lowerCamelCase_ : Any =id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowerCamelCase_ : int =[(pred, label)] lowerCamelCase_ , lowerCamelCase_ : Optional[int] =[], [] for question, preds_labels in question_map.items(): lowerCamelCase_ , lowerCamelCase_ : Dict =zip(*lowerCamelCase__ ) lowerCamelCase_ : Any =fa_score(y_true=lowerCamelCase__ , y_pred=lowerCamelCase__ , average="macro" ) fas.append(lowerCamelCase__ ) lowerCamelCase_ : Union[str, Any] =int(sum(pred == label for pred, label in preds_labels ) == len(lowerCamelCase__ ) ) ems.append(lowerCamelCase__ ) lowerCamelCase_ : Any =float(sum(lowerCamelCase__ ) / len(lowerCamelCase__ ) ) lowerCamelCase_ : List[Any] =sum(lowerCamelCase__ ) / len(lowerCamelCase__ ) lowerCamelCase_ : List[str] =float(fa_score(y_true=lowerCamelCase__ , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCAmelCase__ ( self : Union[str, Any] ): if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def UpperCAmelCase__ ( self : int ): if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def UpperCAmelCase__ ( self : Dict , snake_case__ : Optional[int] , snake_case__ : Dict ): if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(snake_case__ , snake_case__ )} elif self.config_name == "cb": return acc_and_fa(snake_case__ , snake_case__ , fa_avg="macro" ) elif self.config_name == "record": lowerCamelCase_ : List[Any] =[ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] lowerCamelCase_ : str ={pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(snake_case__ , snake_case__ )[0] elif self.config_name == "multirc": return evaluate_multirc(snake_case__ , snake_case__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(snake_case__ , snake_case__ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
244
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case__ :list[int] ) -> int: if not nums: return 0 _lowercase = nums[0] _lowercase = 0 for num in nums[1:]: _lowercase , _lowercase = ( max_excluding + num, max(snake_case__ , snake_case__ ), ) return max(snake_case__ , snake_case__ ) if __name__ == "__main__": import doctest doctest.testmod()
67
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue_model_parallelism.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''roberta-large''', '''instance_type''': '''ml.p3dn.24xlarge''', '''results''': {'''train_runtime''': 1_6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 1.2}, }, ] ) class A_ ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Any ) -> Optional[int]: if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() ,encoding='utf-8' ,check=__A ,) assert hasattr(self ,'env' ) def __UpperCAmelCase ( self : str ,__A : Tuple ) -> int: # configuration for running training on smdistributed Model Parallel _lowercase = { 'enabled': True, 'processes_per_host': 8, } _lowercase = { 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } _lowercase = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} _lowercase = 'trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script ,source_dir=self.env.test_path ,role=self.env.role ,image_uri=self.env.image_uri ,base_job_name=F"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" ,instance_count=__A ,instance_type=self.instance_type ,debugger_hook_config=__A ,hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 500, } ,metric_definitions=self.env.metric_definitions ,distribution=__A ,py_version='py36' ,) def __UpperCAmelCase ( self : List[Any] ,__A : Any ) -> Optional[Any]: TrainingJobAnalytics(__A ).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def __UpperCAmelCase ( self : Tuple ,__A : Union[str, Any] ) -> Optional[Any]: # create estimator _lowercase = self.create_estimator(__A ) # run training estimator.fit() # result dataframe _lowercase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _lowercase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) _lowercase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowercase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' ,99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" ,'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} ,__A )
67
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = Dict[str, Any] lowerCAmelCase__ = List[Prediction] @add_end_docstrings(_UpperCAmelCase ) class snake_case ( _UpperCAmelCase ): """simple docstring""" def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): super().__init__(*lowercase__ , **lowercase__ ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , "vision" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def snake_case__ ( self , **lowerCAmelCase_ ): __lowercase = {} if "threshold" in kwargs: __lowercase = kwargs["threshold"] return {}, {}, postprocess_kwargs def __call__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): return super().__call__(*lowercase__ , **lowercase__ ) def snake_case__ ( self , lowerCAmelCase_ ): __lowercase = load_image(lowercase__ ) __lowercase = torch.IntTensor([[image.height, image.width]] ) __lowercase = self.image_processor(images=[image] , return_tensors="pt" ) if self.tokenizer is not None: __lowercase = self.tokenizer(text=inputs["words"] , boxes=inputs["boxes"] , return_tensors="pt" ) __lowercase = target_size return inputs def snake_case__ ( self , lowerCAmelCase_ ): __lowercase = model_inputs.pop("target_size" ) __lowercase = self.model(**lowercase__ ) __lowercase = outputs.__class__({"target_size": target_size, **outputs} ) if self.tokenizer is not None: __lowercase = model_inputs["bbox"] return model_outputs def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_=0.9 ): __lowercase = model_outputs["target_size"] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __lowercase = target_size[0].tolist() def unnormalize(lowerCAmelCase_ ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) __lowercase = model_outputs["logits"].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __lowercase = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __lowercase = [unnormalize(lowercase__ ) for bbox in model_outputs["bbox"].squeeze(0 )] __lowercase = ["score", "label", "box"] __lowercase = [dict(zip(lowercase__ , lowercase__ ) ) for vals in zip(scores.tolist() , lowercase__ , lowercase__ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __lowercase = self.image_processor.post_process_object_detection(lowercase__ , lowercase__ , lowercase__ ) __lowercase = raw_annotations[0] __lowercase = raw_annotation["scores"] __lowercase = raw_annotation["labels"] __lowercase = raw_annotation["boxes"] __lowercase = scores.tolist() __lowercase = [self.model.config.idalabel[label.item()] for label in labels] __lowercase = [self._get_bounding_box(lowercase__ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __lowercase = ["score", "label", "box"] __lowercase = [ dict(zip(lowercase__ , lowercase__ ) ) for vals in zip(raw_annotation["scores"] , raw_annotation["labels"] , raw_annotation["boxes"] ) ] return annotation def snake_case__ ( self , lowerCAmelCase_ ): if self.framework != "pt": raise ValueError("The ObjectDetectionPipeline is only available in PyTorch." ) __lowercase = box.int().tolist() __lowercase = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
702
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class snake_case ( __snake_case ,unittest.TestCase ): """simple docstring""" __lowerCAmelCase = PhobertTokenizer __lowerCAmelCase = False def snake_case__ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __lowercase = ["T@@", "i", "I", "R@@", "r", "e@@"] __lowercase = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) __lowercase = ["#version: 0.2", "l à</w>"] __lowercase = {"unk_token": "<unk>"} __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase_ ) ) def snake_case__ ( self , **lowerCAmelCase_ ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def snake_case__ ( self , lowerCAmelCase_ ): __lowercase = "Tôi là VinAI Research" __lowercase = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def snake_case__ ( self ): __lowercase = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowercase = "Tôi là VinAI Research" __lowercase = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() __lowercase = tokenizer.tokenize(lowerCAmelCase_ ) print(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase = tokens + [tokenizer.unk_token] __lowercase = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , lowerCAmelCase_ )
576
0
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase__ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } lowerCAmelCase__ = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : str ,lowercase__ : int ,lowercase__ : Optional[Any]="<unk>" ,lowercase__ : str="<s>" ,lowercase__ : List[Any]="</s>" ,lowercase__ : Dict="<pad>" ,lowercase__ : int="[SEP]" ,lowercase__ : str="[MASK]" ,lowercase__ : Tuple="[CLS]" ,lowercase__ : Optional[Dict[str, Any]] = None ,**lowercase__ : str ,): __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else bos_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else eos_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else unk_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else pad_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else cls_token __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __lowercase = AddedToken(lowercase__ ,lstrip=lowercase__ ,rstrip=lowercase__ ) if isinstance(lowercase__ ,lowercase__ ) else mask_token __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase__ ,eos_token=lowercase__ ,unk_token=lowercase__ ,pad_token=lowercase__ ,sep_token=lowercase__ ,mask_token=lowercase__ ,cls_token=lowercase__ ,sp_model_kwargs=self.sp_model_kwargs ,**lowercase__ ,) __lowercase = vocab_file __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase__ ) @property def SCREAMING_SNAKE_CASE ( self : List[str] ): return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ): __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self : str ,lowercase__ : Optional[int] ): __lowercase = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): __lowercase = {} __lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : str ): return self.sp_model.encode(lowercase__ ,out_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Dict ): return self.sp_model.piece_to_id(lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ): __lowercase = self.sp_model.IdToPiece(lowercase__ ) return token def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Tuple ): __lowercase = [] __lowercase = '''''' __lowercase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase__ ) + token __lowercase = True __lowercase = [] else: current_sub_tokens.append(lowercase__ ) __lowercase = False out_string += self.sp_model.decode(lowercase__ ) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[int] ,lowercase__ : bool = False ,lowercase__ : bool = None ,lowercase__ : bool = True ,**lowercase__ : Optional[Any] ,): __lowercase = kwargs.pop('''use_source_tokenizer''' ,lowercase__ ) __lowercase = self.convert_ids_to_tokens(lowercase__ ,skip_special_tokens=lowercase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 __lowercase = [] __lowercase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowercase__ ) ) __lowercase = [] sub_texts.append(lowercase__ ) else: current_sub_text.append(lowercase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowercase__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: __lowercase = re.sub(r''' (\[(MASK|SEP)\])''' ,r'''\1''' ,''' '''.join(lowercase__ ) ) else: __lowercase = ''''''.join(lowercase__ ) __lowercase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: __lowercase = self.clean_up_tokenization(lowercase__ ) return clean_text else: return text def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : str ,lowercase__ : Optional[str] = None ): if not os.path.isdir(lowercase__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __lowercase = os.path.join( lowercase__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ ,'''wb''' ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ,lowercase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ ,token_ids_a=lowercase__ ,already_has_special_tokens=lowercase__ ) if token_ids_a is None: return [1] + ([0] * len(lowercase__ )) + [1] return [1] + ([0] * len(lowercase__ )) + [1] + ([0] * len(lowercase__ )) + [1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
41
"""simple docstring""" from copy import deepcopy class UpperCAmelCase : def __init__( self : Optional[Any] , __lowerCamelCase : list[int] | None = None , __lowerCamelCase : int | None = None ): """simple docstring""" if arr is None and size is not None: _snake_case = size _snake_case = [0] * size elif arr is not None: self.init(__lowerCamelCase ) else: raise ValueError('''Either arr or size must be specified''' ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : list[int] ): """simple docstring""" _snake_case = len(__lowerCamelCase ) _snake_case = deepcopy(__lowerCamelCase ) for i in range(1 , self.size ): _snake_case = self.next_(__lowerCamelCase ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): _snake_case = self.next_(__lowerCamelCase ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCAmelCase ( __lowerCamelCase : int ): """simple docstring""" return index + (index & (-index)) @staticmethod def __UpperCAmelCase ( __lowerCamelCase : int ): """simple docstring""" return index - (index & (-index)) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value _snake_case = self.next_(__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" self.add(__lowerCamelCase , value - self.get(__lowerCamelCase ) ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : int ): """simple docstring""" if right == 0: return 0 _snake_case = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] _snake_case = self.prev(__lowerCamelCase ) return result def __UpperCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" return self.prefix(__lowerCamelCase ) - self.prefix(__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : int ): """simple docstring""" return self.query(__lowerCamelCase , index + 1 ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : int ): """simple docstring""" value -= self.tree[0] if value < 0: return -1 _snake_case = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 _snake_case = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
103
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowercase ( a ): _UpperCamelCase = ["""image_processor""", """tokenizer"""] _UpperCamelCase = """LayoutLMv3ImageProcessor""" _UpperCamelCase = ("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""") def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): A : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _UpperCAmelCase , ) A : List[str] = kwargs.pop('''feature_extractor''' ) A : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = True , _UpperCAmelCase = None , **_UpperCAmelCase , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor A : str = self.image_processor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): A : Union[str, Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) A : Dict = features['''words'''] A : Any = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) # add pixel values A : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: A : Any = self.get_overflowing_images(_UpperCAmelCase , encoded_inputs['''overflow_to_sample_mapping'''] ) A : Any = images return encoded_inputs def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image A : str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(_UpperCAmelCase )} and {len(_UpperCAmelCase )}''' ) return images_with_overflow def snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def snake_case ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def snake_case ( self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def snake_case ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _UpperCAmelCase , ) return self.image_processor_class @property def snake_case ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _UpperCAmelCase , ) return self.image_processor
537
'''simple docstring''' from math import pi def _lowerCamelCase( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> float: return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
537
1