code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures lowerCamelCase_ = logging.get_logger(__name__) @dataclass class UpperCamelCase_ : __magic_name__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) __magic_name__ = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) __magic_name__ = field( default=1_28 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __magic_name__ = field( default=__A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def _SCREAMING_SNAKE_CASE ( self : str ) -> Tuple: UpperCAmelCase_ : int = self.task_name.lower() class UpperCamelCase_ (__A ): __magic_name__ = '''train''' __magic_name__ = '''dev''' __magic_name__ = '''test''' class UpperCamelCase_ (__A ): __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 def __init__( self : Optional[Any] , lowerCAmelCase_ : GlueDataTrainingArguments , lowerCAmelCase_ : PreTrainedTokenizerBase , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Union[str, Split] = Split.train , lowerCAmelCase_ : Optional[str] = None , ) -> int: warnings.warn( "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py" , lowerCAmelCase_ , ) UpperCAmelCase_ : Dict = args UpperCAmelCase_ : Any = glue_processors[args.task_name]() UpperCAmelCase_ : Any = glue_output_modes[args.task_name] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): try: UpperCAmelCase_ : Union[str, Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) # Load data features from cache or dataset file UpperCAmelCase_ : Optional[int] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) UpperCAmelCase_ : Optional[Any] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = label_list[2], label_list[1] UpperCAmelCase_ : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase_ : Any = cached_features_file + ".lock" with FileLock(lowerCAmelCase_ ): if os.path.exists(lowerCAmelCase_ ) and not args.overwrite_cache: UpperCAmelCase_ : List[Any] = time.time() UpperCAmelCase_ : Tuple = torch.load(lowerCAmelCase_ ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start ) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""" ) if mode == Split.dev: UpperCAmelCase_ : Dict = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: UpperCAmelCase_ : Union[str, Any] = self.processor.get_test_examples(args.data_dir ) else: UpperCAmelCase_ : Any = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: UpperCAmelCase_ : Any = examples[:limit_length] UpperCAmelCase_ : List[str] = glue_convert_examples_to_features( lowerCAmelCase_ , lowerCAmelCase_ , max_length=args.max_seq_length , label_list=lowerCAmelCase_ , output_mode=self.output_mode , ) UpperCAmelCase_ : Optional[Any] = time.time() torch.save(self.features , lowerCAmelCase_ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : List[str] ) -> int: return len(self.features ) def __getitem__( self : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] ) -> InputFeatures: return self.features[i] def _SCREAMING_SNAKE_CASE ( self : str ) -> Dict: return self.label_list
95
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def lowerCamelCase_ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=5 ): # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''' ) == 1 A_ = torch.tensor(tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) ).unsqueeze(0 ) # Batch size 1 A_ = model(__UpperCamelCase )[0] # The last hidden-state is the first element of the output tuple A_ = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() A_ = logits[0, masked_index, :] A_ = logits.softmax(dim=0 ) A_ , A_ = prob.topk(k=__UpperCamelCase , dim=0 ) A_ = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(__UpperCamelCase ) )] ) A_ = tokenizer.mask_token A_ = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): A_ = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(__UpperCamelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(__UpperCamelCase ) , __UpperCamelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(__UpperCamelCase , __UpperCamelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs SCREAMING_SNAKE_CASE : Optional[int] = CamembertTokenizer.from_pretrained("camembert-base") SCREAMING_SNAKE_CASE : Optional[int] = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() SCREAMING_SNAKE_CASE : List[Any] = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
141
0
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging A = logging.get_logger(__name__) A = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED A = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } A = { """allenai/led-base-16384""": 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def UpperCamelCase_ ( ) -> List[Any]: """simple docstring""" __magic_name__ : List[str] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __magic_name__ : Union[str, Any] = bs[:] __magic_name__ : str = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase ) cs.append(2**8 + n ) n += 1 __magic_name__ : Optional[int] = [chr(lowerCamelCase ) for n in cs] return dict(zip(lowerCamelCase , lowerCamelCase ) ) def UpperCamelCase_ ( lowerCamelCase : Union[str, Any] ) -> Dict: """simple docstring""" __magic_name__ : Dict = set() __magic_name__ : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : List[Any] = char return pairs class _UpperCamelCase ( lowerCamelCase__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['input_ids', 'attention_mask'] def __init__( self : List[Any] , snake_case : List[Any] , snake_case : Tuple , snake_case : Tuple="replace" , snake_case : str="<s>" , snake_case : str="</s>" , snake_case : str="</s>" , snake_case : Union[str, Any]="<s>" , snake_case : Union[str, Any]="<unk>" , snake_case : List[str]="<pad>" , snake_case : Optional[Any]="<mask>" , snake_case : List[str]=False , **snake_case : Dict , ) -> Dict: '''simple docstring''' __magic_name__ : Dict = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else bos_token __magic_name__ : List[Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else eos_token __magic_name__ : Dict = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else sep_token __magic_name__ : List[Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else cls_token __magic_name__ : Optional[Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else unk_token __magic_name__ : Union[str, Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Union[str, Any] = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token super().__init__( errors=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , cls_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , **snake_case , ) with open(snake_case , encoding='''utf-8''' ) as vocab_handle: __magic_name__ : List[str] = json.load(snake_case ) __magic_name__ : Optional[int] = {v: k for k, v in self.encoder.items()} __magic_name__ : List[str] = errors # how to handle errors in decoding __magic_name__ : Optional[int] = bytes_to_unicode() __magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(snake_case , encoding='''utf-8''' ) as merges_handle: __magic_name__ : Tuple = merges_handle.read().split('''\n''' )[1:-1] __magic_name__ : Any = [tuple(merge.split() ) for merge in bpe_merges] __magic_name__ : str = dict(zip(snake_case , range(len(snake_case ) ) ) ) __magic_name__ : Union[str, Any] = {} __magic_name__ : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __magic_name__ : Any = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def _UpperCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _UpperCAmelCase ( self : int , snake_case : Any ) -> str: '''simple docstring''' if token in self.cache: return self.cache[token] __magic_name__ : Optional[int] = tuple(snake_case ) __magic_name__ : Tuple = get_pairs(snake_case ) if not pairs: return token while True: __magic_name__ : List[str] = min(snake_case , key=lambda snake_case : self.bpe_ranks.get(snake_case , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ , __magic_name__ : List[str] = bigram __magic_name__ : str = [] __magic_name__ : Union[str, Any] = 0 while i < len(snake_case ): try: __magic_name__ : Tuple = word.index(snake_case , snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Any = j if word[i] == first and i < len(snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : Any = tuple(snake_case ) __magic_name__ : Optional[int] = new_word if len(snake_case ) == 1: break else: __magic_name__ : Optional[Any] = get_pairs(snake_case ) __magic_name__ : int = ''' '''.join(snake_case ) __magic_name__ : Any = word return word def _UpperCAmelCase ( self : Dict , snake_case : Any ) -> Optional[Any]: '''simple docstring''' __magic_name__ : Optional[int] = [] for token in re.findall(self.pat , snake_case ): __magic_name__ : Any = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case ).split(''' ''' ) ) return bpe_tokens def _UpperCAmelCase ( self : Dict , snake_case : str ) -> List[Any]: '''simple docstring''' return self.encoder.get(snake_case , self.encoder.get(self.unk_token ) ) def _UpperCAmelCase ( self : List[str] , snake_case : str ) -> Dict: '''simple docstring''' return self.decoder.get(snake_case ) def _UpperCAmelCase ( self : List[Any] , snake_case : List[str] ) -> Union[str, Any]: '''simple docstring''' __magic_name__ : Dict = ''''''.join(snake_case ) __magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _UpperCAmelCase ( self : Optional[int] , snake_case : str , snake_case : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __magic_name__ : int = os.path.join( snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __magic_name__ : int = os.path.join( snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case , ensure_ascii=snake_case ) + '''\n''' ) __magic_name__ : List[str] = 0 with open(snake_case , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) __magic_name__ : Optional[int] = token_index writer.write(''' '''.join(snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file def _UpperCAmelCase ( self : Dict , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : Dict = [self.cls_token_id] __magic_name__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCAmelCase ( self : Optional[int] , snake_case : List[int] , snake_case : Optional[List[int]] = None , snake_case : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) if token_ids_a is None: return [1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1, 1] + ([0] * len(snake_case )) + [1] def _UpperCAmelCase ( self : Union[str, Any] , snake_case : List[int] , snake_case : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __magic_name__ : Dict = [self.sep_token_id] __magic_name__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self : Optional[int] , snake_case : Tuple , snake_case : Optional[int]=False , **snake_case : Any ) -> int: '''simple docstring''' __magic_name__ : str = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case ) > 0 and not text[0].isspace()): __magic_name__ : int = ''' ''' + text return (text, kwargs) def _UpperCAmelCase ( self : Any , snake_case : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case : Optional[int] = None , snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case : Optional[int] = None , snake_case : Optional[bool] = None , ) -> dict: '''simple docstring''' __magic_name__ : List[Any] = super()._pad( encoded_inputs=snake_case , max_length=snake_case , padding_strategy=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , ) # Load from model defaults if return_attention_mask is None: __magic_name__ : List[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __magic_name__ : Any = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __magic_name__ : Dict = len(encoded_inputs['''global_attention_mask'''] ) != len(snake_case ) if needs_to_be_padded: __magic_name__ : Tuple = len(snake_case ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __magic_name__ : Any = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": __magic_name__ : str = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
147
"""simple docstring""" class _UpperCamelCase : """simple docstring""" def __init__( self : Tuple , snake_case : int , snake_case : Optional[int] , snake_case : int ) -> Dict: '''simple docstring''' __magic_name__ : int = None __magic_name__ : str = None __magic_name__ : List[str] = graph self._normalize_graph(snake_case , snake_case ) __magic_name__ : Tuple = len(snake_case ) __magic_name__ : Dict = None def _UpperCAmelCase ( self : Any , snake_case : Tuple , snake_case : List[str] ) -> int: '''simple docstring''' if sources is int: __magic_name__ : int = [sources] if sinks is int: __magic_name__ : Optional[int] = [sinks] if len(snake_case ) == 0 or len(snake_case ) == 0: return __magic_name__ : List[Any] = sources[0] __magic_name__ : List[Any] = sinks[0] # make fake vertex if there are more # than one source or sink if len(snake_case ) > 1 or len(snake_case ) > 1: __magic_name__ : List[str] = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __magic_name__ : Union[str, Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __magic_name__ : int = max_input_flow __magic_name__ : Any = 0 __magic_name__ : Dict = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __magic_name__ : List[Any] = max_input_flow __magic_name__ : int = size - 1 def _UpperCAmelCase ( self : int ) -> Optional[int]: '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _UpperCAmelCase ( self : List[Any] , snake_case : Union[str, Any] ) -> List[Any]: '''simple docstring''' __magic_name__ : Any = algorithm(self ) class _UpperCamelCase : """simple docstring""" def __init__( self : Optional[Any] , snake_case : Any ) -> str: '''simple docstring''' __magic_name__ : Any = flow_network __magic_name__ : Optional[Any] = flow_network.verticesCount __magic_name__ : List[Any] = flow_network.sourceIndex __magic_name__ : List[str] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __magic_name__ : List[str] = flow_network.graph __magic_name__ : List[Any] = False def _UpperCAmelCase ( self : Dict ) -> Tuple: '''simple docstring''' if not self.executed: self._algorithm() __magic_name__ : List[str] = True def _UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' pass class _UpperCamelCase ( lowerCamelCase__ ): """simple docstring""" def __init__( self : str , snake_case : Dict ) -> Optional[int]: '''simple docstring''' super().__init__(snake_case ) # use this to save your result __magic_name__ : Dict = -1 def _UpperCAmelCase ( self : Any ) -> int: '''simple docstring''' if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class _UpperCamelCase ( lowerCamelCase__ ): """simple docstring""" def __init__( self : str , snake_case : List[Any] ) -> int: '''simple docstring''' super().__init__(snake_case ) __magic_name__ : Optional[Any] = [[0] * self.verticies_count for i in range(self.verticies_count )] __magic_name__ : Optional[int] = [0] * self.verticies_count __magic_name__ : Union[str, Any] = [0] * self.verticies_count def _UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' __magic_name__ : Optional[Any] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __magic_name__ : List[str] = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __magic_name__ : Dict = 0 while i < len(snake_case ): __magic_name__ : List[str] = vertices_list[i] __magic_name__ : Union[str, Any] = self.heights[vertex_index] self.process_vertex(snake_case ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(snake_case ) ) __magic_name__ : Optional[Any] = 0 else: i += 1 __magic_name__ : str = sum(self.preflow[self.source_index] ) def _UpperCAmelCase ( self : Optional[int] , snake_case : List[str] ) -> List[str]: '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(snake_case , snake_case ) self.relabel(snake_case ) def _UpperCAmelCase ( self : List[Any] , snake_case : Any , snake_case : Union[str, Any] ) -> Tuple: '''simple docstring''' __magic_name__ : List[str] = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _UpperCAmelCase ( self : int , snake_case : str ) -> Dict: '''simple docstring''' __magic_name__ : Dict = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __magic_name__ : List[str] = self.heights[to_index] if min_height is not None: __magic_name__ : Dict = min_height + 1 if __name__ == "__main__": A = [0] A = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] A = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network A = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate A = flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
147
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _lowerCAmelCase : int = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
46
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
232
0
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Union[str, Any] = """ClapFeatureExtractor""" _lowerCamelCase : str = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : Any , snake_case_ : Dict , snake_case_ : Any ): super().__init__(snake_case_ , snake_case_ ) def __call__( self : List[str] , snake_case_ : List[Any]=None , snake_case_ : Union[str, Any]=None , snake_case_ : Optional[Any]=None , **snake_case_ : Any ): _UpperCAmelCase = kwargs.pop("sampling_rate" , snake_case_ ) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none." ) if text is not None: _UpperCAmelCase = self.tokenizer(snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if audios is not None: _UpperCAmelCase = self.feature_extractor( snake_case_ , sampling_rate=snake_case_ , return_tensors=snake_case_ , **snake_case_ ) if text is not None and audios is not None: _UpperCAmelCase = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**snake_case_ ) , tensor_type=snake_case_ ) def lowercase ( self : List[Any] , *snake_case_ : str , **snake_case_ : Dict ): return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def lowercase ( self : List[Any] , *snake_case_ : List[Any] , **snake_case_ : Union[str, Any] ): return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
715
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def UpperCAmelCase_ ( __lowercase : Optional[Any] ) -> List[str]: '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A_ ( nn.Module ): def __init__( self : str , snake_case_ : nn.Module , snake_case_ : int ): super().__init__() _UpperCAmelCase = module _UpperCAmelCase = nn.Sequential( nn.Linear(module.in_features , snake_case_ , bias=snake_case_ ) , nn.Linear(snake_case_ , module.out_features , bias=snake_case_ ) , ) _UpperCAmelCase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=snake_case_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def lowercase ( self : int , snake_case_ : List[str] , *snake_case_ : Dict , **snake_case_ : Dict ): return self.module(snake_case_ , *snake_case_ , **snake_case_ ) + self.adapter(snake_case_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A_ ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _lowerCamelCase : Any = """bigscience/bloom-1b7""" # Constant values _lowerCamelCase : Optional[int] = 2.1_0_9_6_5_9_5_5_2_6_9_2_5_7_4 _lowerCamelCase : str = """Hello my name is""" _lowerCamelCase : List[Any] = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) _lowerCamelCase : List[Any] = 10 def lowercase ( self : Dict ): # Models and tokenizer _UpperCAmelCase = AutoTokenizer.from_pretrained(self.model_name ) class A_ ( lowerCAmelCase_ ): def lowercase ( self : str ): super().setUp() # Models and tokenizer _UpperCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) _UpperCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="auto" ) def lowercase ( self : Any ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def lowercase ( self : Tuple ): _UpperCAmelCase = self.model_abit.config self.assertTrue(hasattr(snake_case_ , "quantization_config" ) ) _UpperCAmelCase = config.to_dict() _UpperCAmelCase = config.to_diff_dict() _UpperCAmelCase = config.to_json_string() def lowercase ( self : Optional[Any] ): from bitsandbytes.nn import Paramsabit _UpperCAmelCase = self.model_fpaa.get_memory_footprint() _UpperCAmelCase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) _UpperCAmelCase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def lowercase ( self : Tuple ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(snake_case_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def lowercase ( self : Optional[int] ): _UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ) _UpperCAmelCase = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=snake_case_ ) , self.EXPECTED_OUTPUTS ) def lowercase ( self : Tuple ): _UpperCAmelCase = BitsAndBytesConfig() _UpperCAmelCase = True _UpperCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=snake_case_ , device_map="auto" ) _UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ) _UpperCAmelCase = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=snake_case_ ) , self.EXPECTED_OUTPUTS ) def lowercase ( self : List[str] ): with self.assertRaises(snake_case_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(snake_case_ ) def lowercase ( self : List[str] ): _UpperCAmelCase = BitsAndBytesConfig() with self.assertRaises(snake_case_ ): _UpperCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=snake_case_ , load_in_abit=snake_case_ , device_map="auto" , bnb_abit_quant_type="nf4" , ) def lowercase ( self : List[Any] ): with self.assertRaises(snake_case_ ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(snake_case_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(snake_case_ ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(snake_case_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(snake_case_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything _UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ) _UpperCAmelCase = self.model_fpaa.to(torch.floataa ) _UpperCAmelCase = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=1_0 ) # Check this does not throw an error _UpperCAmelCase = self.model_fpaa.to("cpu" ) # Check this does not throw an error _UpperCAmelCase = self.model_fpaa.half() # Check this does not throw an error _UpperCAmelCase = self.model_fpaa.float() def lowercase ( self : str ): _UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=snake_case_ , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A_ ( unittest.TestCase ): @classmethod def lowercase ( cls : List[Any] ): _UpperCAmelCase = "t5-small" _UpperCAmelCase = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense _UpperCAmelCase = AutoTokenizer.from_pretrained(cls.model_name ) _UpperCAmelCase = "Translate in German: Hello, my dog is cute" def lowercase ( self : Dict ): gc.collect() torch.cuda.empty_cache() def lowercase ( self : Any ): from transformers import TaForConditionalGeneration _UpperCAmelCase = TaForConditionalGeneration._keep_in_fpaa_modules _UpperCAmelCase = None # test with `t5-small` _UpperCAmelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="auto" ) _UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) _UpperCAmelCase = model.generate(**snake_case_ ) # test with `flan-t5-small` _UpperCAmelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=snake_case_ , device_map="auto" ) _UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) _UpperCAmelCase = model.generate(**snake_case_ ) _UpperCAmelCase = modules def lowercase ( self : Any ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` _UpperCAmelCase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) _UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) _UpperCAmelCase = model.generate(**snake_case_ ) # test with `flan-t5-small` _UpperCAmelCase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=snake_case_ , device_map="auto" ) _UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) _UpperCAmelCase = model.generate(**snake_case_ ) class A_ ( lowerCAmelCase_ ): def lowercase ( self : List[str] ): super().setUp() # model_name _UpperCAmelCase = "bigscience/bloom-560m" _UpperCAmelCase = "t5-small" # Different types of model _UpperCAmelCase = AutoModel.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="auto" ) # Sequence classification model _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=snake_case_ , device_map="auto" ) # CausalLM model _UpperCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=snake_case_ , device_map="auto" ) # Seq2seq model _UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=snake_case_ , device_map="auto" ) def lowercase ( self : Dict ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def lowercase ( self : Tuple ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A_ ( lowerCAmelCase_ ): def lowercase ( self : Union[str, Any] ): super().setUp() def lowercase ( self : Optional[int] ): del self.pipe gc.collect() torch.cuda.empty_cache() def lowercase ( self : Optional[int] ): _UpperCAmelCase = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass _UpperCAmelCase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A_ ( lowerCAmelCase_ ): def lowercase ( self : Tuple ): super().setUp() def lowercase ( self : List[Any] ): _UpperCAmelCase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=snake_case_ , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model _UpperCAmelCase = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch _UpperCAmelCase = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=1_0 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=snake_case_ ) , self.EXPECTED_OUTPUTS ) class A_ ( lowerCAmelCase_ ): def lowercase ( self : Dict ): _UpperCAmelCase = "facebook/opt-350m" super().setUp() def lowercase ( self : Dict ): if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters _UpperCAmelCase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=snake_case_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): _UpperCAmelCase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability _UpperCAmelCase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(snake_case_ ) ): _UpperCAmelCase = LoRALayer(module.q_proj , rank=1_6 ) _UpperCAmelCase = LoRALayer(module.k_proj , rank=1_6 ) _UpperCAmelCase = LoRALayer(module.v_proj , rank=1_6 ) # Step 3: dummy batch _UpperCAmelCase = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): _UpperCAmelCase = model.forward(**snake_case_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(snake_case_ , snake_case_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(snake_case_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A_ ( lowerCAmelCase_ ): _lowerCamelCase : int = """gpt2-xl""" _lowerCamelCase : str = 3.3_1_9_1_8_5_4_8_5_4_1_5_2_1_8_7
119
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _SCREAMING_SNAKE_CASE : @staticmethod def snake_case__ ( *a__ : int , **a__ : Optional[int] ): pass @is_pipeline_test @require_vision @require_timm @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): __SCREAMING_SNAKE_CASE :List[str] = MODEL_FOR_OBJECT_DETECTION_MAPPING def snake_case__ ( self : Dict , a__ : Optional[int] , a__ : Union[str, Any] , a__ : List[str] ): __magic_name__ = ObjectDetectionPipeline(model=a__ , image_processor=a__ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def snake_case__ ( self : List[Any] , a__ : Union[str, Any] , a__ : Tuple ): __magic_name__ = object_detector('''./tests/fixtures/tests_samples/COCO/000000039769.png''' , threshold=0.0 ) self.assertGreater(len(a__ ) , 0 ) for detected_object in outputs: self.assertEqual( a__ , { '''score''': ANY(a__ ), '''label''': ANY(a__ ), '''box''': {'''xmin''': ANY(a__ ), '''ymin''': ANY(a__ ), '''xmax''': ANY(a__ ), '''ymax''': ANY(a__ )}, } , ) import datasets __magic_name__ = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' , '''image''' , split='''test''' ) __magic_name__ = [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] __magic_name__ = object_detector(a__ , threshold=0.0 ) self.assertEqual(len(a__ ) , len(a__ ) ) for outputs in batch_outputs: self.assertGreater(len(a__ ) , 0 ) for detected_object in outputs: self.assertEqual( a__ , { '''score''': ANY(a__ ), '''label''': ANY(a__ ), '''box''': {'''xmin''': ANY(a__ ), '''ymin''': ANY(a__ ), '''xmax''': ANY(a__ ), '''ymax''': ANY(a__ )}, } , ) @require_tf @unittest.skip('''Object detection not implemented in TF''' ) def snake_case__ ( self : Union[str, Any] ): pass @require_torch def snake_case__ ( self : List[Any] ): __magic_name__ = '''hf-internal-testing/tiny-detr-mobilenetsv3''' __magic_name__ = AutoModelForObjectDetection.from_pretrained(a__ ) __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ) __magic_name__ = ObjectDetectionPipeline(model=a__ , feature_extractor=a__ ) __magic_name__ = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=0.0 ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.3_376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3_376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ] , ) __magic_name__ = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.3_376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3_376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], [ {'''score''': 0.3_376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, {'''score''': 0.3_376, '''label''': '''LABEL_0''', '''box''': {'''xmin''': 159, '''ymin''': 120, '''xmax''': 480, '''ymax''': 359}}, ], ] , ) @require_torch @slow def snake_case__ ( self : Dict ): __magic_name__ = '''facebook/detr-resnet-50''' __magic_name__ = AutoModelForObjectDetection.from_pretrained(a__ ) __magic_name__ = AutoFeatureExtractor.from_pretrained(a__ ) __magic_name__ = ObjectDetectionPipeline(model=a__ , feature_extractor=a__ ) __magic_name__ = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] , ) __magic_name__ = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9_982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ] , ) @require_torch @slow def snake_case__ ( self : List[str] ): __magic_name__ = '''facebook/detr-resnet-50''' __magic_name__ = pipeline('''object-detection''' , model=a__ ) __magic_name__ = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] , ) __magic_name__ = object_detector( [ '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''http://images.cocodataset.org/val2017/000000039769.jpg''', ] ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ [ {'''score''': 0.9_982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], [ {'''score''': 0.9_982, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 70, '''xmax''': 175, '''ymax''': 117}}, {'''score''': 0.9_960, '''label''': '''remote''', '''box''': {'''xmin''': 333, '''ymin''': 72, '''xmax''': 368, '''ymax''': 187}}, {'''score''': 0.9_955, '''label''': '''couch''', '''box''': {'''xmin''': 0, '''ymin''': 1, '''xmax''': 639, '''ymax''': 473}}, {'''score''': 0.9_988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ], ] , ) @require_torch @slow def snake_case__ ( self : Optional[Any] ): __magic_name__ = 0.9_985 __magic_name__ = '''facebook/detr-resnet-50''' __magic_name__ = pipeline('''object-detection''' , model=a__ ) __magic_name__ = object_detector('''http://images.cocodataset.org/val2017/000000039769.jpg''' , threshold=a__ ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_988, '''label''': '''cat''', '''box''': {'''xmin''': 13, '''ymin''': 52, '''xmax''': 314, '''ymax''': 470}}, {'''score''': 0.9_987, '''label''': '''cat''', '''box''': {'''xmin''': 345, '''ymin''': 23, '''xmax''': 640, '''ymax''': 368}}, ] , ) @require_torch @require_pytesseract @slow def snake_case__ ( self : Dict ): __magic_name__ = '''Narsil/layoutlmv3-finetuned-funsd''' __magic_name__ = 0.9_993 __magic_name__ = pipeline('''object-detection''' , model=a__ , threshold=a__ ) __magic_name__ = object_detector( '''https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png''' ) self.assertEqual( nested_simplify(a__ , decimals=4 ) , [ {'''score''': 0.9_993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, {'''score''': 0.9_993, '''label''': '''I-ANSWER''', '''box''': {'''xmin''': 294, '''ymin''': 254, '''xmax''': 343, '''ymax''': 264}}, ] , )
432
'''simple docstring''' def UpperCamelCase ( a ) -> str: '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
432
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar A = TypeVar("""T""") A = TypeVar("""U""") class a ( Generic[T, U] ): def __init__( self : Any , lowerCAmelCase : T | None , lowerCAmelCase : U | None ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =key SCREAMING_SNAKE_CASE_: int =val SCREAMING_SNAKE_CASE_: DoubleLinkedListNode[T, U] | None =None SCREAMING_SNAKE_CASE_: DoubleLinkedListNode[T, U] | None =None def __repr__( self : int ) -> Optional[int]: '''simple docstring''' return ( f'''Node: key: {self.key}, val: {self.val}, ''' f'''has next: {bool(self.next )}, has prev: {bool(self.prev )}''' ) class a ( Generic[T, U] ): def __init__( self : Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: DoubleLinkedListNode[T, U] =DoubleLinkedListNode(__A , __A ) SCREAMING_SNAKE_CASE_: DoubleLinkedListNode[T, U] =DoubleLinkedListNode(__A , __A ) SCREAMING_SNAKE_CASE_: List[str] =self.rear, self.head def __repr__( self : Tuple ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =["DoubleLinkedList"] SCREAMING_SNAKE_CASE_: Union[str, Any] =self.head while node.next is not None: rep.append(str(__A ) ) SCREAMING_SNAKE_CASE_: Optional[Any] =node.next rep.append(str(self.rear ) ) return ",\n ".join(__A ) def lowerCamelCase__ ( self : Any , lowerCAmelCase : DoubleLinkedListNode[T, U] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None SCREAMING_SNAKE_CASE_: Dict =node SCREAMING_SNAKE_CASE_: Optional[Any] =previous SCREAMING_SNAKE_CASE_: int =node SCREAMING_SNAKE_CASE_: int =self.rear def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : DoubleLinkedListNode[T, U] ) -> Optional[Any]: '''simple docstring''' if node.prev is None or node.next is None: return None SCREAMING_SNAKE_CASE_: List[Any] =node.next SCREAMING_SNAKE_CASE_: Any =node.prev SCREAMING_SNAKE_CASE_: Any =None SCREAMING_SNAKE_CASE_: Optional[Any] =None return node class a ( Generic[T, U] ): UpperCamelCase : Optional[Any] = {} def __init__( self : str , lowerCAmelCase : int ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE_: DoubleLinkedList[T, U] =DoubleLinkedList() SCREAMING_SNAKE_CASE_: Dict =capacity SCREAMING_SNAKE_CASE_: List[Any] =0 SCREAMING_SNAKE_CASE_: int =0 SCREAMING_SNAKE_CASE_: Optional[int] =0 SCREAMING_SNAKE_CASE_: dict[T, DoubleLinkedListNode[T, U]] ={} def __repr__( self : Any ) -> Any: '''simple docstring''' return ( f'''CacheInfo(hits={self.hits}, misses={self.miss}, ''' f'''capacity={self.capacity}, current size={self.num_keys})''' ) def __contains__( self : Union[str, Any] , lowerCAmelCase : T ) -> Any: '''simple docstring''' return key in self.cache def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : T ) -> List[Any]: '''simple docstring''' if key in self.cache: self.hits += 1 SCREAMING_SNAKE_CASE_: DoubleLinkedListNode[T, U] =self.cache[key] SCREAMING_SNAKE_CASE_: int =self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(__A ) return node.val self.miss += 1 return None def lowerCamelCase__ ( self : int , lowerCAmelCase : T , lowerCAmelCase : U ) -> str: '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity SCREAMING_SNAKE_CASE_: Dict =self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(__A ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 SCREAMING_SNAKE_CASE_: Optional[Any] =DoubleLinkedListNode(__A , __A ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value SCREAMING_SNAKE_CASE_: Union[str, Any] =self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list SCREAMING_SNAKE_CASE_: List[Any] =value self.list.add(__A ) @classmethod def lowerCamelCase__ ( cls : Tuple , lowerCAmelCase : int = 128 ) -> str: '''simple docstring''' def cache_decorator_inner(lowerCAmelCase : Callable[[T], U] ) -> Callable[..., U]: def cache_decorator_wrapper(*lowerCAmelCase : T ) -> U: if func not in cls.decorator_function_to_instance_map: SCREAMING_SNAKE_CASE_: Tuple =LRUCache(__A ) SCREAMING_SNAKE_CASE_: str =cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: SCREAMING_SNAKE_CASE_: Optional[int] =func(*__A ) cls.decorator_function_to_instance_map[func].put(args[0] , __A ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(__A , """cache_info""" , __A ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger("""transformers.models.speecht5""") def __magic_name__ ( lowercase , lowercase , lowercase ): hf_model.apply_weight_norm() SCREAMING_SNAKE_CASE_: Tuple =checkpoint["""input_conv.weight_g"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""input_conv.weight_v"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''upsamples.{i}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''upsamples.{i}.1.weight_v'''] SCREAMING_SNAKE_CASE_: List[str] =checkpoint[f'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): SCREAMING_SNAKE_CASE_: Dict =checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE_: Union[str, Any] =checkpoint[f'''blocks.{i}.convs1.{j}.1.bias'''] SCREAMING_SNAKE_CASE_: Dict =checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_g'''] SCREAMING_SNAKE_CASE_: Any =checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_v'''] SCREAMING_SNAKE_CASE_: List[Any] =checkpoint[f'''blocks.{i}.convs2.{j}.1.bias'''] SCREAMING_SNAKE_CASE_: Tuple =checkpoint["""output_conv.1.weight_g"""] SCREAMING_SNAKE_CASE_: List[str] =checkpoint["""output_conv.1.weight_v"""] SCREAMING_SNAKE_CASE_: Optional[int] =checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __magic_name__ ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , ): if config_path is not None: SCREAMING_SNAKE_CASE_: List[Any] =SpeechTaHifiGanConfig.from_pretrained(lowercase ) else: SCREAMING_SNAKE_CASE_: Optional[Any] =SpeechTaHifiGanConfig() SCREAMING_SNAKE_CASE_: Union[str, Any] =SpeechTaHifiGan(lowercase ) SCREAMING_SNAKE_CASE_: Any =torch.load(lowercase ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase , lowercase ) SCREAMING_SNAKE_CASE_: List[Any] =np.load(lowercase ) SCREAMING_SNAKE_CASE_: Any =stats[0].reshape(-1 ) SCREAMING_SNAKE_CASE_: str =stats[1].reshape(-1 ) SCREAMING_SNAKE_CASE_: Dict =torch.from_numpy(lowercase ).float() SCREAMING_SNAKE_CASE_: Dict =torch.from_numpy(lowercase ).float() model.save_pretrained(lowercase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to original checkpoint""") parser.add_argument("""--stats_path""", required=True, default=None, type=str, help="""Path to stats.npy file""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
36
0
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowercase_ : def __init__( self , __A , __A=14 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.02 , __A=3 , __A=4 , __A=None , ) -> List[Any]: SCREAMING_SNAKE_CASE_ : int =parent SCREAMING_SNAKE_CASE_ : Optional[int] =batch_size SCREAMING_SNAKE_CASE_ : Tuple =seq_length SCREAMING_SNAKE_CASE_ : Tuple =is_training SCREAMING_SNAKE_CASE_ : Optional[Any] =use_token_type_ids SCREAMING_SNAKE_CASE_ : Any =use_input_mask SCREAMING_SNAKE_CASE_ : Union[str, Any] =use_labels SCREAMING_SNAKE_CASE_ : Optional[int] =use_mc_token_ids SCREAMING_SNAKE_CASE_ : List[Any] =vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] =hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] =num_hidden_layers SCREAMING_SNAKE_CASE_ : List[Any] =num_attention_heads SCREAMING_SNAKE_CASE_ : int =intermediate_size SCREAMING_SNAKE_CASE_ : Optional[int] =hidden_act SCREAMING_SNAKE_CASE_ : Tuple =hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : List[Any] =max_position_embeddings SCREAMING_SNAKE_CASE_ : Optional[int] =type_vocab_size SCREAMING_SNAKE_CASE_ : Tuple =type_sequence_label_size SCREAMING_SNAKE_CASE_ : int =initializer_range SCREAMING_SNAKE_CASE_ : str =num_labels SCREAMING_SNAKE_CASE_ : Tuple =num_choices SCREAMING_SNAKE_CASE_ : Any =scope SCREAMING_SNAKE_CASE_ : Tuple =self.vocab_size - 1 def _snake_case ( self ) -> str: SCREAMING_SNAKE_CASE_ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ : Optional[int] =None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Dict =random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ : Dict =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ : Optional[Any] =None if self.use_mc_token_ids: SCREAMING_SNAKE_CASE_ : int =ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) SCREAMING_SNAKE_CASE_ : str =None SCREAMING_SNAKE_CASE_ : List[Any] =None SCREAMING_SNAKE_CASE_ : Tuple =None if self.use_labels: SCREAMING_SNAKE_CASE_ : Tuple =ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ : Optional[int] =ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.get_config() SCREAMING_SNAKE_CASE_ : Dict =ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def _snake_case ( self ) -> Any: return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def _snake_case ( self , __A , __A , __A , __A , __A , *__A ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ : List[str] =CTRLModel(config=__A ) model.to(__A ) model.eval() model(__A , token_type_ids=__A , head_mask=__A ) model(__A , token_type_ids=__A ) SCREAMING_SNAKE_CASE_ : List[str] =model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def _snake_case ( self , __A , __A , __A , __A , __A , *__A ) -> Any: SCREAMING_SNAKE_CASE_ : Optional[Any] =CTRLLMHeadModel(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE_ : Any =model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self ) -> Any: SCREAMING_SNAKE_CASE_ : Optional[Any] =self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : List[str] =config_and_inputs SCREAMING_SNAKE_CASE_ : str ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def _snake_case ( self , __A , __A , __A , __A , *__A ) -> Any: SCREAMING_SNAKE_CASE_ : Optional[int] =self.num_labels SCREAMING_SNAKE_CASE_ : Union[str, Any] =CTRLForSequenceClassification(__A ) model.to(__A ) model.eval() SCREAMING_SNAKE_CASE_ : int =ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ : int =model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class lowercase_ ( A , A , A , unittest.TestCase ): __lowerCamelCase = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () __lowerCamelCase = (CTRLLMHeadModel,) if is_torch_available() else () __lowerCamelCase = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase = True __lowerCamelCase = False __lowerCamelCase = False def _snake_case ( self , __A , __A , __A , __A , __A ) -> List[str]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def _snake_case ( self ) -> Dict: SCREAMING_SNAKE_CASE_ : Tuple =CTRLModelTester(self ) SCREAMING_SNAKE_CASE_ : Optional[int] =ConfigTester(self , config_class=__A , n_embd=37 ) def _snake_case ( self ) -> int: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> Dict: self.config_tester.run_common_tests() def _snake_case ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__A ) def _snake_case ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__A ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _snake_case ( self ) -> Union[str, Any]: pass @slow def _snake_case ( self ) -> List[Any]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : List[str] =CTRLModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def _snake_case ( self ) -> Any: pass @require_torch class lowercase_ ( unittest.TestCase ): def _snake_case ( self ) -> Any: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def _snake_case ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : Dict =CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(__A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =torch.tensor( [[11_859, 0, 1_611, 8]] , dtype=torch.long , device=__A ) # Legal the president is SCREAMING_SNAKE_CASE_ : Dict =[ 11_859, 0, 1_611, 8, 5, 150, 26_449, 2, 19, 348, 469, 3, 2_595, 48, 20_740, 246_533, 246_533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a SCREAMING_SNAKE_CASE_ : List[str] =model.generate(__A , do_sample=__A ) self.assertListEqual(output_ids[0].tolist() , __A )
443
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int | float | str ) -> tuple[int, int]: try: SCREAMING_SNAKE_CASE_ : int =float(UpperCAmelCase_ ) except ValueError: raise ValueError('''Please enter a valid number''' ) SCREAMING_SNAKE_CASE_ : Any =decimal - int(UpperCAmelCase_ ) if fractional_part == 0: return int(UpperCAmelCase_ ), 1 else: SCREAMING_SNAKE_CASE_ : Any =len(str(UpperCAmelCase_ ).split('''.''' )[1] ) SCREAMING_SNAKE_CASE_ : str =int(decimal * (1_0**number_of_frac_digits) ) SCREAMING_SNAKE_CASE_ : Any =1_0**number_of_frac_digits SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple =denominator, numerator while True: SCREAMING_SNAKE_CASE_ : Any =dividend % divisor if remainder == 0: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] =divisor, remainder SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] =numerator / divisor, denominator / divisor return int(UpperCAmelCase_ ), int(UpperCAmelCase_ ) if __name__ == "__main__": print(F"{decimal_to_fraction(2) = }") print(F"{decimal_to_fraction(89.0) = }") print(F"{decimal_to_fraction('67') = }") print(F"{decimal_to_fraction('45.0') = }") print(F"{decimal_to_fraction(1.5) = }") print(F"{decimal_to_fraction('6.25') = }") print(F"{decimal_to_fraction('78td') = }")
443
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''image_processor''', '''tokenizer'''] SCREAMING_SNAKE_CASE__ : Optional[int] = '''LayoutLMv3ImageProcessor''' SCREAMING_SNAKE_CASE__ : Any = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''') def __init__( self :Optional[Any] , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :List[Any]=None , **lowerCAmelCase__ :Tuple ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Dict = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : str = kwargs.pop('''feature_extractor''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __call__( self :int , lowerCAmelCase__ :str , lowerCAmelCase__ :Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase__ :Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowerCAmelCase__ :Union[List[List[int]], List[List[List[int]]]] = None , lowerCAmelCase__ :Optional[Union[List[int], List[List[int]]]] = None , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Union[bool, str, PaddingStrategy] = False , lowerCAmelCase__ :Union[bool, str, TruncationStrategy] = None , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :int = 0 , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Optional[Union[str, TensorType]] = None , **lowerCAmelCase__ :Optional[int] , ) -> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor __SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(images=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) __SCREAMING_SNAKE_CASE : Optional[int] = features['''words'''] __SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) # add pixel values __SCREAMING_SNAKE_CASE : str = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_overflowing_images(lowerCAmelCase__ , encoded_inputs['''overflow_to_sample_mapping'''] ) __SCREAMING_SNAKE_CASE : Dict = images return encoded_inputs def __magic_name__( self :Dict , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :List[str] ) -> Union[str, Any]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __SCREAMING_SNAKE_CASE : str = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(lowerCAmelCase__ )} and {len(lowerCAmelCase__ )}''' ) return images_with_overflow def __magic_name__( self :Optional[Any] , *lowerCAmelCase__ :Union[str, Any] , **lowerCAmelCase__ :int ) -> Any: return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :List[str] , *lowerCAmelCase__ :Any , **lowerCAmelCase__ :str ) -> Union[str, Any]: return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __magic_name__( self :List[Any] ) -> List[Any]: return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __magic_name__( self :Union[str, Any] ) -> Any: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase__ , ) return self.image_processor_class @property def __magic_name__( self :str ) -> Union[str, Any]: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase__ , ) return self.image_processor
260
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if index == r: for j in range(lowercase__ ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location __SCREAMING_SNAKE_CASE : int = arr[i] combination_util(lowercase__ , lowercase__ , lowercase__ , index + 1 , lowercase__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): # A temporary array to store all combination one by one __SCREAMING_SNAKE_CASE : Dict = [0] * r # Print all combination using temporary array 'data[]' combination_util(lowercase__ , lowercase__ , lowercase__ , 0 , lowercase__ , 0 ) if __name__ == "__main__": # Driver code to check the function above __lowerCAmelCase : Tuple =[1_0, 2_0, 3_0, 4_0, 5_0] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
260
1
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function UpperCAmelCase_ = 1.0_54_57_18_17e-34 # unit of ℏ : J * s UpperCAmelCase_ = 3e8 # unit of c : m * s^-1 def __magic_name__ ( lowercase , lowercase , lowercase ) -> dict[str, float]: """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if force < 0: raise ValueError("""Magnitude of force can not be negative""" ) if distance < 0: raise ValueError("""Distance can not be negative""" ) if area < 0: raise ValueError("""Area can not be negative""" ) if force == 0: lowercase_ : Any = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: lowercase_ : Dict = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowercase_ : Optional[Any] = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
458
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' __a : Optional[int] = StableUnCLIPPipeline __a : int = TEXT_TO_IMAGE_PARAMS __a : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS __a : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS __a : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __a : Tuple = False def snake_case__ ( self ) -> Optional[Any]: """simple docstring""" lowercase_ : int = 32 lowercase_ : Tuple = embedder_hidden_size # prior components torch.manual_seed(0 ) lowercase_ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) lowercase_ : Dict = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=snake_case__, projection_dim=snake_case__, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=10_00, ) ) torch.manual_seed(0 ) lowercase_ : Tuple = PriorTransformer( num_attention_heads=2, attention_head_dim=12, embedding_dim=snake_case__, num_layers=1, ) torch.manual_seed(0 ) lowercase_ : Optional[Any] = DDPMScheduler( variance_type="""fixed_small_log""", prediction_type="""sample""", num_train_timesteps=10_00, clip_sample=snake_case__, clip_sample_range=5.0, beta_schedule="""squaredcos_cap_v2""", ) # regular denoising components torch.manual_seed(0 ) lowercase_ : Union[str, Any] = StableUnCLIPImageNormalizer(embedding_dim=snake_case__ ) lowercase_ : str = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) lowercase_ : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) lowercase_ : List[Any] = CLIPTextModel( CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=snake_case__, projection_dim=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=10_00, ) ) torch.manual_seed(0 ) lowercase_ : Optional[int] = UNetaDConditionModel( sample_size=32, in_channels=4, out_channels=4, down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D"""), up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D"""), block_out_channels=(32, 64), attention_head_dim=(2, 4), class_embed_type="""projection""", projection_class_embeddings_input_dim=embedder_projection_dim * 2, cross_attention_dim=snake_case__, layers_per_block=1, upcast_attention=snake_case__, use_linear_projection=snake_case__, ) torch.manual_seed(0 ) lowercase_ : Dict = DDIMScheduler( beta_schedule="""scaled_linear""", beta_start=0.00085, beta_end=0.012, prediction_type="""v_prediction""", set_alpha_to_one=snake_case__, steps_offset=1, ) torch.manual_seed(0 ) lowercase_ : str = AutoencoderKL() lowercase_ : str = { # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def snake_case__ ( self, snake_case__, snake_case__=0 ) -> str: """simple docstring""" if str(snake_case__ ).startswith("""mps""" ): lowercase_ : Tuple = torch.manual_seed(snake_case__ ) else: lowercase_ : int = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowercase_ : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def snake_case__ ( self ) -> List[Any]: """simple docstring""" lowercase_ : int = torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=snake_case__ ) def snake_case__ ( self ) -> Any: """simple docstring""" lowercase_ : List[str] = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=snake_case__ ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def snake_case__ ( self ) -> Any: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ) -> List[str]: """simple docstring""" lowercase_ : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) lowercase_ : List[Any] = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""", torch_dtype=torch.floataa ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ : Any = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase_ : Dict = pipe("""anime turle""", generator=snake_case__, output_type="""np""" ) lowercase_ : str = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(snake_case__, snake_case__ ) def snake_case__ ( self ) -> Dict: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase_ : str = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""", torch_dtype=torch.floataa ) lowercase_ : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase_ : List[Any] = pipe( """anime turtle""", prior_num_inference_steps=2, num_inference_steps=2, output_type="""np""", ) lowercase_ : Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
458
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict = logging.get_logger(__name__) class lowerCamelCase ( __snake_case ): __lowerCamelCase = 'timm_backbone' def __init__( self , __lowerCamelCase=None , __lowerCamelCase=3 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=None , **__lowerCamelCase , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**__A ) snake_case: Optional[int] = backbone snake_case: Any = num_channels snake_case: Tuple = features_only snake_case: Optional[Any] = use_pretrained_backbone snake_case: Optional[int] = True snake_case: List[str] = out_indices if out_indices is not None else (-1,)
711
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[str] = logging.get_logger(__name__) def a_ (_lowerCAmelCase : str )-> YolosConfig: snake_case: List[Any] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: snake_case: Optional[int] = 192 snake_case: List[str] = 768 snake_case: int = 12 snake_case: Any = 3 snake_case: Union[str, Any] = [800, 1333] snake_case: Union[str, Any] = False elif yolos_name == "yolos_s_dWr": snake_case: Any = 330 snake_case: Tuple = 14 snake_case: Optional[int] = 6 snake_case: str = 1320 elif "yolos_s" in yolos_name: snake_case: Dict = 384 snake_case: Optional[int] = 1536 snake_case: Dict = 12 snake_case: Optional[Any] = 6 elif "yolos_b" in yolos_name: snake_case: Dict = [800, 1344] snake_case: Union[str, Any] = 91 snake_case: List[str] = """huggingface/label-files""" snake_case: List[str] = """coco-detection-id2label.json""" snake_case: str = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case: str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} snake_case: Optional[int] = idalabel snake_case: Union[str, Any] = {v: k for k, v in idalabel.items()} return config def a_ (_lowerCAmelCase : dict , _lowerCAmelCase : YolosConfig , _lowerCAmelCase : bool = False )-> Any: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case: Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) snake_case: str = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case: Tuple = in_proj_weight[: config.hidden_size, :] snake_case: int = in_proj_bias[: config.hidden_size] snake_case: Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case: Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case: str = in_proj_weight[-config.hidden_size :, :] snake_case: List[Any] = in_proj_bias[-config.hidden_size :] def a_ (_lowerCAmelCase : str )-> str: if "backbone" in name: snake_case: str = name.replace("""backbone""" , """vit""" ) if "cls_token" in name: snake_case: List[str] = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "det_token" in name: snake_case: int = name.replace("""det_token""" , """embeddings.detection_tokens""" ) if "mid_pos_embed" in name: snake_case: int = name.replace("""mid_pos_embed""" , """encoder.mid_position_embeddings""" ) if "pos_embed" in name: snake_case: List[Any] = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: snake_case: str = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "blocks" in name: snake_case: Tuple = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: snake_case: Optional[Any] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: snake_case: str = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: snake_case: List[str] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case: List[str] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: snake_case: Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case: List[str] = name.replace("""mlp.fc2""" , """output.dense""" ) if "class_embed" in name: snake_case: List[Any] = name.replace("""class_embed""" , """class_labels_classifier""" ) if "bbox_embed" in name: snake_case: Optional[Any] = name.replace("""bbox_embed""" , """bbox_predictor""" ) if "vit.norm" in name: snake_case: Tuple = name.replace("""vit.norm""" , """vit.layernorm""" ) return name def a_ (_lowerCAmelCase : dict , _lowerCAmelCase : YolosForObjectDetection )-> dict: for key in orig_state_dict.copy().keys(): snake_case: Union[str, Any] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: snake_case: Optional[Any] = key.split(""".""" ) snake_case: List[str] = int(key_split[2] ) snake_case: Tuple = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: snake_case: Tuple = val[:dim, :] snake_case: Any = val[ dim : dim * 2, : ] snake_case: int = val[-dim:, :] else: snake_case: List[str] = val[:dim] snake_case: List[Any] = val[dim : dim * 2] snake_case: List[str] = val[-dim:] else: snake_case: List[Any] = val return orig_state_dict def a_ ()-> torch.Tensor: snake_case: Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case: Tuple = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def a_ (_lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : bool = False )-> Any: snake_case: Union[str, Any] = get_yolos_config(_lowerCAmelCase ) # load original state_dict snake_case: List[str] = torch.load(_lowerCAmelCase , map_location="""cpu""" )["""model"""] # load 🤗 model snake_case: Any = YolosForObjectDetection(_lowerCAmelCase ) model.eval() snake_case: List[Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by YolosImageProcessor snake_case: Dict = 800 if yolos_name != """yolos_ti""" else 512 snake_case: int = YolosImageProcessor(format="""coco_detection""" , size=_lowerCAmelCase ) snake_case: Union[str, Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) snake_case: List[Any] = model(**_lowerCAmelCase ) snake_case , snake_case: Any = outputs.logits, outputs.pred_boxes snake_case , snake_case: Optional[int] = None, None if yolos_name == "yolos_ti": snake_case: List[str] = torch.tensor( [[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]] ) snake_case: Tuple = torch.tensor( [[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]] ) elif yolos_name == "yolos_s_200_pre": snake_case: List[str] = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] ) snake_case: str = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] ) elif yolos_name == "yolos_s_300_pre": snake_case: Tuple = torch.tensor( [[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]] ) snake_case: Optional[int] = torch.tensor( [[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]] ) elif yolos_name == "yolos_s_dWr": snake_case: Optional[int] = torch.tensor( [[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]] ) snake_case: Dict = torch.tensor( [[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]] ) elif yolos_name == "yolos_base": snake_case: List[Any] = torch.tensor( [[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]] ) snake_case: Optional[int] = torch.tensor( [[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]] ) else: raise ValueError(F"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , _lowerCAmelCase , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , _lowerCAmelCase , atol=1e-4 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: snake_case: Optional[Any] = { """yolos_ti""": """yolos-tiny""", """yolos_s_200_pre""": """yolos-small""", """yolos_s_300_pre""": """yolos-small-300""", """yolos_s_dWr""": """yolos-small-dwr""", """yolos_base""": """yolos-base""", } print("""Pushing to the hub...""" ) snake_case: Tuple = model_mapping[yolos_name] image_processor.push_to_hub(_lowerCAmelCase , organization="""hustvl""" ) model.push_to_hub(_lowerCAmelCase , organization="""hustvl""" ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase : int = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
164
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer snake_case__ : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ : str = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } snake_case__ : int = { '''unc-nlp/lxmert-base-uncased''': 5_1_2, } snake_case__ : Tuple = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class snake_case ( UpperCAmelCase__ ): '''simple docstring''' UpperCamelCase__ : List[str] = VOCAB_FILES_NAMES UpperCamelCase__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : List[str] = PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : Dict = LxmertTokenizer def __init__( self : str , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : Optional[int]="[UNK]" , lowerCamelCase_ : str="[SEP]" , lowerCamelCase_ : str="[PAD]" , lowerCamelCase_ : int="[CLS]" , lowerCamelCase_ : Optional[Any]="[MASK]" , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Any=None , **lowerCamelCase_ : Optional[Any] , ) ->Tuple: '''simple docstring''' super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , do_lower_case=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , tokenize_chinese_chars=lowerCamelCase_ , strip_accents=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase_ ) != tokenize_chinese_chars ): UpperCAmelCase__ = getattr(lowerCamelCase_ , normalizer_state.pop("""type""" ) ) UpperCAmelCase__ = do_lower_case UpperCAmelCase__ = strip_accents UpperCAmelCase__ = tokenize_chinese_chars UpperCAmelCase__ = normalizer_class(**lowerCamelCase_ ) UpperCAmelCase__ = do_lower_case def UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : List[Any]=None ) ->Dict: '''simple docstring''' UpperCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCAmelCase ( self : int , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ) ->List[Any]: '''simple docstring''' UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ) ->Tuple: '''simple docstring''' UpperCAmelCase__ = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
392
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase ={ "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
546
0
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __a : def __init__( self : List[str] , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any]=13 , lowercase__ : Tuple=7 , lowercase__ : Tuple=True , lowercase__ : Any=True , lowercase__ : Tuple=True , lowercase__ : Dict=True , lowercase__ : Union[str, Any]=99 , lowercase__ : Optional[int]=24 , lowercase__ : int=2 , lowercase__ : List[str]=6 , lowercase__ : int=37 , lowercase__ : Tuple="gelu" , lowercase__ : Optional[int]=0.1 , lowercase__ : Optional[int]=0.1 , lowercase__ : List[str]=5_12 , lowercase__ : Any=16 , lowercase__ : Union[str, Any]=2 , lowercase__ : Any=0.02 , lowercase__ : Optional[Any]=3 , lowercase__ : List[Any]=None , lowercase__ : List[Any]=10_00 , ) ->List[str]: """simple docstring""" _lowercase = parent _lowercase = batch_size _lowercase = seq_length _lowercase = is_training _lowercase = use_input_mask _lowercase = use_token_type_ids _lowercase = use_labels _lowercase = vocab_size _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = intermediate_size _lowercase = hidden_act _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = max_position_embeddings _lowercase = type_vocab_size _lowercase = type_sequence_label_size _lowercase = initializer_range _lowercase = num_labels _lowercase = scope _lowercase = range_bbox def _UpperCAmelCase ( self : Any) ->Optional[int]: """simple docstring""" _lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _lowercase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase = bbox[i, j, 3] _lowercase = bbox[i, j, 1] _lowercase = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase = bbox[i, j, 2] _lowercase = bbox[i, j, 0] _lowercase = t _lowercase = None if self.use_input_mask: _lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) _lowercase = None if self.use_token_type_ids: _lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _lowercase = None _lowercase = None if self.use_labels: _lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _lowercase = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def _UpperCAmelCase ( self : str) ->List[Any]: """simple docstring""" return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self : int , lowercase__ : str , lowercase__ : Tuple , lowercase__ : List[Any] , lowercase__ : Optional[Any] , lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : List[Any] , ) ->Any: """simple docstring""" _lowercase = LiltModel(config=lowercase_) model.to(lowercase_) model.eval() _lowercase = model(lowercase_ , bbox=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_) _lowercase = model(lowercase_ , bbox=lowercase_ , token_type_ids=lowercase_) _lowercase = model(lowercase_ , bbox=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def _UpperCAmelCase ( self : List[Any] , lowercase__ : List[str] , lowercase__ : int , lowercase__ : Union[str, Any] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str , lowercase__ : int , ) ->Optional[int]: """simple docstring""" _lowercase = self.num_labels _lowercase = LiltForTokenClassification(config=lowercase_) model.to(lowercase_) model.eval() _lowercase = model( lowercase_ , bbox=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def _UpperCAmelCase ( self : List[str] , lowercase__ : List[Any] , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Tuple , lowercase__ : List[Any] , lowercase__ : Union[str, Any] , lowercase__ : List[Any] , ) ->List[Any]: """simple docstring""" _lowercase = LiltForQuestionAnswering(config=lowercase_) model.to(lowercase_) model.eval() _lowercase = model( lowercase_ , bbox=lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def _UpperCAmelCase ( self : Optional[Any]) ->int: """simple docstring""" _lowercase = self.prepare_config_and_inputs() ( _lowercase ) = config_and_inputs _lowercase = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class __a ( _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : List[str] = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : Union[str, Any] = False def _UpperCAmelCase ( self : Dict , lowercase__ : List[Any] , lowercase__ : Tuple , lowercase__ : Any , lowercase__ : str , lowercase__ : Any) ->Tuple: """simple docstring""" return True def _UpperCAmelCase ( self : Tuple) ->str: """simple docstring""" _lowercase = LiltModelTester(self) _lowercase = ConfigTester(self , config_class=lowercase_ , hidden_size=37) def _UpperCAmelCase ( self : int) ->int: """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[str]) ->Optional[Any]: """simple docstring""" _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _UpperCAmelCase ( self : Union[str, Any]) ->str: """simple docstring""" _lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowercase = type self.model_tester.create_and_check_model(*lowercase_) def _UpperCAmelCase ( self : int) ->Union[str, Any]: """simple docstring""" _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase_) def _UpperCAmelCase ( self : Tuple) ->Any: """simple docstring""" _lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase_) @slow def _UpperCAmelCase ( self : str) ->Any: """simple docstring""" for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase = LiltModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) @require_torch @slow class __a ( unittest.TestCase ): def _UpperCAmelCase ( self : int) ->List[str]: """simple docstring""" _lowercase = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""").to(lowercase_) _lowercase = torch.tensor([[1, 2]] , device=lowercase_) _lowercase = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=lowercase_) # forward pass with torch.no_grad(): _lowercase = model(input_ids=lowercase_ , bbox=lowercase_) _lowercase = torch.Size([1, 2, 7_68]) _lowercase = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=lowercase_ , ) self.assertTrue(outputs.last_hidden_state.shape , lowercase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , lowercase_ , atol=1e-3))
708
'''simple docstring''' from __future__ import annotations from typing import Any class __a : def __init__( self : Optional[Any] , lowercase__ : int) ->None: """simple docstring""" _lowercase = num_of_nodes _lowercase = [] _lowercase = {} def _UpperCAmelCase ( self : Optional[int] , lowercase__ : int , lowercase__ : int , lowercase__ : int) ->None: """simple docstring""" self.m_edges.append([u_node, v_node, weight]) def _UpperCAmelCase ( self : Any , lowercase__ : int) ->int: """simple docstring""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node]) def _UpperCAmelCase ( self : List[str] , lowercase__ : int) ->None: """simple docstring""" if self.m_component[u_node] != u_node: for k in self.m_component: _lowercase = self.find_component(lowercase__) def _UpperCAmelCase ( self : Dict , lowercase__ : list[int] , lowercase__ : int , lowercase__ : int) ->None: """simple docstring""" if component_size[u_node] <= component_size[v_node]: _lowercase = v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase__) elif component_size[u_node] >= component_size[v_node]: _lowercase = self.find_component(lowercase__) component_size[u_node] += component_size[v_node] self.set_component(lowercase__) def _UpperCAmelCase ( self : Optional[int]) ->None: """simple docstring""" _lowercase = [] _lowercase = 0 _lowercase = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes): self.m_component.update({node: node}) component_size.append(1) _lowercase = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: _lowercase , _lowercase , _lowercase = edge _lowercase = self.m_component[u] _lowercase = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): _lowercase = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase__ , lowercase__): _lowercase , _lowercase , _lowercase = edge _lowercase = self.m_component[u] _lowercase = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase__ , lowercase__ , lowercase__) print(f"""Added edge [{u} - {v}]\nAdded weight: {w}\n""") num_of_components -= 1 _lowercase = [-1] * self.m_num_of_nodes print(f"""The total weight of the minimal spanning tree is: {mst_weight}""") def _SCREAMING_SNAKE_CASE ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
572
0
"""simple docstring""" import os from distutils.util import strtobool def _snake_case ( _snake_case : Tuple , _snake_case : str ) -> Any: '''simple docstring''' for e in env_keys: _A = int(os.environ.get(_snake_case , -1 ) ) if val >= 0: return val return default def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Tuple=False ) -> Any: '''simple docstring''' _A = os.environ.get(_snake_case , str(_snake_case ) ) return strtobool(_snake_case ) == 1 # As its name indicates `strtobool` actually returns an int... def _snake_case ( _snake_case : List[Any] , _snake_case : Optional[Any]="no" ) -> Optional[int]: '''simple docstring''' _A = os.environ.get(_snake_case , str(_snake_case ) ) return value
7
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def lowercase__ ( lowercase_ ,lowercase_=10 ) -> Tuple: """simple docstring""" _UpperCamelCase : str = [] for _ in range(lowercase_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def lowercase__ ( lowercase_ ,lowercase_=10 ) -> str: """simple docstring""" _UpperCamelCase : Optional[int] = [] for step in range(lowercase_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCamelCase : List[str] = os.path.join(lowercase_ ,"schedule.bin" ) torch.save(scheduler.state_dict() ,lowercase_ ) _UpperCamelCase : Optional[int] = torch.load(lowercase_ ) scheduler.load_state_dict(lowercase_ ) return lrs @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Dict , __a : Any , __a : List[str] ) -> List[str]: self.assertEqual(len(__a ) , len(__a ) ) for a, b in zip(__a , __a ): self.assertAlmostEqual(__a , __a , delta=__a ) def __SCREAMING_SNAKE_CASE ( self : str ) -> str: _UpperCamelCase : Optional[int] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__a ) _UpperCamelCase : List[Any] = torch.tensor([0.4, 0.2, -0.5] ) _UpperCamelCase : Any = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCamelCase : Dict = AdamW(params=[w] , lr=2e-1 , weight_decay=0.0 ) for _ in range(100 ): _UpperCamelCase : List[Any] = criterion(__a , __a ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Tuple: _UpperCamelCase : List[Any] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__a ) _UpperCamelCase : Any = torch.tensor([0.4, 0.2, -0.5] ) _UpperCamelCase : List[str] = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _UpperCamelCase : Dict = Adafactor( params=[w] , lr=1e-2 , eps=(1e-3_0, 1e-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=__a , weight_decay=0.0 , relative_step=__a , scale_parameter=__a , warmup_init=__a , ) for _ in range(1000 ): _UpperCamelCase : Optional[Any] = criterion(__a , __a ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1e-2 ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = nn.Linear(50 , 50 ) if is_torch_available() else None SCREAMING_SNAKE_CASE__ :List[Any] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None SCREAMING_SNAKE_CASE__ :List[str] = 10 def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Tuple , __a : List[Any] , __a : Dict , __a : str=None ) -> List[Any]: self.assertEqual(len(__a ) , len(__a ) ) for a, b in zip(__a , __a ): self.assertAlmostEqual(__a , __a , delta=__a , msg=__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: _UpperCamelCase : Union[str, Any] = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _UpperCamelCase : Optional[Any] = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1e-7}, [0.0, 5.0, 10.0, 7.6_56, 5.6_25, 3.9_06, 2.5, 1.4_06, 0.6_25, 0.1_56], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.1_65, 7.0_71, 6.3_25, 5.7_74, 5.3_45, 5.0, 4.7_14], ), } for scheduler_func, data in scheds.items(): _UpperCamelCase, _UpperCamelCase : List[str] = data _UpperCamelCase : List[str] = scheduler_func(self.optimizer , **__a ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _UpperCamelCase : Optional[int] = unwrap_schedule(__a , self.num_steps ) self.assertListAlmostEqual( __a , __a , tol=1e-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) _UpperCamelCase : List[str] = scheduler_func(self.optimizer , **__a ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__a ) # wrap to test picklability of the schedule _UpperCamelCase : int = unwrap_and_save_reload_schedule(__a , self.num_steps ) self.assertListEqual(__a , __a , msg=F'''failed for {scheduler_func} in save and reload''' ) class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] , __a : Optional[int] ) -> Tuple: _UpperCamelCase : Any = fn def __call__( self : Tuple , *__a : Optional[Any] , **__a : str ) -> Any: return self.fn(*__a , **__a ) @classmethod def __SCREAMING_SNAKE_CASE ( self : Any , __a : Any ) -> Tuple: _UpperCamelCase : Any = list(map(self , scheduler.lr_lambdas ) )
624
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging UpperCAmelCase__ =logging.get_logger(__name__) class lowerCamelCase__ ( _a ): a : str = ["""input_features""", """is_longer"""] def __init__( self : Any , A_ : Optional[int]=6_4 , A_ : Optional[Any]=4_8_0_0_0 , A_ : Any=4_8_0 , A_ : Optional[Any]=1_0 , A_ : Optional[Any]=1_0_2_4 , A_ : List[str]=0.0 , A_ : str=False , A_ : float = 0 , A_ : float = 1_4_0_0_0 , A_ : int = None , A_ : str = "fusion" , A_ : str = "repeatpad" , **A_ : Dict , ): '''simple docstring''' super().__init__( feature_size=A_ , sampling_rate=A_ , padding_value=A_ , return_attention_mask=A_ , **A_ , ) __lowercase = top_db __lowercase = truncation __lowercase = padding __lowercase = fft_window_size __lowercase = (fft_window_size >> 1) + 1 __lowercase = hop_length __lowercase = max_length_s __lowercase = max_length_s * sampling_rate __lowercase = sampling_rate __lowercase = frequency_min __lowercase = frequency_max __lowercase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=A_ , min_frequency=A_ , max_frequency=A_ , sampling_rate=A_ , norm=A_ , mel_scale="""htk""" , ) __lowercase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=A_ , min_frequency=A_ , max_frequency=A_ , sampling_rate=A_ , norm="""slaney""" , mel_scale="""slaney""" , ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def SCREAMING_SNAKE_CASE_ ( self : str , A_ : np.array , A_ : Optional[np.array] = None ): '''simple docstring''' __lowercase = spectrogram( A_ , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=A_ , log_mel="""dB""" , ) return log_mel_spectrogram.T def SCREAMING_SNAKE_CASE_ ( self : Tuple , A_ : Any , A_ : Tuple , A_ : str ): '''simple docstring''' __lowercase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk __lowercase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk __lowercase = [0] # randomly choose index for each part __lowercase = np.random.choice(ranges[0] ) __lowercase = np.random.choice(ranges[1] ) __lowercase = np.random.choice(ranges[2] ) __lowercase = mel[idx_front : idx_front + chunk_frames, :] __lowercase = mel[idx_middle : idx_middle + chunk_frames, :] __lowercase = mel[idx_back : idx_back + chunk_frames, :] __lowercase = torch.tensor(mel[None, None, :] ) __lowercase = torch.nn.functional.interpolate( A_ , size=[chunk_frames, 6_4] , mode="""bilinear""" , align_corners=A_ ) __lowercase = mel_shrink[0][0].numpy() __lowercase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def SCREAMING_SNAKE_CASE_ ( self : Any , A_ : np.array , A_ : List[str] , A_ : Dict , A_ : Optional[Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": __lowercase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad __lowercase = len(A_ ) - max_length __lowercase = np.random.randint(0 , overflow + 1 ) __lowercase = waveform[idx : idx + max_length] __lowercase = self._np_extract_fbank_features(A_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": __lowercase = self._np_extract_fbank_features(A_ , self.mel_filters ) __lowercase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed __lowercase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. __lowercase = np.stack([mel, mel, mel, mel] , axis=0 ) __lowercase = False else: __lowercase = self._random_mel_fusion(A_ , A_ , A_ ) __lowercase = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: __lowercase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": __lowercase = int(max_length / len(A_ ) ) __lowercase = np.stack(np.tile(A_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": __lowercase = int(max_length / len(A_ ) ) __lowercase = np.stack(np.tile(A_ , A_ ) ) __lowercase = np.pad(A_ , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": __lowercase = self._np_extract_fbank_features(A_ , self.mel_filters ) __lowercase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: __lowercase = self._np_extract_fbank_features(A_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : List[Any] , A_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , A_ : str = None , A_ : Optional[str] = None , A_ : Optional[int] = None , A_ : Optional[int] = None , A_ : Optional[Union[str, TensorType]] = None , **A_ : Any , ): '''simple docstring''' __lowercase = truncation if truncation is not None else self.truncation __lowercase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) __lowercase = isinstance(A_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) __lowercase = is_batched_numpy or ( isinstance(A_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __lowercase = [np.asarray(A_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(A_ , np.ndarray ): __lowercase = np.asarray(A_ , dtype=np.floataa ) elif isinstance(A_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __lowercase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __lowercase = [np.asarray(A_ )] # convert to mel spectrogram, truncate and pad if needed. __lowercase = [ self._get_input_mel(A_ , max_length if max_length else self.nb_max_samples , A_ , A_ ) for waveform in raw_speech ] __lowercase = [] __lowercase = [] for mel, longer in padded_inputs: input_mel.append(A_ ) is_longer.append(A_ ) if truncation == "fusion" and sum(A_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer __lowercase = np.random.randint(0 , len(A_ ) ) __lowercase = True if isinstance(input_mel[0] , A_ ): __lowercase = [np.asarray(A_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool __lowercase = [[longer] for longer in is_longer] __lowercase = {"""input_features""": input_mel, """is_longer""": is_longer} __lowercase = BatchFeature(A_ ) if return_tensors is not None: __lowercase = input_features.convert_to_tensors(A_ ) return input_features
721
"""simple docstring""" import inspect import unittest class lowerCamelCase__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps __lowercase = inspect.getmembers(A_ , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": __lowercase = """k-diffusion""" elif backend == "invisible_watermark": __lowercase = """invisible-watermark""" assert backend in deps, F'''{backend} is not in the deps table!'''
442
0
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCAmelCase_ = False class _A ( unittest.TestCase ): def __a ( self : Dict , _A : Tuple=32 ) -> Optional[Any]: """simple docstring""" set_seed(0 ) lowercase : int = UNetaDModel(sample_size=_A , in_channels=3 , out_channels=3 ) lowercase : int = torch.optim.SGD(model.parameters() , lr=0.0_001 ) return model, optimizer @slow def __a ( self : Any ) -> Dict: """simple docstring""" lowercase : List[Any] = '''cpu''' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowercase : str = DDPMScheduler( num_train_timesteps=1_000 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=_A , ) lowercase : Tuple = DDIMScheduler( num_train_timesteps=1_000 , beta_start=0.0_001 , beta_end=0.02 , beta_schedule='''linear''' , clip_sample=_A , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowercase : Union[str, Any] = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(_A ) for _ in range(4 )] lowercase : Optional[Any] = [torch.randn((4, 3, 32, 32) ).to(_A ) for _ in range(4 )] lowercase : Any = [torch.randint(0 , 1_000 , (4,) ).long().to(_A ) for _ in range(4 )] # train with a DDPM scheduler lowercase , lowercase : Any = self.get_model_optimizer(resolution=32 ) model.train().to(_A ) for i in range(4 ): optimizer.zero_grad() lowercase : int = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowercase : List[Any] = model(_A , timesteps[i] ).sample lowercase : Dict = torch.nn.functional.mse_loss(_A , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowercase , lowercase : str = self.get_model_optimizer(resolution=32 ) model.train().to(_A ) for i in range(4 ): optimizer.zero_grad() lowercase : Optional[Any] = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowercase : Optional[Any] = model(_A , timesteps[i] ).sample lowercase : Optional[int] = torch.nn.functional.mse_loss(_A , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(_A , _A , atol=1E-5 ) ) self.assertTrue(torch.allclose(_A , _A , atol=1E-5 ) )
217
def snake_case( __magic_name__ ) -> int: '''simple docstring''' assert isinstance(__magic_name__ , __magic_name__ ), F"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: lowercase : Union[str, Any] = F"""The input value of [n={number}] has to be > 0""" raise ValueError(__magic_name__ ) else: lowercase : int = sylvester(number - 1 ) lowercase : List[Any] = num - 1 lowercase : str = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
217
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class __UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" _lowerCamelCase = "instructblip_vision_model" def __init__( self , __A=1408 , __A=6144 , __A=39 , __A=16 , __A=224 , __A=14 , __A="gelu" , __A=1E-6 , __A=0.0 , __A=1E-10 , __A=True , **__A , ): super().__init__(**_lowerCamelCase ) __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act __a = qkv_bias @classmethod def snake_case_ ( cls , __A , **__A ): cls._set_token_in_kwargs(_lowerCamelCase ) __a , __a = cls.get_config_dict(_lowerCamelCase , **_lowerCamelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": __a = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowerCamelCase , **_lowerCamelCase ) class __UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" _lowerCamelCase = "instructblip_qformer" def __init__( self , __A=30522 , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=0.02 , __A=1E-12 , __A=0 , __A="absolute" , __A=2 , __A=1408 , **__A , ): super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = cross_attention_frequency __a = encoder_hidden_size @classmethod def snake_case_ ( cls , __A , **__A ): cls._set_token_in_kwargs(_lowerCamelCase ) __a , __a = cls.get_config_dict(_lowerCamelCase , **_lowerCamelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": __a = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowerCamelCase , **_lowerCamelCase ) class __UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" _lowerCamelCase = "instructblip" _lowerCamelCase = True def __init__( self , __A=None , __A=None , __A=None , __A=32 , **__A ): super().__init__(**_lowerCamelCase ) if vision_config is None: __a = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: __a = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: __a = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) __a = InstructBlipVisionConfig(**_lowerCamelCase ) __a = InstructBlipQFormerConfig(**_lowerCamelCase ) __a = text_config["""model_type"""] if """model_type""" in text_config else """opt""" __a = CONFIG_MAPPING[text_model_type](**_lowerCamelCase ) __a = self.text_config.tie_word_embeddings __a = self.text_config.is_encoder_decoder __a = num_query_tokens __a = self.vision_config.hidden_size __a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a = 1.0 __a = 0.02 @classmethod def snake_case_ ( cls , __A , __A , __A , **__A , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_lowerCamelCase , ) def snake_case_ ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.vision_config.to_dict() __a = self.qformer_config.to_dict() __a = self.text_config.to_dict() __a = self.__class__.model_type return output
712
import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline SCREAMING_SNAKE_CASE = version.parse(version.parse(torch.__version__).base_version) < version.parse('1.11') def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False , ): output_path.parent.mkdir(parents=lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowerCAmelCase__ , lowerCAmelCase__ , f=output_path.as_posix() , input_names=lowerCAmelCase__ , output_names=lowerCAmelCase__ , dynamic_axes=lowerCAmelCase__ , do_constant_folding=lowerCAmelCase__ , use_external_data_format=lowerCAmelCase__ , enable_onnx_checker=lowerCAmelCase__ , opset_version=lowerCAmelCase__ , ) else: export( lowerCAmelCase__ , lowerCAmelCase__ , f=output_path.as_posix() , input_names=lowerCAmelCase__ , output_names=lowerCAmelCase__ , dynamic_axes=lowerCAmelCase__ , do_constant_folding=lowerCAmelCase__ , opset_version=lowerCAmelCase__ , ) @torch.no_grad() def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ): __a = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __a = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: __a = """cpu""" __a = StableDiffusionPipeline.from_pretrained(lowerCAmelCase__ , torch_dtype=lowerCAmelCase__ ).to(lowerCAmelCase__ ) __a = Path(lowerCAmelCase__ ) # TEXT ENCODER __a = pipeline.text_encoder.config.max_position_embeddings __a = pipeline.text_encoder.config.hidden_size __a = pipeline.tokenizer( """A sample prompt""" , padding="""max_length""" , max_length=pipeline.tokenizer.model_max_length , truncation=lowerCAmelCase__ , return_tensors="""pt""" , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=lowerCAmelCase__ , dtype=torch.intaa )) , output_path=output_path / """text_encoder""" / """model.onnx""" , ordered_input_names=["""input_ids"""] , output_names=["""last_hidden_state""", """pooler_output"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """sequence"""}, } , opset=lowerCAmelCase__ , ) del pipeline.text_encoder # UNET __a = pipeline.unet.config.in_channels __a = pipeline.unet.config.sample_size __a = output_path / """unet""" / """model.onnx""" onnx_export( pipeline.unet , model_args=( torch.randn(2 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), torch.randn(2 ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), torch.randn(2 , lowerCAmelCase__ , lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), False, ) , output_path=lowerCAmelCase__ , ordered_input_names=["""sample""", """timestep""", """encoder_hidden_states""", """return_dict"""] , output_names=["""out_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """timestep""": {0: """batch"""}, """encoder_hidden_states""": {0: """batch""", 1: """sequence"""}, } , opset=lowerCAmelCase__ , use_external_data_format=lowerCAmelCase__ , ) __a = str(unet_path.absolute().as_posix() ) __a = os.path.dirname(lowerCAmelCase__ ) __a = onnx.load(lowerCAmelCase__ ) # clean up existing tensor files shutil.rmtree(lowerCAmelCase__ ) os.mkdir(lowerCAmelCase__ ) # collate external tensor files into one onnx.save_model( lowerCAmelCase__ , lowerCAmelCase__ , save_as_external_data=lowerCAmelCase__ , all_tensors_to_one_file=lowerCAmelCase__ , location="""weights.pb""" , convert_attribute=lowerCAmelCase__ , ) del pipeline.unet # VAE ENCODER __a = pipeline.vae __a = vae_encoder.config.in_channels __a = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder __a = lambda lowerCAmelCase__ , lowerCAmelCase__ : vae_encoder.encode(lowerCAmelCase__ , lowerCAmelCase__ )[0].sample() onnx_export( lowerCAmelCase__ , model_args=( torch.randn(1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), False, ) , output_path=output_path / """vae_encoder""" / """model.onnx""" , ordered_input_names=["""sample""", """return_dict"""] , output_names=["""latent_sample"""] , dynamic_axes={ """sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=lowerCAmelCase__ , ) # VAE DECODER __a = pipeline.vae __a = vae_decoder.config.latent_channels __a = vae_decoder.config.out_channels # forward only through the decoder part __a = vae_encoder.decode onnx_export( lowerCAmelCase__ , model_args=( torch.randn(1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=lowerCAmelCase__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: __a = pipeline.safety_checker __a = safety_checker.config.vision_config.num_channels __a = safety_checker.config.vision_config.image_size __a = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), torch.randn(1 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), ) , output_path=output_path / """safety_checker""" / """model.onnx""" , ordered_input_names=["""clip_input""", """images"""] , output_names=["""out_images""", """has_nsfw_concepts"""] , dynamic_axes={ """clip_input""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, """images""": {0: """batch""", 1: """height""", 2: """width""", 3: """channels"""}, } , opset=lowerCAmelCase__ , ) del pipeline.safety_checker __a = OnnxRuntimeModel.from_pretrained(output_path / """safety_checker""" ) __a = pipeline.feature_extractor else: __a = None __a = None __a = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_encoder""" ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / """vae_decoder""" ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / """text_encoder""" ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / """unet""" ) , scheduler=pipeline.scheduler , safety_checker=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(lowerCAmelCase__ ) print("""ONNX pipeline saved to""" , lowerCAmelCase__ ) del pipeline del onnx_pipeline __a = OnnxStableDiffusionPipeline.from_pretrained(lowerCAmelCase__ , provider="""CPUExecutionProvider""" ) print("""ONNX pipeline is loadable""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--model_path', type=str, required=True, help='Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).', ) parser.add_argument('--output_path', type=str, required=True, help='Path to the output model.') parser.add_argument( '--opset', default=1_4, type=int, help='The version of the ONNX operator set to use.', ) parser.add_argument('--fp16', action='store_true', default=False, help='Export the models in `float16` mode') SCREAMING_SNAKE_CASE = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
209
0
import os import sys import unittest a__ : int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path a__ : str = os.path.join(git_repo_path, 'src', 'diffusers') class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self ): """simple docstring""" A_ = find_backend(''' if not is_torch_available():''' ) self.assertEqual(__snake_case ,'''torch''' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") A_ = find_backend(''' if not (is_torch_available() and is_transformers_available()):''' ) self.assertEqual(__snake_case ,'''torch_and_transformers''' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") A_ = find_backend( ''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''' ) self.assertEqual(__snake_case ,'''torch_and_transformers_and_onnx''' ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' ,__snake_case ) self.assertIn('''torch_and_transformers''' ,__snake_case ) self.assertIn('''flax_and_transformers''' ,__snake_case ) self.assertIn('''torch_and_transformers_and_onnx''' ,__snake_case ) # Likewise, we can't assert on the exact content of a key self.assertIn('''UNet2DModel''' ,objects['''torch'''] ) self.assertIn('''FlaxUNet2DConditionModel''' ,objects['''flax'''] ) self.assertIn('''StableDiffusionPipeline''' ,objects['''torch_and_transformers'''] ) self.assertIn('''FlaxStableDiffusionPipeline''' ,objects['''flax_and_transformers'''] ) self.assertIn('''LMSDiscreteScheduler''' ,objects['''torch_and_scipy'''] ) self.assertIn('''OnnxStableDiffusionPipeline''' ,objects['''torch_and_transformers_and_onnx'''] ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = create_dummy_object('''CONSTANT''' ,'''\'torch\'''' ) self.assertEqual(__snake_case ,'''\nCONSTANT = None\n''' ) A_ = create_dummy_object('''function''' ,'''\'torch\'''' ) self.assertEqual( __snake_case ,'''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) A_ = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, \'torch\') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, \'torch\') ''' A_ = create_dummy_object('''FakeClass''' ,'''\'torch\'''' ) self.assertEqual(__snake_case ,__snake_case ) def __UpperCAmelCase ( self ): """simple docstring""" A_ = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ''' A_ = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] ,__snake_case )
188
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() a__ : Any = logging.get_logger(__name__) a__ : Tuple = 'Hello, World!' a__ : Any = 'en_XX' def UpperCAmelCase_ ( _UpperCAmelCase :str , _UpperCAmelCase :str , _UpperCAmelCase :bool ) -> Optional[Any]: '''simple docstring''' A_ = Path('''data_bin''' ) A_ = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_UpperCAmelCase ).parent ) , checkpoint_file=Path(_UpperCAmelCase ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(_UpperCAmelCase ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(_UpperCAmelCase ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(_UpperCAmelCase ) A_ = xmod.model.encoder.sentence_encoder A_ = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: A_ = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , _UpperCAmelCase ) A_ = XmodForSequenceClassification(_UpperCAmelCase ) if classification_head else XmodForMaskedLM(_UpperCAmelCase ) model.eval() # Now let's copy all the weights. # Embeddings A_ = xmod_sent_encoder.embed_tokens.weight A_ = xmod_sent_encoder.embed_positions.weight A_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. A_ = xmod_sent_encoder.layernorm_embedding.weight A_ = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer A_ = model.roberta.encoder.layer[i] A_ = xmod_sent_encoder.layers[i] # self attention A_ = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) A_ = xmod_layer.self_attn.q_proj.weight A_ = xmod_layer.self_attn.q_proj.bias A_ = xmod_layer.self_attn.k_proj.weight A_ = xmod_layer.self_attn.k_proj.bias A_ = xmod_layer.self_attn.v_proj.weight A_ = xmod_layer.self_attn.v_proj.bias # self-attention output A_ = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) A_ = xmod_layer.self_attn.out_proj.weight A_ = xmod_layer.self_attn.out_proj.bias A_ = xmod_layer.self_attn_layer_norm.weight A_ = xmod_layer.self_attn_layer_norm.bias # intermediate A_ = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) A_ = xmod_layer.fca.weight A_ = xmod_layer.fca.bias # output A_ = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) A_ = xmod_layer.fca.weight A_ = xmod_layer.fca.bias A_ = xmod_layer.final_layer_norm.weight A_ = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: A_ = xmod_layer.adapter_layer_norm.weight A_ = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): A_ = bert_output.adapter_modules[lang_code] A_ = xmod_layer.adapter_modules[lang_code] A_ = from_adapter.fca.weight A_ = from_adapter.fca.bias A_ = from_adapter.fca.weight A_ = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: A_ = xmod_sent_encoder.layer_norm.weight A_ = xmod_sent_encoder.layer_norm.bias if classification_head: A_ = xmod.model.classification_heads['''mnli'''].dense.weight A_ = xmod.model.classification_heads['''mnli'''].dense.bias A_ = xmod.model.classification_heads['''mnli'''].out_proj.weight A_ = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head A_ = xmod.model.encoder.lm_head.dense.weight A_ = xmod.model.encoder.lm_head.dense.bias A_ = xmod.model.encoder.lm_head.layer_norm.weight A_ = xmod.model.encoder.lm_head.layer_norm.bias A_ = xmod.model.encoder.lm_head.weight A_ = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. A_ = xmod.encode(_UpperCAmelCase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(_UpperCAmelCase ) A_ = model(_UpperCAmelCase )[0] if classification_head: A_ = xmod.model.classification_heads['''mnli'''](xmod.extract_features(_UpperCAmelCase ) ) else: A_ = xmod.model(_UpperCAmelCase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) A_ = torch.max(torch.abs(our_output - their_output ) ).item() print(f'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 A_ = torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(_UpperCAmelCase ).mkdir(parents=_UpperCAmelCase , exist_ok=_UpperCAmelCase ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": a__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) a__ : Tuple = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
188
1
"""simple docstring""" import pprint import requests __A = '''https://zenquotes.io/api''' def lowercase_ ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + "/today" ).json() def lowercase_ ( ) -> list: '''simple docstring''' return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": __A = random_quotes() pprint.pprint(response)
366
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Any=3 , UpperCAmelCase : str=18 , UpperCAmelCase : str=30 , UpperCAmelCase : Any=400 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Dict=None , UpperCAmelCase : List[str]=True , UpperCAmelCase : int=[0.5, 0.5, 0.5] , UpperCAmelCase : Tuple=[0.5, 0.5, 0.5] , ): __lowerCamelCase : Any = size if size is not None else {"shortest_edge": 18} __lowerCamelCase : Dict = crop_size if crop_size is not None else {"height": 18, "width": 18} __lowerCamelCase : List[str] = parent __lowerCamelCase : int = batch_size __lowerCamelCase : Any = num_channels __lowerCamelCase : Tuple = image_size __lowerCamelCase : int = min_resolution __lowerCamelCase : List[Any] = max_resolution __lowerCamelCase : List[str] = do_resize __lowerCamelCase : str = size __lowerCamelCase : Tuple = do_center_crop __lowerCamelCase : Optional[int] = crop_size __lowerCamelCase : Optional[Any] = do_normalize __lowerCamelCase : Optional[Any] = image_mean __lowerCamelCase : List[Any] = image_std def lowerCamelCase__ ( self : int ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _snake_case ( a__ , unittest.TestCase ): snake_case__ = LevitImageProcessor if is_vision_available() else None def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Optional[int] = LevitImageProcessingTester(self ) @property def lowerCamelCase__ ( self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase , "image_std" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_center_crop" ) ) self.assertTrue(hasattr(UpperCAmelCase , "size" ) ) def lowerCamelCase__ ( self : int ): __lowerCamelCase : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) __lowerCamelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def lowerCamelCase__ ( self : Dict ): pass def lowerCamelCase__ ( self : Any ): # Initialize image_processing __lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __lowerCamelCase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input __lowerCamelCase : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCamelCase : int = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCamelCase__ ( self : Any ): # Initialize image_processing __lowerCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCamelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input __lowerCamelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCamelCase : Dict = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCamelCase__ ( self : Union[str, Any] ): # Initialize image_processing __lowerCamelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCamelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input __lowerCamelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __lowerCamelCase : List[str] = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
366
1
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def a_ ( __snake_case : Callable[[int | float], int | float] , __snake_case : int | float , __snake_case : int | float , __snake_case : int = 100 , ) -> float: """simple docstring""" lowerCamelCase_ =x_start lowerCamelCase_ =fnc(__snake_case ) lowerCamelCase_ =0.0 for _ in range(__snake_case ): # Approximates curve as a sequence of linear lines and sums their length lowerCamelCase_ =(x_end - x_start) / steps + xa lowerCamelCase_ =fnc(__snake_case ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step lowerCamelCase_ =xa lowerCamelCase_ =fxa return length if __name__ == "__main__": def a_ ( __snake_case : Optional[Any] ) -> Optional[int]: """simple docstring""" return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") a_ : Tuple = 10 while i <= 10_00_00: print(F"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
676
'''simple docstring''' from collections.abc import Sequence def a_ ( __snake_case : Sequence[float] , __snake_case : float ) -> float: """simple docstring""" return sum(c * (x**i) for i, c in enumerate(__snake_case ) ) def a_ ( __snake_case : Sequence[float] , __snake_case : float ) -> float: """simple docstring""" lowerCamelCase_ =0.0 for coeff in reversed(__snake_case ): lowerCamelCase_ =result * x + coeff return result if __name__ == "__main__": a_ : Optional[int] = (0.0, 0.0, 5.0, 9.3, 7.0) a_ : Tuple = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
676
1
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = """Hello, World!""" UpperCamelCase__ = """en_XX""" def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool ): __lowerCAmelCase = Path("data_bin" ) __lowerCAmelCase = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(SCREAMING_SNAKE_CASE_ ).parent ) , checkpoint_file=Path(SCREAMING_SNAKE_CASE_ ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(SCREAMING_SNAKE_CASE_ ) , bpe="sentencepiece" , sentencepiece_model=str(Path(SCREAMING_SNAKE_CASE_ ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = xmod.model.encoder.sentence_encoder __lowerCAmelCase = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: __lowerCAmelCase = xmod.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our X-MOD config:" , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = XmodForSequenceClassification(SCREAMING_SNAKE_CASE_ ) if classification_head else XmodForMaskedLM(SCREAMING_SNAKE_CASE_ ) model.eval() # Now let's copy all the weights. # Embeddings __lowerCAmelCase = xmod_sent_encoder.embed_tokens.weight __lowerCAmelCase = xmod_sent_encoder.embed_positions.weight __lowerCAmelCase = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. __lowerCAmelCase = xmod_sent_encoder.layernorm_embedding.weight __lowerCAmelCase = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __lowerCAmelCase = model.roberta.encoder.layer[i] __lowerCAmelCase = xmod_sent_encoder.layers[i] # self attention __lowerCAmelCase = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) __lowerCAmelCase = xmod_layer.self_attn.q_proj.weight __lowerCAmelCase = xmod_layer.self_attn.q_proj.bias __lowerCAmelCase = xmod_layer.self_attn.k_proj.weight __lowerCAmelCase = xmod_layer.self_attn.k_proj.bias __lowerCAmelCase = xmod_layer.self_attn.v_proj.weight __lowerCAmelCase = xmod_layer.self_attn.v_proj.bias # self-attention output __lowerCAmelCase = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) __lowerCAmelCase = xmod_layer.self_attn.out_proj.weight __lowerCAmelCase = xmod_layer.self_attn.out_proj.bias __lowerCAmelCase = xmod_layer.self_attn_layer_norm.weight __lowerCAmelCase = xmod_layer.self_attn_layer_norm.bias # intermediate __lowerCAmelCase = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) __lowerCAmelCase = xmod_layer.fca.weight __lowerCAmelCase = xmod_layer.fca.bias # output __lowerCAmelCase = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) __lowerCAmelCase = xmod_layer.fca.weight __lowerCAmelCase = xmod_layer.fca.bias __lowerCAmelCase = xmod_layer.final_layer_norm.weight __lowerCAmelCase = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: __lowerCAmelCase = xmod_layer.adapter_layer_norm.weight __lowerCAmelCase = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): __lowerCAmelCase = bert_output.adapter_modules[lang_code] __lowerCAmelCase = xmod_layer.adapter_modules[lang_code] __lowerCAmelCase = from_adapter.fca.weight __lowerCAmelCase = from_adapter.fca.bias __lowerCAmelCase = from_adapter.fca.weight __lowerCAmelCase = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: __lowerCAmelCase = xmod_sent_encoder.layer_norm.weight __lowerCAmelCase = xmod_sent_encoder.layer_norm.bias if classification_head: __lowerCAmelCase = xmod.model.classification_heads["mnli"].dense.weight __lowerCAmelCase = xmod.model.classification_heads["mnli"].dense.bias __lowerCAmelCase = xmod.model.classification_heads["mnli"].out_proj.weight __lowerCAmelCase = xmod.model.classification_heads["mnli"].out_proj.bias else: # LM Head __lowerCAmelCase = xmod.model.encoder.lm_head.dense.weight __lowerCAmelCase = xmod.model.encoder.lm_head.dense.bias __lowerCAmelCase = xmod.model.encoder.lm_head.layer_norm.weight __lowerCAmelCase = xmod.model.encoder.lm_head.layer_norm.bias __lowerCAmelCase = xmod.model.encoder.lm_head.weight __lowerCAmelCase = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. __lowerCAmelCase = xmod.encode(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = model(SCREAMING_SNAKE_CASE_ )[0] if classification_head: __lowerCAmelCase = xmod.model.classification_heads["mnli"](xmod.extract_features(SCREAMING_SNAKE_CASE_ ) ) else: __lowerCAmelCase = xmod.model(SCREAMING_SNAKE_CASE_ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) __lowerCAmelCase = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 __lowerCAmelCase = torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(parents=SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) UpperCamelCase__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
552
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py UpperCamelCase__ = """.""" if __name__ == "__main__": UpperCamelCase__ = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") UpperCamelCase__ = [] UpperCamelCase__ = [] with open(doctest_file_path) as fp: for line in fp: UpperCamelCase__ = line.strip() UpperCamelCase__ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: UpperCamelCase__ = """\n""".join(non_existent_paths) raise ValueError(f'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
552
1
import os import re import shutil import sys import tempfile import unittest import black UpperCAmelCase_ : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCAmelCase_ : str = ' \"\"\"\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: a_ : Dict = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/' ) ) a_ : Optional[int] = self.diffusers_dir shutil.copy( os.path.join(UpperCAmelCase_ , 'src/diffusers/schedulers/scheduling_ddpm.py' ) , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py' ) , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: a_ : Any = 'src/diffusers' shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int]=None ) -> Tuple: a_ : Dict = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: a_ : Optional[Any] = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result a_ : List[str] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) a_ : Tuple = black.format_str(UpperCAmelCase_ , mode=UpperCAmelCase_ ) a_ : int = os.path.join(self.diffusers_dir , 'new_code.py' ) with open(UpperCAmelCase_ , 'w' , newline='\n' ) as f: f.write(UpperCAmelCase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(UpperCAmelCase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=UpperCAmelCase_ ) with open(UpperCAmelCase_ , 'r' ) as f: self.assertTrue(f.read() , UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: a_ : List[Any] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput' ) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , UpperCAmelCase_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , UpperCAmelCase_ ) , ) # Copy consistency with a really long name a_ : Optional[int] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , F"""{long_class_name}SchedulerOutput""" , re.sub('Bert' , UpperCAmelCase_ , UpperCAmelCase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , UpperCAmelCase_ , overwrite_result=re.sub('DDPM' , 'Test' , UpperCAmelCase_ ) , )
570
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 SCREAMING_SNAKE_CASE = { """return_dict""": False, """output_hidden_states""": True, """output_attentions""": True, """torchscript""": True, """torch_dtype""": """float16""", """use_bfloat16""": True, """tf_legacy_loss""": True, """pruned_heads""": {"""a""": 1}, """tie_word_embeddings""": False, """is_decoder""": True, """cross_attention_hidden_size""": 128, """add_cross_attention""": True, """tie_encoder_decoder""": True, """max_length""": 50, """min_length""": 3, """do_sample""": True, """early_stopping""": True, """num_beams""": 3, """num_beam_groups""": 3, """diversity_penalty""": 0.5, """temperature""": 2.0, """top_k""": 10, """top_p""": 0.7, """typical_p""": 0.2, """repetition_penalty""": 0.8, """length_penalty""": 0.8, """no_repeat_ngram_size""": 5, """encoder_no_repeat_ngram_size""": 5, """bad_words_ids""": [1, 2, 3], """num_return_sequences""": 3, """chunk_size_feed_forward""": 5, """output_scores""": True, """return_dict_in_generate""": True, """forced_bos_token_id""": 2, """forced_eos_token_id""": 3, """remove_invalid_values""": True, """architectures""": ["""BertModel"""], """finetuning_task""": """translation""", """id2label""": {0: """label"""}, """label2id""": {"""label""": """0"""}, """tokenizer_class""": """BertTokenizerFast""", """prefix""": """prefix""", """bos_token_id""": 6, """pad_token_id""": 7, """eos_token_id""": 8, """sep_token_id""": 9, """decoder_start_token_id""": 10, """exponential_decay_length_penalty""": (5, 1.01), """suppress_tokens""": [0, 1], """begin_suppress_tokens""": 2, """task_specific_params""": {"""translation""": """some_params"""}, """problem_type""": """regression""", } @is_staging_test class __a ( unittest.TestCase ): @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] )-> List[Any]: """simple docstring""" UpperCamelCase = TOKEN HfFolder.save_token(UpperCAmelCase_ ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str )-> Dict: """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-config-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-config" ) except HTTPError: pass def _SCREAMING_SNAKE_CASE ( self : List[Any] )-> int: """simple docstring""" UpperCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("test-config" , use_auth_token=self._token ) UpperCamelCase = BertConfig.from_pretrained(f"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="test-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(UpperCAmelCase_ , repo_id="test-config" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) UpperCamelCase = BertConfig.from_pretrained(f"{USER}/test-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : Tuple )-> List[str]: """simple docstring""" UpperCamelCase = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("valid_org/test-config-org" , use_auth_token=self._token ) UpperCamelCase = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( UpperCAmelCase_ , repo_id="valid_org/test-config-org" , push_to_hub=UpperCAmelCase_ , use_auth_token=self._token ) UpperCamelCase = BertConfig.from_pretrained("valid_org/test-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(UpperCAmelCase_ , getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) def _SCREAMING_SNAKE_CASE ( self : int )-> Union[str, Any]: """simple docstring""" CustomConfig.register_for_auto_class() UpperCamelCase = CustomConfig(attribute=42 ) config.push_to_hub("test-dynamic-config" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"AutoConfig": "custom_configuration.CustomConfig"} ) UpperCamelCase = AutoConfig.from_pretrained(f"{USER}/test-dynamic-config" , trust_remote_code=UpperCAmelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , "CustomConfig" ) self.assertEqual(new_config.attribute , 42 ) class __a ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Any )-> Any: """simple docstring""" UpperCamelCase = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated UpperCamelCase = c.n_embd + 1 # int UpperCamelCase = c.resid_pdrop + 1.0 # float UpperCamelCase = not c.scale_attn_weights # bool UpperCamelCase = c.summary_type + "foo" # str c.update_from_string( f"n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}" ) self.assertEqual(UpperCAmelCase_ , c.n_embd , "mismatch for key: n_embd" ) self.assertEqual(UpperCAmelCase_ , c.resid_pdrop , "mismatch for key: resid_pdrop" ) self.assertEqual(UpperCAmelCase_ , c.scale_attn_weights , "mismatch for key: scale_attn_weights" ) self.assertEqual(UpperCAmelCase_ , c.summary_type , "mismatch for key: summary_type" ) def _SCREAMING_SNAKE_CASE ( self : Any )-> List[str]: """simple docstring""" UpperCamelCase = PretrainedConfig() UpperCamelCase = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( UpperCAmelCase_ , ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"] ) UpperCamelCase = [key for key, value in config_common_kwargs.items() if value == getattr(UpperCAmelCase_ , UpperCAmelCase_ )] if len(UpperCAmelCase_ ) > 0: raise ValueError( "The following keys are set with the default values in" " `test_configuration_common.config_common_kwargs` pick another value for them:" f" {', '.join(UpperCAmelCase_ )}." ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Optional[Any]: """simple docstring""" with self.assertRaises(UpperCAmelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder UpperCamelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" ) UpperCamelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder" , subfolder="bert" ) self.assertIsNotNone(UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Any )-> Any: """simple docstring""" # A mock response for an HTTP head request to emulate server down UpperCamelCase = mock.Mock() UpperCamelCase = 500 UpperCamelCase = {} UpperCamelCase = HTTPError UpperCamelCase = {} # Download this model to make sure it's in the cache. UpperCamelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=UpperCAmelCase_ ) as mock_head: UpperCamelCase = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE ( self : Tuple )-> int: """simple docstring""" # This test is for deprecated behavior and can be removed in v5 UpperCamelCase = BertConfig.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" UpperCamelCase = AutoConfig.from_pretrained("bert-base-cased" ) UpperCamelCase = ["config.4.0.0.json"] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(UpperCAmelCase_ ) UpperCamelCase = 2 json.dump(configuration.to_dict() , open(os.path.join(UpperCAmelCase_ , "config.4.0.0.json" ) , "w" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 UpperCamelCase = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 UpperCamelCase = ["config.42.0.0.json"] UpperCamelCase = 768 configuration.save_pretrained(UpperCAmelCase_ ) shutil.move(os.path.join(UpperCAmelCase_ , "config.4.0.0.json" ) , os.path.join(UpperCAmelCase_ , "config.42.0.0.json" ) ) UpperCamelCase = AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 768 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> Dict: """simple docstring""" # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. UpperCamelCase = "hf-internal-testing/test-two-configs" import transformers as new_transformers UpperCamelCase = "v4.0.0" UpperCamelCase , UpperCamelCase = new_transformers.models.auto.AutoConfig.from_pretrained( UpperCAmelCase_ , return_unused_kwargs=UpperCAmelCase_ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(UpperCAmelCase_ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers UpperCamelCase = "v3.0.0" UpperCamelCase = old_transformers.models.auto.AutoConfig.from_pretrained(UpperCAmelCase_ ) self.assertEqual(old_configuration.hidden_size , 768 )
554
0
'''simple docstring''' import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class _UpperCamelCase ( unittest.TestCase): '''simple docstring''' def __init__( self , a_ , a_=1_3 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=9_9 , a_=3_2 , a_=5 , a_=4 , a_=3_7 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_1_2 , a_=1_6 , a_=2 , a_=0.02 , a_=4 , ) -> Union[str, Any]: lowercase : List[Any] = parent lowercase : Optional[int] = batch_size lowercase : Optional[int] = seq_length lowercase : str = is_training lowercase : int = use_attention_mask lowercase : List[str] = use_token_type_ids lowercase : List[str] = use_labels lowercase : Dict = vocab_size lowercase : List[Any] = hidden_size lowercase : List[str] = num_hidden_layers lowercase : str = num_attention_heads lowercase : Optional[int] = intermediate_size lowercase : int = hidden_act lowercase : int = hidden_dropout_prob lowercase : Any = attention_probs_dropout_prob lowercase : Dict = max_position_embeddings lowercase : List[str] = type_vocab_size lowercase : Dict = type_sequence_label_size lowercase : Optional[int] = initializer_range lowercase : int = num_choices def a__ ( self ) -> Union[str, Any]: lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : List[Any] = None if self.use_attention_mask: lowercase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : Union[str, Any] = None if self.use_token_type_ids: lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : Optional[int] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ ( self ) -> Dict: lowercase : List[str] = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase : Union[str, Any] = config_and_inputs lowercase : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def a__ ( self ) -> int: lowercase : Optional[Any] = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase : Any = config_and_inputs lowercase : Optional[int] = True lowercase : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class _UpperCamelCase ( __a , unittest.TestCase): '''simple docstring''' _snake_case = True _snake_case = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def a__ ( self ) -> int: lowercase : int = FlaxBertModelTester(self ) @slow def a__ ( self ) -> Tuple: lowercase : str = FlaxBertModel.from_pretrained("bert-base-cased" ) lowercase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase_ )
719
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def _A ( A ,A ,A ) -> Dict: def get_masked_lm_array(A ): lowercase : List[Any] = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase : str = tf.train.load_variable(A ,A ) if "kernel" in name: lowercase : Optional[Any] = array.transpose() return torch.from_numpy(A ) def get_encoder_array(A ): lowercase : List[Any] = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase : str = tf.train.load_variable(A ,A ) if "kernel" in name: lowercase : List[Any] = array.transpose() return torch.from_numpy(A ) def get_encoder_layer_array(A ,A ): lowercase : str = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase : Dict = tf.train.load_variable(A ,A ) if "kernel" in name: lowercase : Optional[Any] = array.transpose() return torch.from_numpy(A ) def get_encoder_attention_layer_array(A ,A ,A ): lowercase : Tuple = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' lowercase : Dict = tf.train.load_variable(A ,A ) lowercase : Optional[Any] = array.reshape(A ) if "kernel" in name: lowercase : Any = array.transpose() return torch.from_numpy(A ) print(F'''Loading model based on config from {config_path}...''' ) lowercase : Union[str, Any] = BertConfig.from_json_file(A ) lowercase : str = BertForMaskedLM(A ) # Layers for layer_index in range(0 ,config.num_hidden_layers ): lowercase : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention lowercase : BertSelfAttention = layer.attention.self lowercase : Optional[int] = get_encoder_attention_layer_array( A ,"_query_dense/kernel" ,self_attn.query.weight.data.shape ) lowercase : Optional[Any] = get_encoder_attention_layer_array( A ,"_query_dense/bias" ,self_attn.query.bias.data.shape ) lowercase : Union[str, Any] = get_encoder_attention_layer_array( A ,"_key_dense/kernel" ,self_attn.key.weight.data.shape ) lowercase : Optional[int] = get_encoder_attention_layer_array( A ,"_key_dense/bias" ,self_attn.key.bias.data.shape ) lowercase : Any = get_encoder_attention_layer_array( A ,"_value_dense/kernel" ,self_attn.value.weight.data.shape ) lowercase : Tuple = get_encoder_attention_layer_array( A ,"_value_dense/bias" ,self_attn.value.bias.data.shape ) # Self-attention Output lowercase : BertSelfOutput = layer.attention.output lowercase : List[Any] = get_encoder_attention_layer_array( A ,"_output_dense/kernel" ,self_output.dense.weight.data.shape ) lowercase : Tuple = get_encoder_attention_layer_array( A ,"_output_dense/bias" ,self_output.dense.bias.data.shape ) lowercase : Union[str, Any] = get_encoder_layer_array(A ,"_attention_layer_norm/gamma" ) lowercase : Optional[int] = get_encoder_layer_array(A ,"_attention_layer_norm/beta" ) # Intermediate lowercase : BertIntermediate = layer.intermediate lowercase : int = get_encoder_layer_array(A ,"_intermediate_dense/kernel" ) lowercase : int = get_encoder_layer_array(A ,"_intermediate_dense/bias" ) # Output lowercase : BertOutput = layer.output lowercase : Any = get_encoder_layer_array(A ,"_output_dense/kernel" ) lowercase : Dict = get_encoder_layer_array(A ,"_output_dense/bias" ) lowercase : Optional[int] = get_encoder_layer_array(A ,"_output_layer_norm/gamma" ) lowercase : Tuple = get_encoder_layer_array(A ,"_output_layer_norm/beta" ) # Embeddings lowercase : Tuple = get_encoder_array("_position_embedding_layer/embeddings" ) lowercase : Optional[int] = get_encoder_array("_type_embedding_layer/embeddings" ) lowercase : Dict = get_encoder_array("_embedding_norm_layer/gamma" ) lowercase : List[Any] = get_encoder_array("_embedding_norm_layer/beta" ) # LM Head lowercase : List[str] = model.cls.predictions.transform lowercase : Tuple = get_masked_lm_array("dense/kernel" ) lowercase : List[Any] = get_masked_lm_array("dense/bias" ) lowercase : Optional[Any] = get_masked_lm_array("layer_norm/gamma" ) lowercase : str = get_masked_lm_array("layer_norm/beta" ) lowercase : Any = get_masked_lm_array("embedding_table" ) # Pooling lowercase : Optional[int] = BertPooler(config=A ) lowercase : BertPooler = get_encoder_array("_pooler_layer/kernel" ) lowercase : BertPooler = get_encoder_array("_pooler_layer/bias" ) # Export final model model.save_pretrained(A ) # Integration test - should load without any errors ;) lowercase : Any = BertForMaskedLM.from_pretrained(A ) print(new_model.eval() ) print("Model conversion was done sucessfully!" ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) lowerCAmelCase : Dict = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
425
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def a ( __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ :str = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(__snake_case ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase_ :int = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase_ :Tuple = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase_ :Dict = matrix[1][1], matrix[0][0] UpperCAmelCase_ :Dict = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(__snake_case ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(__snake_case ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase_ :str = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix UpperCAmelCase_ :List[str] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase_ :Union[str, Any] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase_ :Optional[int] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase_ :List[str] = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase_ :Union[str, Any] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase_ :Optional[Any] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase_ :Union[str, Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase_ :Dict = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase_ :Tuple = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase_ :Tuple = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase_ :Dict = array(__snake_case ) for i in range(3 ): for j in range(3 ): UpperCAmelCase_ :int = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase_ :str = array(__snake_case ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(__snake_case ) # Calculate the inverse of the matrix return [[float(d(__snake_case ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
608
"""simple docstring""" from __future__ import annotations class __UpperCAmelCase: """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' lowercase__ : str= data lowercase__ : Node | None= None lowercase__ : Node | None= None def lowercase__(A ) ->None: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def lowercase__(A ) ->int: """simple docstring""" return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def lowercase__(A ) ->bool: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def lowercase__() ->None: # Main function for testing. """simple docstring""" lowercase__ : int= Node(1 ) lowercase__ : Union[str, Any]= Node(2 ) lowercase__ : Optional[int]= Node(3 ) lowercase__ : Optional[Any]= Node(4 ) lowercase__ : Optional[Any]= Node(5 ) lowercase__ : Tuple= Node(6 ) lowercase__ : Any= Node(7 ) lowercase__ : Tuple= Node(8 ) lowercase__ : List[Any]= Node(9 ) print(is_full_binary_tree(A ) ) print(depth_of_tree(A ) ) print("Tree is: " ) display(A ) if __name__ == "__main__": main()
218
0
'''simple docstring''' _UpperCAmelCase : int = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ _UpperCAmelCase : List[Any] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] _UpperCAmelCase : List[Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
474
'''simple docstring''' from PIL import Image def __magic_name__( lowerCamelCase, lowerCamelCase): def brightness(lowerCamelCase) -> float: return 1_2_8 + level + (c - 1_2_8) if not -2_55.0 <= level <= 2_55.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''') return img.point(lowerCamelCase) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 _UpperCAmelCase : str = change_brightness(img, 1_0_0) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
474
1
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowercase : Optional[Any] = abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCamelCase_ ( _lowerCamelCase : List[str] ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase : List[Any] ): from transformers.testing_utils import pytest_terminal_summary_main lowerCamelCase_ = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_lowerCamelCase , id=_lowerCamelCase )
142
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __lowercase : Tuple = logging.get_logger(__name__) __lowercase : List[str] = { """speechbrain/m-ctc-t-large""": """https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json""", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class lowerCAmelCase ( a ): """simple docstring""" __lowercase :Union[str, Any] = "mctct" def __init__( self , UpperCamelCase__=8_065 , UpperCamelCase__=1_536 , UpperCamelCase__=36 , UpperCamelCase__=6_144 , UpperCamelCase__=4 , UpperCamelCase__=384 , UpperCamelCase__=920 , UpperCamelCase__=1e-5 , UpperCamelCase__=0.3 , UpperCamelCase__="relu" , UpperCamelCase__=0.02 , UpperCamelCase__=0.3 , UpperCamelCase__=0.3 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__=1 , UpperCamelCase__=0.3 , UpperCamelCase__=1 , UpperCamelCase__=(7,) , UpperCamelCase__=(3,) , UpperCamelCase__=80 , UpperCamelCase__=1 , UpperCamelCase__=None , UpperCamelCase__="sum" , UpperCamelCase__=False , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' super().__init__(**UpperCamelCase__ , pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = intermediate_size lowerCamelCase_ = num_attention_heads lowerCamelCase_ = attention_head_dim lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = layerdrop lowerCamelCase_ = hidden_act lowerCamelCase_ = initializer_range lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = pad_token_id lowerCamelCase_ = bos_token_id lowerCamelCase_ = eos_token_id lowerCamelCase_ = conv_glu_dim lowerCamelCase_ = conv_dropout lowerCamelCase_ = num_conv_layers lowerCamelCase_ = input_feat_per_channel lowerCamelCase_ = input_channels lowerCamelCase_ = conv_channels lowerCamelCase_ = ctc_loss_reduction lowerCamelCase_ = ctc_zero_infinity # prevents config testing fail with exporting to json lowerCamelCase_ = list(UpperCamelCase__ ) lowerCamelCase_ = list(UpperCamelCase__ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ''' F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
142
1
'''simple docstring''' from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __a = [ 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the' ' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe' ' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.', 'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal' ' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s' ' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the' ' body.', 'Amnesty International releases its annual report on the death penalty. The report catalogs the use of' ' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the' ' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital' ' punishment.', ] __a = [ 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .' ' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz' ' had informed his Lufthansa training school of an episode of severe depression, airline says .', 'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .' ' Israel and the United States opposed the move, which could open the door to war crimes investigations against' ' Israelis .', 'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to' ' death . Organization claims that governments around the world are using the threat of terrorism to advance' ' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death' ' sentences up by 28% .', ] def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = calculate_rouge(a_, a_, bootstrap_aggregation=a_, rouge_keys=["rouge2", "rougeL"] ) assert isinstance(a_, a_ ) _UpperCAmelCase : str = calculate_rouge(a_, a_, bootstrap_aggregation=a_, rouge_keys=["rouge2"] ) assert ( pd.DataFrame(no_aggregation["rouge2"] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["rouge2"] ).fmeasure.mean() ) def __UpperCAmelCase ( ): _UpperCAmelCase : int = "rougeLsum" _UpperCAmelCase : Optional[Any] = calculate_rouge(a_, a_, newline_sep=a_, rouge_keys=[k] )[k] _UpperCAmelCase : Union[str, Any] = calculate_rouge(a_, a_, newline_sep=a_, rouge_keys=[k] )[k] assert score > score_no_sep def __UpperCAmelCase ( ): _UpperCAmelCase : int = ["rouge1", "rouge2", "rougeL"] _UpperCAmelCase : List[str] = calculate_rouge(a_, a_, newline_sep=a_, rouge_keys=a_ ) _UpperCAmelCase : str = calculate_rouge(a_, a_, newline_sep=a_, rouge_keys=a_ ) assert score_sep == score_no_sep def __UpperCAmelCase ( ): _UpperCAmelCase : int = [ "Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.", "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .", ] _UpperCAmelCase : Union[str, Any] = [ "Margot Frank, died in 1945, a month earlier than previously thought.", "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of" " the final seconds on board Flight 9525.", ] assert calculate_rouge(a_, a_, newline_sep=a_ ) == calculate_rouge(a_, a_, newline_sep=a_ ) def __UpperCAmelCase ( ): _UpperCAmelCase : List[Any] = [ "\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" " ] _UpperCAmelCase : Optional[int] = [ " Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says ." ] _UpperCAmelCase : List[Any] = calculate_rouge(a_, a_, rouge_keys=["rougeLsum"], newline_sep=a_ )["rougeLsum"] _UpperCAmelCase : Union[str, Any] = calculate_rouge(a_, a_, rouge_keys=["rougeLsum"] )["rougeLsum"] assert new_score > prev_score def __UpperCAmelCase ( ): _UpperCAmelCase : Union[str, Any] = Path("examples/seq2seq/test_data/wmt_en_ro" ) _UpperCAmelCase : Tuple = calculate_rouge_path(data_dir.joinpath("test.source" ), data_dir.joinpath("test.target" ) ) assert isinstance(a_, a_ ) _UpperCAmelCase : Optional[int] = calculate_rouge_path( data_dir.joinpath("test.source" ), data_dir.joinpath("test.target" ), bootstrap_aggregation=a_ ) assert isinstance(a_, a_ )
704
'''simple docstring''' from __future__ import annotations import bisect def __UpperCAmelCase ( a_: list[int], a_: int, a_: int = 0, a_: int = -1 ): if hi < 0: _UpperCAmelCase : int = len(a_ ) while lo < hi: _UpperCAmelCase : Tuple = lo + (hi - lo) // 2 if sorted_collection[mid] < item: _UpperCAmelCase : str = mid + 1 else: _UpperCAmelCase : int = mid return lo def __UpperCAmelCase ( a_: list[int], a_: int, a_: int = 0, a_: int = -1 ): if hi < 0: _UpperCAmelCase : str = len(a_ ) while lo < hi: _UpperCAmelCase : Optional[int] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: _UpperCAmelCase : Tuple = mid + 1 else: _UpperCAmelCase : Union[str, Any] = mid return lo def __UpperCAmelCase ( a_: list[int], a_: int, a_: int = 0, a_: int = -1 ): sorted_collection.insert(bisect_left(a_, a_, a_, a_ ), a_ ) def __UpperCAmelCase ( a_: list[int], a_: int, a_: int = 0, a_: int = -1 ): sorted_collection.insert(bisect_right(a_, a_, a_, a_ ), a_ ) def __UpperCAmelCase ( a_: list[int], a_: int ): _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Tuple = len(a_ ) - 1 while left <= right: _UpperCAmelCase : List[str] = left + (right - left) // 2 _UpperCAmelCase : List[str] = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: _UpperCAmelCase : Optional[int] = midpoint - 1 else: _UpperCAmelCase : Union[str, Any] = midpoint + 1 return None def __UpperCAmelCase ( a_: list[int], a_: int ): _UpperCAmelCase : int = bisect.bisect_left(a_, a_ ) if index != len(a_ ) and sorted_collection[index] == item: return index return None def __UpperCAmelCase ( a_: list[int], a_: int, a_: int, a_: int ): if right < left: return None _UpperCAmelCase : Union[str, Any] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(a_, a_, a_, midpoint - 1 ) else: return binary_search_by_recursion(a_, a_, midpoint + 1, a_ ) if __name__ == "__main__": __a = input('Enter numbers separated by comma:\n').strip() __a = sorted(int(item) for item in user_input.split(',')) __a = int(input('Enter a single number to be found in the list:\n')) __a = binary_search(collection, target) if result is None: print(f'{target} was not found in {collection}.') else: print(f'{target} was found at position {result} in {collection}.')
257
0
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): __snake_case : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __snake_case : Tuple = 12_8022 __snake_case : int = 12_8028 @require_sentencepiece class A ( lowerCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Tuple = MaMaaaTokenizer __UpperCAmelCase : Any = False __UpperCAmelCase : str = False __UpperCAmelCase : Tuple = True def __lowerCAmelCase ( self ) -> str: super().setUp() _a = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] _a = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) _a = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["vocab_file"] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["spm_file"] ) _a = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self , **snake_case_ ) -> List[Any]: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def __lowerCAmelCase ( self , snake_case_ ) -> Optional[Any]: return ( "This is a test", "This is a test", ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = "</s>" _a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def __lowerCAmelCase ( self ) -> Tuple: _a = self.get_tokenizer() _a = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<s>" ) self.assertEqual(len(lowercase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("Skip this test while all models are still to be uploaded." ) def __lowerCAmelCase ( self ) -> Dict: pass def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = self.get_tokenizer() _a = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowercase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) , [2, 3, 4, 5, 6] , ) _a = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(lowercase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) _a = tokenizer.convert_tokens_to_string(lowercase__ ) self.assertEqual(lowercase__ , "This is a test" ) @slow def __lowerCAmelCase ( self ) -> str: # fmt: off _a = {"input_ids": [[1_2_8_0_2_2, 1_1_0_1_0_8, 3_9_7, 1_1, 3_8_2_7_2, 2_2_4_7, 1_2_4_8_1_1, 2_8_5, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 3_9_5_3_4, 4_4_2_8, 3_9_7, 1_0_1_9, 1_8_1_0_5, 1_5_8_6, 2_0_7, 7, 4_1_3_3_7, 1_6_7_8_6, 2_4_1, 7, 2_0_2_1_4, 1_7, 1_2_5_6_9_0, 1_0_3_9_8, 7, 4_4_3_7_8, 5_8_0_6_9, 6_8_3_4_2, 7_7_9_8, 7_3_4_3, 1_1, 2_9_9, 3_3_3_1_0, 4, 1_5_8, 3_7_3_5_0, 9_4_0_7_7, 4_5_6_9, 2_9_9, 3_3_3_1_0, 9_0, 4, 5_2_8_4_0, 2_9_0, 4, 3_1_2_7_0, 1_1_2, 2_9_9, 6_8_2, 4, 5_2_8_4_0, 3_9_9_5_3, 1_4_0_7_9, 1_9_3, 5_2_5_1_9, 9_0_8_9_4, 1_7_8_9_4, 1_2_0_6_9_7, 1_1, 4_0_4_4_5, 5_5_1, 1_7, 1_0_1_9, 5_2_5_1_9, 9_0_8_9_4, 1_7_7_5_6, 9_6_3, 1_1, 4_0_4_4_5, 4_8_0, 1_7, 9_7_9_2, 1_1_2_0, 5_1_7_3, 1_3_9_3, 6_2_4_0, 1_6_7_8_6, 2_4_1, 1_2_0_9_9_6, 2_8, 1_2_4_5, 1_3_9_3, 1_1_8_2_4_0, 1_1_1_2_3, 1_0_1_9, 9_3_6_1_2, 2_6_9_1, 1_0_6_1_8, 9_8_0_5_8, 1_2_0_4_0_9, 1_9_2_8, 2_7_9, 4, 4_0_6_8_3, 3_6_7, 1_7_8, 2_0_7, 1_0_1_9, 1_0_3, 1_0_3_1_2_1, 5_0_6, 6_5_2_9_6, 5, 2], [1_2_8_0_2_2, 2_1_2_1_7, 3_6_7, 1_1_7, 1_2_5_4_5_0, 1_2_8, 7_1_9, 7, 7_3_0_8, 4_0, 9_3_6_1_2, 1_2_6_6_9, 1_1_1_6, 1_6_7_0_4, 7_1, 1_7_7_8_5, 3_6_9_9, 1_5_5_9_2, 3_5, 1_4_4, 9_5_8_4, 2_4_1, 1_1_9_4_3, 7_1_3, 9_5_0, 7_9_9, 2_2_4_7, 8_8_4_2_7, 1_5_0, 1_4_9, 1_1_8_8_1_3, 1_2_0_7_0_6, 1_0_1_9, 1_0_6_9_0_6, 8_1_5_1_8, 2_8, 1_2_2_4, 2_2_7_9_9, 3_9_7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1_2_8_0_2_2, 1_6_5_8, 1_2_3_3_1_1, 5_1_5_5, 5_5_7_8, 4_7_2_2, 2_7_9, 1_4_9_4_7, 2_3_6_6, 1_1_2_0, 1_1_9_7, 1_4, 1_3_4_8, 9_2_3_2, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="facebook/m2m100_418M" , revision="c168bae485c864188cf9aa0e4108b0b6934dc91e" , ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): __UpperCAmelCase : Dict = "facebook/m2m100_418M" __UpperCAmelCase : Any = [ "In my opinion, there are two levels of response from the French government.", "NSA Affair Emphasizes Complete Lack of Debate on Intelligence", ] __UpperCAmelCase : Dict = [ "Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.", "L'affaire NSA souligne l'absence totale de débat sur le renseignement", ] # fmt: off __UpperCAmelCase : int = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def __lowerCAmelCase ( cls ) -> List[str]: _a = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en" , tgt_lang="fr" ) _a = 1 return cls def __lowerCAmelCase ( self ) -> Union[str, Any]: self.assertEqual(self.tokenizer.get_lang_id("ar" ) , 1_2_8_0_0_6 ) self.assertEqual(self.tokenizer.get_lang_id("en" ) , 1_2_8_0_2_2 ) self.assertEqual(self.tokenizer.get_lang_id("ro" ) , 1_2_8_0_7_6 ) self.assertEqual(self.tokenizer.get_lang_id("mr" ) , 1_2_8_0_6_3 ) def __lowerCAmelCase ( self ) -> int: _a = self.tokenizer.get_vocab() self.assertEqual(len(lowercase__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["<unk>"] , 3 ) self.assertIn(self.tokenizer.get_lang_token("en" ) , lowercase__ ) def __lowerCAmelCase ( self ) -> List[str]: _a = "en" _a = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase__ ) def __lowerCAmelCase ( self ) -> Union[str, Any]: self.assertIn(lowercase__ , self.tokenizer.all_special_ids ) # fmt: off _a = [FR_CODE, 5_3_6_4, 8_2, 8_6_4_2, 4, 2_9_4, 4_7, 8, 1_4_0_2_8, 1_3_6, 3_2_8_6, 9_7_0_6, 6, 9_0_7_9_7, 6, 1_4_4_0_1_2, 1_6_2, 8_8_1_2_8, 3_0_0_6_1, 5, 2] # fmt: on _a = self.tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) _a = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) self.assertNotIn(self.tokenizer.eos_token , lowercase__ ) def __lowerCAmelCase ( self ) -> Tuple: _a = tempfile.mkdtemp() _a = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(lowercase__ ) _a = MaMaaaTokenizer.from_pretrained(lowercase__ ) self.assertDictEqual(new_tok.lang_token_to_id , lowercase__ ) @require_torch def __lowerCAmelCase ( self ) -> Dict: _a = "en" _a = "fr" _a = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase__ , return_tensors="pt" ) _a = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: _a = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCAmelCase ( self ) -> Optional[Any]: _a = "mr" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) _a = "zh" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __lowerCAmelCase ( self ) -> str: _a = "mr" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("mr" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) _a = "zh" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("zh" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCAmelCase ( self ) -> List[str]: _a = self.tokenizer._build_translation_inputs("A test" , return_tensors="pt" , src_lang="en" , tgt_lang="ar" ) self.assertEqual( nested_simplify(lowercase__ ) , { # en_XX, A, test, EOS "input_ids": [[1_2_8_0_2_2, 5_8, 4_1_8_3, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 1_2_8_0_0_6, } , )
131
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __A : Tuple = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') __A : Optional[int] = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('utf-8').split() __A : Any = '|'.join(sys.argv[1:]) __A : Optional[int] = re.compile(RF"""^({joined_dirs}).*?\.py$""") __A : Tuple = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
575
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer lowerCAmelCase__ : Dict = logging.get_logger(__name__) lowerCAmelCase__ : List[str] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ : Optional[Any] = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } lowerCAmelCase__ : int = {'''mobilebert-uncased''': 5_12} lowerCAmelCase__ : Optional[int] = {} class __snake_case ( _lowerCamelCase ): __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_INIT_CONFIGURATION __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = MobileBertTokenizer def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase="[UNK]" , __UpperCamelCase="[SEP]" , __UpperCamelCase="[PAD]" , __UpperCamelCase="[CLS]" , __UpperCamelCase="[MASK]" , __UpperCamelCase=True , __UpperCamelCase=None , **__UpperCamelCase , ) -> List[Any]: '''simple docstring''' super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , do_lower_case=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , tokenize_chinese_chars=__UpperCamelCase , strip_accents=__UpperCamelCase , **__UpperCamelCase , ) snake_case__ : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __UpperCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , __UpperCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __UpperCamelCase ) != tokenize_chinese_chars ): snake_case__ : Any = getattr(__UpperCamelCase , normalizer_state.pop('type' ) ) snake_case__ : List[str] = do_lower_case snake_case__ : str = strip_accents snake_case__ : List[Any] = tokenize_chinese_chars snake_case__ : Union[str, Any] = normalizer_class(**__UpperCamelCase ) snake_case__ : Any = do_lower_case def __a ( self , __UpperCamelCase , __UpperCamelCase=None ) -> List[str]: '''simple docstring''' snake_case__ : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> List[int]: '''simple docstring''' snake_case__ : Union[str, Any] = [self.sep_token_id] snake_case__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' snake_case__ : Tuple = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase )
699
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCAmelCase__ : Dict = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCAmelCase__ : List[str] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCAmelCase__ : List[str] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def UpperCamelCase__ ( A__ , A__ ) -> tuple[str, float]: snake_case__ : Tuple = len([g for position, g in enumerate(A__ ) if g == main_target[position]] ) return (item, float(A__ )) def UpperCamelCase__ ( A__ , A__ ) -> tuple[str, str]: snake_case__ : str = random.randint(0 , len(A__ ) - 1 ) snake_case__ : int = parent_a[:random_slice] + parent_a[random_slice:] snake_case__ : Any = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def UpperCamelCase__ ( A__ , A__ ) -> str: snake_case__ : List[Any] = list(A__ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: snake_case__ : Optional[Any] = random.choice(A__ ) return "".join(A__ ) def UpperCamelCase__ ( A__ , A__ , A__ , ) -> list[str]: snake_case__ : Tuple = [] # Generate more children proportionally to the fitness score. snake_case__ : Optional[Any] = int(parent_a[1] * 100 ) + 1 snake_case__ : str = 10 if child_n >= 10 else child_n for _ in range(A__ ): snake_case__ : Any = population_score[random.randint(0 , A__ )][0] snake_case__ , snake_case__ : int = crossover(parent_a[0] , A__ ) # Append new string to the population list. pop.append(mutate(A__ , A__ ) ) pop.append(mutate(A__ , A__ ) ) return pop def UpperCamelCase__ ( A__ , A__ , A__ = True ) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: snake_case__ : Union[str, Any] = F"""{N_POPULATION} must be bigger than {N_SELECTED}""" raise ValueError(A__ ) # Verify that the target contains no genes besides the ones inside genes variable. snake_case__ : Tuple = sorted({c for c in target if c not in genes} ) if not_in_genes_list: snake_case__ : int = F"""{not_in_genes_list} is not in genes list, evolution cannot converge""" raise ValueError(A__ ) # Generate random starting population. snake_case__ : Union[str, Any] = [] for _ in range(A__ ): population.append(''.join([random.choice(A__ ) for i in range(len(A__ ) )] ) ) # Just some logs to know what the algorithms is doing. snake_case__ , snake_case__ : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(A__ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. snake_case__ : List[Any] = [evaluate(A__ , A__ ) for item in population] # Check if there is a matching evolution. snake_case__ : int = sorted(A__ , key=lambda A__ : x[1] , reverse=A__ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F"""\nGeneration: {generation}""" F"""\nTotal Population:{total_population}""" F"""\nBest score: {population_score[0][1]}""" F"""\nBest string: {population_score[0][0]}""" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. snake_case__ : Optional[int] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(A__ ) # Normalize population score to be between 0 and 1. snake_case__ : str = [ (item, score / len(A__ )) for item, score in population_score ] # This is selection for i in range(A__ ): population.extend(select(population_score[int(A__ )] , A__ , A__ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(A__ ) > N_POPULATION: break if __name__ == "__main__": lowerCAmelCase__ : str = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) lowerCAmelCase__ : Optional[Any] = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ : List[str] = basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
699
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase = logging.get_logger(__name__) def a__ ( UpperCamelCase_ : str ): UpperCAmelCase__ :Union[str, Any] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: UpperCAmelCase__ :Optional[Any] = 192 UpperCAmelCase__ :Union[str, Any] = 768 UpperCAmelCase__ :Dict = 12 UpperCAmelCase__ :Dict = 3 UpperCAmelCase__ :Optional[Any] = [800, 1_333] UpperCAmelCase__ :Tuple = False elif yolos_name == "yolos_s_dWr": UpperCAmelCase__ :Optional[int] = 330 UpperCAmelCase__ :Optional[int] = 14 UpperCAmelCase__ :List[str] = 6 UpperCAmelCase__ :Optional[Any] = 1_320 elif "yolos_s" in yolos_name: UpperCAmelCase__ :List[Any] = 384 UpperCAmelCase__ :List[str] = 1_536 UpperCAmelCase__ :Tuple = 12 UpperCAmelCase__ :Optional[Any] = 6 elif "yolos_b" in yolos_name: UpperCAmelCase__ :List[str] = [800, 1_344] UpperCAmelCase__ :Optional[int] = 91 UpperCAmelCase__ :Optional[int] = '''huggingface/label-files''' UpperCAmelCase__ :str = '''coco-detection-id2label.json''' UpperCAmelCase__ :Tuple = json.load(open(hf_hub_download(A__, A__, repo_type='''dataset''' ), '''r''' ) ) UpperCAmelCase__ :Tuple = {int(A__ ): v for k, v in idalabel.items()} UpperCAmelCase__ :int = idalabel UpperCAmelCase__ :Tuple = {v: k for k, v in idalabel.items()} return config def a__ ( UpperCamelCase_ : dict, UpperCamelCase_ : YolosConfig, UpperCamelCase_ : bool = False ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase__ :str = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase__ :Union[str, Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ :Union[str, Any] = in_proj_weight[: config.hidden_size, :] UpperCAmelCase__ :str = in_proj_bias[: config.hidden_size] UpperCAmelCase__ :Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase__ :Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase__ :str = in_proj_weight[-config.hidden_size :, :] UpperCAmelCase__ :Any = in_proj_bias[-config.hidden_size :] def a__ ( UpperCamelCase_ : str ): if "backbone" in name: UpperCAmelCase__ :Optional[Any] = name.replace('''backbone''', '''vit''' ) if "cls_token" in name: UpperCAmelCase__ :Optional[int] = name.replace('''cls_token''', '''embeddings.cls_token''' ) if "det_token" in name: UpperCAmelCase__ :Union[str, Any] = name.replace('''det_token''', '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: UpperCAmelCase__ :str = name.replace('''mid_pos_embed''', '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: UpperCAmelCase__ :Dict = name.replace('''pos_embed''', '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCAmelCase__ :Union[str, Any] = name.replace('''patch_embed.proj''', '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: UpperCAmelCase__ :Optional[int] = name.replace('''blocks''', '''encoder.layer''' ) if "attn.proj" in name: UpperCAmelCase__ :Dict = name.replace('''attn.proj''', '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase__ :List[str] = name.replace('''attn''', '''attention.self''' ) if "norm1" in name: UpperCAmelCase__ :Union[str, Any] = name.replace('''norm1''', '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase__ :Optional[Any] = name.replace('''norm2''', '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase__ :Any = name.replace('''mlp.fc1''', '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase__ :str = name.replace('''mlp.fc2''', '''output.dense''' ) if "class_embed" in name: UpperCAmelCase__ :Optional[int] = name.replace('''class_embed''', '''class_labels_classifier''' ) if "bbox_embed" in name: UpperCAmelCase__ :Optional[int] = name.replace('''bbox_embed''', '''bbox_predictor''' ) if "vit.norm" in name: UpperCAmelCase__ :Any = name.replace('''vit.norm''', '''vit.layernorm''' ) return name def a__ ( UpperCamelCase_ : dict, UpperCamelCase_ : YolosForObjectDetection ): for key in orig_state_dict.copy().keys(): UpperCAmelCase__ :Union[str, Any] = orig_state_dict.pop(A__ ) if "qkv" in key: UpperCAmelCase__ :List[Any] = key.split('''.''' ) UpperCAmelCase__ :Optional[int] = int(key_split[2] ) UpperCAmelCase__ :Optional[int] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: UpperCAmelCase__ :int = val[:dim, :] UpperCAmelCase__ :Any = val[ dim : dim * 2, : ] UpperCAmelCase__ :List[str] = val[-dim:, :] else: UpperCAmelCase__ :List[str] = val[:dim] UpperCAmelCase__ :str = val[dim : dim * 2] UpperCAmelCase__ :Dict = val[-dim:] else: UpperCAmelCase__ :Tuple = val return orig_state_dict def a__ ( ): UpperCAmelCase__ :Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase__ :int = Image.open(requests.get(A__, stream=A__ ).raw ) return im @torch.no_grad() def a__ ( UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : str, UpperCamelCase_ : bool = False ): UpperCAmelCase__ :Optional[Any] = get_yolos_config(A__ ) # load original state_dict UpperCAmelCase__ :int = torch.load(A__, map_location='''cpu''' )['''model'''] # load 🤗 model UpperCAmelCase__ :Union[str, Any] = YolosForObjectDetection(A__ ) model.eval() UpperCAmelCase__ :Union[str, Any] = convert_state_dict(A__, A__ ) model.load_state_dict(A__ ) # Check outputs on an image, prepared by YolosImageProcessor UpperCAmelCase__ :Optional[Any] = 800 if yolos_name != '''yolos_ti''' else 512 UpperCAmelCase__ :List[str] = YolosImageProcessor(format='''coco_detection''', size=A__ ) UpperCAmelCase__ :List[Any] = image_processor(images=prepare_img(), return_tensors='''pt''' ) UpperCAmelCase__ :Tuple = model(**A__ ) UpperCAmelCase__ , UpperCAmelCase__ :Optional[Any] = outputs.logits, outputs.pred_boxes UpperCAmelCase__ , UpperCAmelCase__ :Dict = None, None if yolos_name == "yolos_ti": UpperCAmelCase__ :Any = torch.tensor( [[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]] ) UpperCAmelCase__ :Optional[Any] = torch.tensor( [[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]] ) elif yolos_name == "yolos_s_200_pre": UpperCAmelCase__ :List[Any] = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] ) UpperCAmelCase__ :Tuple = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] ) elif yolos_name == "yolos_s_300_pre": UpperCAmelCase__ :Any = torch.tensor( [[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]] ) UpperCAmelCase__ :Dict = torch.tensor( [[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]] ) elif yolos_name == "yolos_s_dWr": UpperCAmelCase__ :Optional[Any] = torch.tensor( [[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]] ) UpperCAmelCase__ :Optional[int] = torch.tensor( [[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]] ) elif yolos_name == "yolos_base": UpperCAmelCase__ :Union[str, Any] = torch.tensor( [[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]] ) UpperCAmelCase__ :Tuple = torch.tensor( [[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]] ) else: raise ValueError(F'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3], A__, atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3], A__, atol=1e-4 ) Path(A__ ).mkdir(exist_ok=A__ ) print(F'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A__ ) if push_to_hub: UpperCAmelCase__ :Any = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) UpperCAmelCase__ :str = model_mapping[yolos_name] image_processor.push_to_hub(A__, organization='''hustvl''' ) model.push_to_hub(A__, organization='''hustvl''' ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowerCamelCase = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
467
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer __magic_name__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __magic_name__ = { "vocab_file": { "unc-nlp/lxmert-base-uncased": "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt", }, "tokenizer_file": { "unc-nlp/lxmert-base-uncased": ( "https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json" ), }, } __magic_name__ = { "unc-nlp/lxmert-base-uncased": 512, } __magic_name__ = { "unc-nlp/lxmert-base-uncased": {"do_lower_case": True}, } class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = LxmertTokenizer def __init__( self , _snake_case=None , _snake_case=None , _snake_case=True , _snake_case="[UNK]" , _snake_case="[SEP]" , _snake_case="[PAD]" , _snake_case="[CLS]" , _snake_case="[MASK]" , _snake_case=True , _snake_case=None , **_snake_case , ) -> Tuple: """simple docstring""" super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , ) UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _snake_case ) != do_lower_case or normalizer_state.get('''strip_accents''' , _snake_case ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _snake_case ) != tokenize_chinese_chars ): UpperCAmelCase = getattr(_snake_case , normalizer_state.pop('''type''' ) ) UpperCAmelCase = do_lower_case UpperCAmelCase = strip_accents UpperCAmelCase = tokenize_chinese_chars UpperCAmelCase = normalizer_class(**_snake_case ) UpperCAmelCase = do_lower_case def snake_case_ ( self , _snake_case , _snake_case=None ) -> List[str]: """simple docstring""" UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , _snake_case , _snake_case = None ) -> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self , _snake_case , _snake_case = None ) -> Tuple[str]: """simple docstring""" UpperCAmelCase = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case )
254
0
from typing import Any import numpy as np def __UpperCAmelCase ( snake_case_ : Optional[int] ): '''simple docstring''' return np.array_equal(snake_case_ , matrix.conjugate().T ) def __UpperCAmelCase ( snake_case_ : List[Any] , snake_case_ : Tuple ): '''simple docstring''' UpperCAmelCase: Union[str, Any] = v.conjugate().T UpperCAmelCase: List[Any] = v_star.dot(snake_case_ ) assert isinstance(snake_case_ , np.ndarray ) return (v_star_dot.dot(snake_case_ )) / (v_star.dot(snake_case_ )) def __UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase: Optional[int] = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) UpperCAmelCase: Optional[int] = np.array([[1], [2], [3]] ) assert is_hermitian(snake_case_ ), F'{a} is not hermitian.' print(rayleigh_quotient(snake_case_ , snake_case_ ) ) UpperCAmelCase: List[Any] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(snake_case_ ), F'{a} is not hermitian.' assert rayleigh_quotient(snake_case_ , snake_case_ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
719
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) snake_case_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case_ : Optional[int] = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def __UpperCAmelCase ( snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : Optional[int]=8 ): '''simple docstring''' UpperCAmelCase: Any = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase: Dict = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __lowerCamelCase ( lowercase ): def __init__( self , __snake_case , __snake_case , __snake_case , ) -> List[str]: """simple docstring""" super().__init__() self.register_modules( unet=__snake_case , scheduler=__snake_case , movq=__snake_case , ) UpperCAmelCase: List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def A__ ( self , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) -> Union[str, Any]: """simple docstring""" if latents is None: UpperCAmelCase: Tuple = randn_tensor(__snake_case , generator=__snake_case , device=__snake_case , dtype=__snake_case ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) UpperCAmelCase: str = latents.to(__snake_case ) UpperCAmelCase: Tuple = latents * scheduler.init_noise_sigma return latents def A__ ( self , __snake_case=0 ) -> str: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCAmelCase: Union[str, Any] = torch.device(F'cuda:{gpu_id}' ) UpperCAmelCase: Optional[int] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__snake_case , __snake_case ) def A__ ( self , __snake_case=0 ) -> List[Any]: """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCAmelCase: Optional[Any] = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=__snake_case ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase: int = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase , UpperCAmelCase: str = cpu_offload_with_hook(__snake_case , __snake_case , prev_module_hook=__snake_case ) # We'll offload the last model manually. UpperCAmelCase: Union[str, Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A__ ( self ) -> Any: """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__snake_case , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__snake_case ) def __call__( self , __snake_case , __snake_case , __snake_case , __snake_case = 5_1_2 , __snake_case = 5_1_2 , __snake_case = 1_0_0 , __snake_case = 4.0 , __snake_case = 1 , __snake_case = None , __snake_case = None , __snake_case = "pil" , __snake_case = True , ) -> Dict: """simple docstring""" UpperCAmelCase: Optional[int] = self._execution_device UpperCAmelCase: Optional[int] = guidance_scale > 1.0 if isinstance(__snake_case , __snake_case ): UpperCAmelCase: int = torch.cat(__snake_case , dim=0 ) if isinstance(__snake_case , __snake_case ): UpperCAmelCase: List[Any] = torch.cat(__snake_case , dim=0 ) if isinstance(__snake_case , __snake_case ): UpperCAmelCase: List[Any] = torch.cat(__snake_case , dim=0 ) UpperCAmelCase: Dict = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: UpperCAmelCase: Dict = image_embeds.repeat_interleave(__snake_case , dim=0 ) UpperCAmelCase: Dict = negative_image_embeds.repeat_interleave(__snake_case , dim=0 ) UpperCAmelCase: Tuple = hint.repeat_interleave(__snake_case , dim=0 ) UpperCAmelCase: Any = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__snake_case ) UpperCAmelCase: Any = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=__snake_case ) self.scheduler.set_timesteps(__snake_case , device=__snake_case ) UpperCAmelCase: Any = self.scheduler.timesteps UpperCAmelCase: List[str] = self.movq.config.latent_channels UpperCAmelCase , UpperCAmelCase: Union[str, Any] = downscale_height_and_width(__snake_case , __snake_case , self.movq_scale_factor ) # create initial latent UpperCAmelCase: Any = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __snake_case , __snake_case , __snake_case , self.scheduler , ) for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase: List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase: str = {"image_embeds": image_embeds, "hint": hint} UpperCAmelCase: Any = self.unet( sample=__snake_case , timestep=__snake_case , encoder_hidden_states=__snake_case , added_cond_kwargs=__snake_case , return_dict=__snake_case , )[0] if do_classifier_free_guidance: UpperCAmelCase , UpperCAmelCase: Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) UpperCAmelCase , UpperCAmelCase: str = noise_pred.chunk(2 ) UpperCAmelCase , UpperCAmelCase: Dict = variance_pred.chunk(2 ) UpperCAmelCase: List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase: Union[str, Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase , UpperCAmelCase: Any = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase: int = self.scheduler.step( __snake_case , __snake_case , __snake_case , generator=__snake_case , )[0] # post-processing UpperCAmelCase: Optional[Any] = self.movq.decode(__snake_case , force_not_quantize=__snake_case )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: UpperCAmelCase: Optional[Any] = image * 0.5 + 0.5 UpperCAmelCase: Union[str, Any] = image.clamp(0 , 1 ) UpperCAmelCase: List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase: Dict = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case )
166
0
from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __SCREAMING_SNAKE_CASE ( ) -> tuple[list[int], int]: '''simple docstring''' __UpperCAmelCase : List[Any] = [randint(-1000 , 1000 ) for i in range(10 )] __UpperCAmelCase : Dict = randint(-5000 , 5000 ) return (arr, r) lowerCAmelCase = make_dataset() def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[int, ...]: '''simple docstring''' for triplet in permutations(lowercase_ , 3 ): if sum(lowercase_ ) == target: return tuple(sorted(lowercase_ ) ) return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> tuple[int, int, int]: '''simple docstring''' arr.sort() __UpperCAmelCase : Union[str, Any] = len(lowercase_ ) for i in range(n - 1 ): __UpperCAmelCase , __UpperCAmelCase : Tuple = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( ) -> tuple[float, float]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __UpperCAmelCase : int = ''' triplet_sum1(*dataset) ''' __UpperCAmelCase : Union[str, Any] = ''' triplet_sum2(*dataset) ''' __UpperCAmelCase : Any = repeat(setup=lowercase_ , stmt=lowercase_ , repeat=5 , number=10000 ) __UpperCAmelCase : Dict = repeat(setup=lowercase_ , stmt=lowercase_ , repeat=5 , number=10000 ) return (min(lowercase_ ), min(lowercase_ )) if __name__ == "__main__": from doctest import testmod testmod() lowerCAmelCase = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
462
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : Optional[Any] = StableUnCLIPImgaImgPipeline _lowerCAmelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _lowerCAmelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowerCAmelCase : Dict = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowerCAmelCase : str = frozenset([] ) def A( self): __UpperCAmelCase : Any = 3_2 __UpperCAmelCase : Union[str, Any] = embedder_hidden_size # image encoding components __UpperCAmelCase : Union[str, Any] = CLIPImageProcessor(crop_size=3_2 , size=3_2) torch.manual_seed(0) __UpperCAmelCase : List[str] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowercase__ , projection_dim=lowercase__ , num_hidden_layers=5 , num_attention_heads=4 , image_size=3_2 , intermediate_size=3_7 , patch_size=1 , )) # regular denoising components torch.manual_seed(0) __UpperCAmelCase : List[Any] = StableUnCLIPImageNormalizer(embedding_dim=lowercase__) __UpperCAmelCase : Any = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''') torch.manual_seed(0) __UpperCAmelCase : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''') torch.manual_seed(0) __UpperCAmelCase : int = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )) torch.manual_seed(0) __UpperCAmelCase : Tuple = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , ) torch.manual_seed(0) __UpperCAmelCase : Optional[Any] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=lowercase__ , steps_offset=1 , ) torch.manual_seed(0) __UpperCAmelCase : Optional[Any] = AutoencoderKL() __UpperCAmelCase : Optional[Any] = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def A( self , lowercase__ , lowercase__=0 , lowercase__=True): if str(lowercase__).startswith('''mps'''): __UpperCAmelCase : Union[str, Any] = torch.manual_seed(lowercase__) else: __UpperCAmelCase : int = torch.Generator(device=lowercase__).manual_seed(lowercase__) __UpperCAmelCase : Dict = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowercase__)).to(lowercase__) if pil_image: __UpperCAmelCase : int = input_image * 0.5 + 0.5 __UpperCAmelCase : str = input_image.clamp(0 , 1) __UpperCAmelCase : Optional[int] = input_image.cpu().permute(0 , 2 , 3 , 1).float().numpy() __UpperCAmelCase : Union[str, Any] = DiffusionPipeline.numpy_to_pil(lowercase__)[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def A( self): __UpperCAmelCase : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __UpperCAmelCase : Dict = self.get_dummy_components() __UpperCAmelCase : List[Any] = StableUnCLIPImgaImgPipeline(**lowercase__) __UpperCAmelCase : List[str] = sd_pipe.to(lowercase__) sd_pipe.set_progress_bar_config(disable=lowercase__) __UpperCAmelCase : Dict = self.get_dummy_inputs(lowercase__) inputs.update({'''image_embeds''': None}) __UpperCAmelCase : Any = sd_pipe(**lowercase__).images __UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __UpperCAmelCase : Union[str, Any] = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def A( self): __UpperCAmelCase : Optional[Any] = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=lowercase__) def A( self): __UpperCAmelCase : str = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=lowercase__) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def A( self): self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowercase__) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def A( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A( self): __UpperCAmelCase : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''') __UpperCAmelCase : List[str] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''') __UpperCAmelCase : Optional[int] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa) pipe.to(lowercase__) pipe.set_progress_bar_config(disable=lowercase__) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase : Optional[Any] = torch.Generator(device='''cpu''').manual_seed(0) __UpperCAmelCase : Any = pipe(lowercase__ , '''anime turle''' , generator=lowercase__ , output_type='''np''') __UpperCAmelCase : Optional[Any] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowercase__ , lowercase__) def A( self): __UpperCAmelCase : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''') __UpperCAmelCase : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''') __UpperCAmelCase : Union[str, Any] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa) pipe.to(lowercase__) pipe.set_progress_bar_config(disable=lowercase__) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase : Dict = torch.Generator(device='''cpu''').manual_seed(0) __UpperCAmelCase : int = pipe(lowercase__ , '''anime turle''' , generator=lowercase__ , output_type='''np''') __UpperCAmelCase : List[str] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowercase__ , lowercase__) def A( self): __UpperCAmelCase : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''') torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCAmelCase : Optional[int] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa) __UpperCAmelCase : Optional[int] = pipe.to(lowercase__) pipe.set_progress_bar_config(disable=lowercase__) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __UpperCAmelCase : int = pipe( lowercase__ , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) __UpperCAmelCase : Optional[Any] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
462
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class snake_case__ ( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def UpperCamelCase ( self : int ) -> str: UpperCAmelCase_ = self.dummy_uncond_unet UpperCAmelCase_ = KarrasVeScheduler() UpperCAmelCase_ = KarrasVePipeline(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe(num_inference_steps=2 , generator=lowerCAmelCase_ , output_type='''numpy''' ).images UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe(num_inference_steps=2 , generator=lowerCAmelCase_ , output_type='''numpy''' , return_dict=lowerCAmelCase_ )[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class snake_case__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self : Optional[int] ) -> List[Any]: UpperCAmelCase_ = '''google/ncsnpp-celebahq-256''' UpperCAmelCase_ = UNetaDModel.from_pretrained(lowerCAmelCase_ ) UpperCAmelCase_ = KarrasVeScheduler() UpperCAmelCase_ = KarrasVePipeline(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe(num_inference_steps=20 , generator=lowerCAmelCase_ , output_type='''numpy''' ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) UpperCAmelCase_ = np.array([0.578, 0.5_811, 0.5_924, 0.5_809, 0.587, 0.5_886, 0.5_861, 0.5_802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
707
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _lowerCAmelCase ( __magic_name__ :str , __magic_name__ :str , __magic_name__ :Optional[str] = None ): if version.parse(hfh.__version__ ).release < version.parse('''0.11.0''' ).release: # old versions of hfh don't url-encode the file path UpperCAmelCase_ = quote(__magic_name__ ) return hfh.hf_hub_url(__magic_name__ , __magic_name__ , repo_type='''dataset''' , revision=__magic_name__ )
407
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder lowercase : Dict = '__DUMMY_TRANSFORMERS_USER__' lowercase : Union[str, Any] = 'Dummy User' lowercase : List[Any] = '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' lowercase : Dict = 'https://hub-ci.huggingface.co' lowercase : int = CI_HUB_ENDPOINT + '/datasets/{repo_id}/resolve/{revision}/{path}' lowercase : Tuple = CI_HUB_ENDPOINT + '/{repo_id}/resolve/{revision}/{filename}' lowercase : Tuple = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict) -> Optional[int]: '''simple docstring''' monkeypatch.setattr( "huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE" , SCREAMING_SNAKE_CASE__) @pytest.fixture def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str) -> str: '''simple docstring''' monkeypatch.setattr("datasets.config.HF_ENDPOINT" , SCREAMING_SNAKE_CASE__) monkeypatch.setattr("datasets.config.HUB_DATASETS_URL" , SCREAMING_SNAKE_CASE__) @pytest.fixture def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any) -> List[str]: '''simple docstring''' monkeypatch.setattr("huggingface_hub.hf_api.HfFolder.path_token" , SCREAMING_SNAKE_CASE__) @pytest.fixture def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict , _lowerCamelCase : Tuple) -> Dict: '''simple docstring''' HfFolder.save_token(SCREAMING_SNAKE_CASE__) yield HfFolder.delete_token() @pytest.fixture(scope="session") def _SCREAMING_SNAKE_CASE ( ) -> Tuple: '''simple docstring''' return HfApi(endpoint=SCREAMING_SNAKE_CASE__) @pytest.fixture(scope="session") def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase : List[Any] = HfFolder.get_token() HfFolder.save_token(SCREAMING_SNAKE_CASE__) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(SCREAMING_SNAKE_CASE__) @pytest.fixture def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> Union[str, Any]: '''simple docstring''' def _cleanup_repo(_lowerCamelCase : Any): hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type="dataset") return _cleanup_repo @pytest.fixture def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> str: '''simple docstring''' @contextmanager def _temporary_repo(_lowerCamelCase : Union[str, Any]): try: yield repo_id finally: cleanup_repo(SCREAMING_SNAKE_CASE__) return _temporary_repo @pytest.fixture(scope="session") def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int]) -> int: '''simple docstring''' __UpperCamelCase : Any = F'repo_txt_data-{int(time.time() * 10e3)}' __UpperCamelCase : str = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type="dataset" , private=SCREAMING_SNAKE_CASE__) hf_api.upload_file( token=SCREAMING_SNAKE_CASE__ , path_or_fileobj=str(SCREAMING_SNAKE_CASE__) , path_in_repo="data/text_data.txt" , repo_id=SCREAMING_SNAKE_CASE__ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any]) -> str: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="session") def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int]) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : str = F'repo_zipped_txt_data-{int(time.time() * 10e3)}' __UpperCamelCase : str = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type="dataset" , private=SCREAMING_SNAKE_CASE__) hf_api.upload_file( token=SCREAMING_SNAKE_CASE__ , path_or_fileobj=str(SCREAMING_SNAKE_CASE__) , path_in_repo="data.zip" , repo_id=SCREAMING_SNAKE_CASE__ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple) -> Dict: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="session") def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Dict , _lowerCamelCase : Dict , _lowerCamelCase : int) -> List[str]: '''simple docstring''' __UpperCamelCase : Any = F'repo_zipped_img_data-{int(time.time() * 10e3)}' __UpperCamelCase : Optional[int] = F'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type="dataset" , private=SCREAMING_SNAKE_CASE__) hf_api.upload_file( token=SCREAMING_SNAKE_CASE__ , path_or_fileobj=str(SCREAMING_SNAKE_CASE__) , path_in_repo="data.zip" , repo_id=SCREAMING_SNAKE_CASE__ , repo_type="dataset" , ) yield repo_id try: hf_api.delete_repo(SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ , repo_type="dataset") except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : int) -> Optional[Any]: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
557
import numpy as np class A_ : '''simple docstring''' def __init__( self: Optional[int] ): __lowerCamelCase : int = (0, 0) __lowerCamelCase : List[str] = None __lowerCamelCase : int = 0 __lowerCamelCase : int = 0 __lowerCamelCase : Union[str, Any] = 0 def __eq__( self: Optional[int] , a: List[Any] ): return self.position == cell.position def _snake_case ( self: Any ): print(self.position ) class A_ : '''simple docstring''' def __init__( self: str , a: List[str]=(5, 5) ): __lowerCamelCase : Optional[Any] = np.zeros(a ) __lowerCamelCase : List[str] = world_size[0] __lowerCamelCase : Optional[int] = world_size[1] def _snake_case ( self: List[Any] ): print(self.w ) def _snake_case ( self: Optional[int] , a: str ): __lowerCamelCase : Tuple = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] __lowerCamelCase : Optional[int] = cell.position[0] __lowerCamelCase : List[str] = cell.position[1] __lowerCamelCase : Dict = [] for n in neughbour_cord: __lowerCamelCase : Dict = current_x + n[0] __lowerCamelCase : Optional[Any] = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: __lowerCamelCase : Optional[Any] = Cell() __lowerCamelCase : Any = (x, y) __lowerCamelCase : Dict = cell neighbours.append(a ) return neighbours def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : str = [] __lowerCamelCase : int = [] _open.append(SCREAMING_SNAKE_CASE__ ) while _open: __lowerCamelCase : Union[str, Any] = np.argmin([n.f for n in _open] ) __lowerCamelCase : int = _open[min_f] _closed.append(_open.pop(SCREAMING_SNAKE_CASE__ ) ) if current == goal: break for n in world.get_neigbours(SCREAMING_SNAKE_CASE__ ): for c in _closed: if c == n: continue __lowerCamelCase : Optional[int] = current.g + 1 __lowerCamelCase , __lowerCamelCase : int = n.position __lowerCamelCase , __lowerCamelCase : Tuple = goal.position __lowerCamelCase : Dict = (ya - ya) ** 2 + (xa - xa) ** 2 __lowerCamelCase : str = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Optional[int] = [] while current.parent is not None: path.append(current.position ) __lowerCamelCase : int = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": lowercase_ = Gridworld() # Start position and goal lowercase_ = Cell() lowercase_ = (0, 0) lowercase_ = Cell() lowercase_ = (4, 4) print(F"""path from {start.position} to {goal.position}""") lowercase_ = astar(world, start, goal) # Just for visual reasons. for i in s: lowercase_ = 1 print(world.w)
669
0
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''' , set() ) @pytest.fixture def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' class lowerCamelCase_ : '''simple docstring''' def __init__( self , __lowercase) -> Dict: __UpperCamelCase :Optional[int] = metric_id class lowerCamelCase_ : '''simple docstring''' a__ : List[str] = [MetricMock(UpperCAmelCase_ ) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]] def UpperCamelCase__ ( self) -> Union[str, Any]: return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''' , HfhMock() ) @pytest.mark.parametrize( '''func, args''' , [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if "tmp_path" in args: __UpperCamelCase :Any = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(SCREAMING_SNAKE_CASE , match='''https://huggingface.co/docs/evaluate''' ): func(*SCREAMING_SNAKE_CASE )
452
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowercase = { '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
452
1
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __lowercase ( unittest.TestCase ): def __a ( self : Dict ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() def __a ( self : Optional[int] ) -> List[str]: '''simple docstring''' lowercase ,lowercase = FlaxStableDiffusionPipeline.from_pretrained( '''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , ) lowercase = '''A painting of a squirrel eating a burger''' lowercase = jax.device_count() lowercase = num_samples * [prompt] lowercase = sd_pipe.prepare_inputs(__lowerCamelCase ) lowercase = replicate(__lowerCamelCase ) lowercase = shard(__lowerCamelCase ) lowercase = jax.random.PRNGKey(0 ) lowercase = jax.random.split(__lowerCamelCase , jax.device_count() ) lowercase = sd_pipe(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , num_inference_steps=25 , jit=__lowerCamelCase )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase = images[0, 2_53:2_56, 2_53:2_56, -1] lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.4_5508, 0.4512] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def __a ( self : Tuple ) -> List[Any]: '''simple docstring''' lowercase = '''stabilityai/stable-diffusion-2''' lowercase ,lowercase = FlaxDPMSolverMultistepScheduler.from_pretrained(__lowerCamelCase , subfolder='''scheduler''' ) lowercase ,lowercase = FlaxStableDiffusionPipeline.from_pretrained( __lowerCamelCase , scheduler=__lowerCamelCase , revision='''bf16''' , dtype=jnp.bfloataa , ) lowercase = scheduler_params lowercase = '''A painting of a squirrel eating a burger''' lowercase = jax.device_count() lowercase = num_samples * [prompt] lowercase = sd_pipe.prepare_inputs(__lowerCamelCase ) lowercase = replicate(__lowerCamelCase ) lowercase = shard(__lowerCamelCase ) lowercase = jax.random.PRNGKey(0 ) lowercase = jax.random.split(__lowerCamelCase , jax.device_count() ) lowercase = sd_pipe(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , num_inference_steps=25 , jit=__lowerCamelCase )[0] assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3) lowercase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowercase = images[0, 2_53:2_56, 2_53:2_56, -1] lowercase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowercase = jnp.array([0.4336, 0.4_2969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
604
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A_ = imread(R"digital_image_processing/image_data/lena_small.jpg") A_ = cvtColor(img, COLOR_BGR2GRAY) def __UpperCAmelCase ( )-> List[Any]: """simple docstring""" lowercase = cn.convert_to_negative(UpperCAmelCase ) # assert negative_img array for at least one True assert negative_img.any() def __UpperCAmelCase ( )-> Union[str, Any]: """simple docstring""" with Image.open('''digital_image_processing/image_data/lena_small.jpg''' ) as img: # Work around assertion for response assert str(cc.change_contrast(UpperCAmelCase, 110 ) ).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''' ) def __UpperCAmelCase ( )-> Dict: """simple docstring""" lowercase = canny.gen_gaussian_kernel(9, sigma=1.4 ) # Assert ambiguous array assert resp.all() def __UpperCAmelCase ( )-> int: """simple docstring""" lowercase = imread('''digital_image_processing/image_data/lena_small.jpg''', 0 ) # assert ambiguous array for all == True assert canny_img.all() lowercase = canny.canny(UpperCAmelCase ) # assert canny array for at least one True assert canny_array.any() def __UpperCAmelCase ( )-> List[Any]: """simple docstring""" assert gg.gaussian_filter(UpperCAmelCase, 5, sigma=0.9 ).all() def __UpperCAmelCase ( )-> List[Any]: """simple docstring""" lowercase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowercase = conv.img_convolve(UpperCAmelCase, UpperCAmelCase ).astype(UpperCAmelCase ) assert res.any() def __UpperCAmelCase ( )-> Dict: """simple docstring""" assert med.median_filter(UpperCAmelCase, 3 ).any() def __UpperCAmelCase ( )-> List[Any]: """simple docstring""" lowercase ,lowercase = sob.sobel_filter(UpperCAmelCase ) assert grad.any() and theta.any() def __UpperCAmelCase ( )-> Optional[int]: """simple docstring""" lowercase = sp.make_sepia(UpperCAmelCase, 20 ) assert sepia.all() def __UpperCAmelCase ( UpperCAmelCase = "digital_image_processing/image_data/lena_small.jpg" )-> str: """simple docstring""" lowercase = bs.Burkes(imread(UpperCAmelCase, 1 ), 120 ) burkes.process() assert burkes.output_img.any() def __UpperCAmelCase ( UpperCAmelCase = "digital_image_processing/image_data/lena_small.jpg", )-> str: """simple docstring""" lowercase = rs.NearestNeighbour(imread(UpperCAmelCase, 1 ), 400, 200 ) nn.process() assert nn.output.any() def __UpperCAmelCase ( )-> Optional[int]: """simple docstring""" lowercase = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowercase = imread(UpperCAmelCase, 0 ) # Test for get_neighbors_pixel function() return not None lowercase = 0 lowercase = 0 lowercase = image[x_coordinate][y_coordinate] lowercase = lbp.get_neighbors_pixel( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowercase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0, image.shape[0] ): for j in range(0, image.shape[1] ): lowercase = lbp.local_binary_value(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) assert lbp_image.any()
604
1
'''simple docstring''' import math import qiskit def _UpperCamelCase ( __UpperCamelCase = 1 ,__UpperCamelCase = 1 ,__UpperCamelCase = 1 ) -> int: '''simple docstring''' if ( isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or isinstance(lowerCamelCase_ ,lowerCamelCase_ ) ): raise TypeError('inputs must be integers.' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.' ) if ( (math.floor(lowerCamelCase_ ) != input_a) or (math.floor(lowerCamelCase_ ) != input_a) or (math.floor(lowerCamelCase_ ) != carry_in) ): raise ValueError('inputs must be exact integers.' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.' ) # build registers lowerCamelCase_ = qiskit.QuantumRegister(4 ,'qr' ) lowerCamelCase_ = qiskit.ClassicalRegister(2 ,'cr' ) # list the entries lowerCamelCase_ = [input_a, input_a, carry_in] lowerCamelCase_ = qiskit.QuantumCircuit(lowerCamelCase_ ,lowerCamelCase_ ) for i in range(0 ,3 ): if entry[i] == 2: quantum_circuit.h(lowerCamelCase_ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(lowerCamelCase_ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(lowerCamelCase_ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 ,1 ,3 ) # ccx = toffoli gate quantum_circuit.cx(0 ,1 ) quantum_circuit.ccx(1 ,2 ,3 ) quantum_circuit.cx(1 ,2 ) quantum_circuit.cx(0 ,1 ) quantum_circuit.measure([2, 3] ,lowerCamelCase_ ) # measure the last two qbits lowerCamelCase_ = qiskit.Aer.get_backend('aer_simulator' ) lowerCamelCase_ = qiskit.execute(lowerCamelCase_ ,lowerCamelCase_ ,shots=10_00 ) return job.result().get_counts(lowerCamelCase_ ) if __name__ == "__main__": print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
713
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self , SCREAMING_SNAKE_CASE_ = 768 , ) -> Optional[int]: '''simple docstring''' super().__init__() lowerCamelCase_ = nn.Parameter(torch.zeros(1 , SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = nn.Parameter(torch.ones(1 , SCREAMING_SNAKE_CASE_ ) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = nn.Parameter(self.mean.to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = nn.Parameter(self.std.to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) ) return self def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = (embeds * self.std) + self.mean return embeds
384
0
"""simple docstring""" import operator as op _lowercase = '''scaler.pt''' _lowercase = '''pytorch_model''' _lowercase = '''random_states''' _lowercase = '''optimizer''' _lowercase = '''scheduler''' _lowercase = '''pytorch_model.bin''' _lowercase = '''pytorch_model.bin.index.json''' _lowercase = '''model.safetensors''' _lowercase = '''model.safetensors.index.json''' _lowercase = '''1.10.2''' _lowercase = '''py38''' _lowercase = '''4.17.0''' _lowercase = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] _lowercase = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] _lowercase = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] _lowercase = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] _lowercase = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] _lowercase = '''2.0.1''' _lowercase = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] _lowercase = ['''default''', '''reduce-overhead''', '''max-autotune'''] _lowercase = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 _lowercase = [ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] _lowercase = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] _lowercase = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
118
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": _lowercase = pd.read_csv('''sample_data.csv''', header=None) _lowercase = df.shape[:1][0] # If you're using some other dataset input the target column _lowercase = df.iloc[:, 1:2] _lowercase = actual_data.values.reshape(len_data, 1) _lowercase = MinMaxScaler().fit_transform(actual_data) _lowercase = 10 _lowercase = 5 _lowercase = 20 _lowercase = len_data - periods * look_back _lowercase = actual_data[:division] _lowercase = actual_data[division - look_back :] _lowercase , _lowercase = [], [] _lowercase , _lowercase = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) _lowercase = np.array(train_x) _lowercase = np.array(test_x) _lowercase = np.array([list(i.ravel()) for i in train_y]) _lowercase = np.array([list(i.ravel()) for i in test_y]) _lowercase = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') _lowercase = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) _lowercase = model.predict(x_test)
118
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _A ( _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DebertaTokenizer _UpperCamelCase : Any = True _UpperCamelCase : Any = DebertaTokenizerFast def __a ( self : int ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase : Optional[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] lowercase : int = dict(zip(_A , range(len(_A ) ) ) ) lowercase : Optional[int] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowercase : Tuple = {'''unk_token''': '''[UNK]'''} lowercase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_A ) ) def __a ( self : Any , **_A : Optional[int] ) -> Tuple: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def __a ( self : Tuple , _A : Any ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = '''lower newer''' lowercase : Optional[int] = '''lower newer''' return input_text, output_text def __a ( self : Optional[int] ) -> str: """simple docstring""" lowercase : Optional[int] = self.get_tokenizer() lowercase : Optional[int] = '''lower newer''' lowercase : Optional[int] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] lowercase : str = tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) lowercase : str = tokens + [tokenizer.unk_token] lowercase : Optional[Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A ) def __a ( self : str ) -> Union[str, Any]: """simple docstring""" lowercase : Optional[Any] = self.get_tokenizer() lowercase : Tuple = tokenizer('''Hello''' , '''World''' ) lowercase : Union[str, Any] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , _A ) @slow def __a ( self : int ) -> List[str]: """simple docstring""" lowercase : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowercase : List[str] = tokenizer.encode('''sequence builders''' , add_special_tokens=_A ) lowercase : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_A ) lowercase : Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=_A , add_prefix_space=_A ) lowercase : Any = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=_A , add_prefix_space=_A ) lowercase : int = tokenizer.build_inputs_with_special_tokens(_A ) lowercase : Tuple = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __a ( self : Tuple ) -> List[Any]: """simple docstring""" lowercase : Union[str, Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowercase : int = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) lowercase : int = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] lowercase : Any = tokenizer(_A , padding=_A ) lowercase : Tuple = [tokenizer.decode(_A , skip_special_tokens=_A ) for seq in encoding['''input_ids''']] # fmt: off lowercase : List[str] = { '''input_ids''': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowercase : Optional[int] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , _A ) for expected, decoded in zip(_A , _A ): self.assertEqual(_A , _A )
596
from pathlib import Path import numpy as np from PIL import Image def snake_case( __magic_name__ ) -> np.ndarray: '''simple docstring''' lowercase , lowercase , lowercase : List[Any] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b def snake_case( __magic_name__ ) -> np.ndarray: '''simple docstring''' return (gray > 1_27) & (gray <= 2_55) def snake_case( __magic_name__ , __magic_name__ ) -> np.ndarray: '''simple docstring''' lowercase : Any = np.zeros_like(__magic_name__ ) lowercase : Optional[Any] = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image lowercase : Union[str, Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): lowercase : int = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() lowercase : Tuple = int(summation > 0 ) return output if __name__ == "__main__": # read original image lowerCAmelCase_ = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' lowerCAmelCase_ = np.array(Image.open(lena_path)) # kernel to be applied lowerCAmelCase_ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) lowerCAmelCase_ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image lowerCAmelCase_ = Image.fromarray(output).convert('RGB') pil_img.save('result_dilation.png')
596
1
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowercase (snake_case__ : Dict ) -> List[Any]: '''simple docstring''' lowerCAmelCase , lowerCAmelCase = image.size lowerCAmelCase , lowerCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase = image.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) lowerCAmelCase = np.array(lowerCAmelCase_ ).astype(np.floataa ) / 255.0 lowerCAmelCase = image[None].transpose(0 , 3 , 1 , 2 ) lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) return 2.0 * image - 1.0 class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): def __init__( self : Tuple , lowerCAmelCase : VQModel , lowerCAmelCase : UNetaDModel , lowerCAmelCase : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): super().__init__() self.register_modules(vqvae=SCREAMING_SNAKE_CASE__ , unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def __call__( self : Tuple , lowerCAmelCase : Union[torch.Tensor, PIL.Image.Image] = None , lowerCAmelCase : Optional[int] = 1 , lowerCAmelCase : Optional[int] = 100 , lowerCAmelCase : Optional[float] = 0.0 , lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase : Optional[str] = "pil" , lowerCAmelCase : bool = True , ): if isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): lowerCAmelCase = 1 elif isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): lowerCAmelCase = image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(SCREAMING_SNAKE_CASE__ )}''' ) if isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): lowerCAmelCase = preprocess(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase , lowerCAmelCase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowerCAmelCase = (batch_size, self.unet.config.in_channels // 2, height, width) lowerCAmelCase = next(self.unet.parameters() ).dtype lowerCAmelCase = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=self.device , dtype=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase = image.to(device=self.device , dtype=SCREAMING_SNAKE_CASE__ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ , device=self.device ) lowerCAmelCase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase = {} if accepts_eta: lowerCAmelCase = eta for t in self.progress_bar(SCREAMING_SNAKE_CASE__ ): # concat latents and low resolution image in the channel dimension. lowerCAmelCase = torch.cat([latents, image] , dim=1 ) lowerCAmelCase = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # predict the noise residual lowerCAmelCase = self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase = self.scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample # decode the image latents with the VQVAE lowerCAmelCase = self.vqvae.decode(SCREAMING_SNAKE_CASE__ ).sample lowerCAmelCase = torch.clamp(SCREAMING_SNAKE_CASE__ , -1.0 , 1.0 ) lowerCAmelCase = image / 2 + 0.5 lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ )
169
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = "vit_msn" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple=768 , SCREAMING_SNAKE_CASE__ : Optional[Any]=12 , SCREAMING_SNAKE_CASE__ : List[str]=12 , SCREAMING_SNAKE_CASE__ : Dict=3_072 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : str=0.0 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : List[str]=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=1e-0_6 , SCREAMING_SNAKE_CASE__ : Dict=224 , SCREAMING_SNAKE_CASE__ : Optional[int]=16 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Dict=True , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> int: super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = qkv_bias
61
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( A_, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =DanceDiffusionPipeline lowerCamelCase__ =UNCONDITIONAL_AUDIO_GENERATION_PARAMS lowerCamelCase__ =PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } lowerCamelCase__ =UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Tuple = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=a_ , use_timestep_embedding=a_ , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , ) __snake_case : Optional[int] = IPNDMScheduler() __snake_case : int = { """unet""": unet, """scheduler""": scheduler, } return components def SCREAMING_SNAKE_CASE (self , a_ , a_=0 ): '''simple docstring''' if str(a_ ).startswith('''mps''' ): __snake_case : Dict = torch.manual_seed(a_ ) else: __snake_case : Dict = torch.Generator(device=a_ ).manual_seed(a_ ) __snake_case : int = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __snake_case : List[Any] = self.get_dummy_components() __snake_case : int = DanceDiffusionPipeline(**a_ ) __snake_case : Tuple = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Tuple = self.get_dummy_inputs(a_ ) __snake_case : Dict = pipe(**a_ ) __snake_case : Optional[int] = output.audios __snake_case : int = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) __snake_case : Tuple = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return super().test_save_load_local() @skip_mps def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = torch_device __snake_case : int = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' ) __snake_case : Optional[Any] = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Optional[int] = torch.manual_seed(0 ) __snake_case : List[Any] = pipe(generator=a_ , num_inference_steps=1_00 , audio_length_in_s=4.096 ) __snake_case : Dict = output.audios __snake_case : Any = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __snake_case : List[str] = np.array([-0.0192, -0.0231, -0.0318, -0.0059, 0.0002, -0.0020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = torch_device __snake_case : Tuple = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa ) __snake_case : List[Any] = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case : Dict = torch.manual_seed(0 ) __snake_case : Any = pipe(generator=a_ , num_inference_steps=1_00 , audio_length_in_s=4.096 ) __snake_case : str = output.audios __snake_case : Union[str, Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __snake_case : int = np.array([-0.0367, -0.0488, -0.0771, -0.0525, -0.0444, -0.0341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
708
"""simple docstring""" def lowercase ( _snake_case : Union[str, Any] ) ->Optional[int]: """simple docstring""" if not head: return True # split the list to two parts __snake_case , __snake_case : str = head.next, head while fast and fast.next: __snake_case : List[str] = fast.next.next __snake_case : Optional[int] = slow.next __snake_case : Tuple = slow.next __snake_case : List[Any] = None # Don't forget here! But forget still works! # reverse the second part __snake_case : Union[str, Any] = None while second: __snake_case : Optional[Any] = second.next __snake_case : List[str] = node __snake_case : List[Any] = second __snake_case : Tuple = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False __snake_case : int = node.next __snake_case : Any = head.next return True def lowercase ( _snake_case : int ) ->Union[str, Any]: """simple docstring""" if not head or not head.next: return True # 1. Get the midpoint (slow) __snake_case : Optional[int] = head while fast and fast.next: __snake_case , __snake_case : Union[str, Any] = fast.next.next, slow.next # 2. Push the second half into the stack __snake_case : int = [slow.val] while slow.next: __snake_case : str = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False __snake_case : str = cur.next return True def lowercase ( _snake_case : str ) ->Dict: """simple docstring""" if not head or not head.next: return True __snake_case : Optional[int] = {} __snake_case : Dict = 0 while head: if head.val in d: d[head.val].append(_snake_case ) else: __snake_case : Tuple = [pos] __snake_case : str = head.next pos += 1 __snake_case : str = pos - 1 __snake_case : Union[str, Any] = 0 for v in d.values(): if len(_snake_case ) % 2 != 0: middle += 1 else: __snake_case : Tuple = 0 for i in range(0 , len(_snake_case ) ): if v[i] + v[len(_snake_case ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
229
0
def a_ ( lowerCAmelCase_ : int ): if not isinstance(lowerCAmelCase_, lowerCAmelCase_ ): raise ValueError('check_bouncy() accepts only integer arguments' ) __lowerCAmelCase = str(lowerCAmelCase_ ) __lowerCAmelCase = ''.join(sorted(lowerCAmelCase_ ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def a_ ( lowerCAmelCase_ : float = 99 ): if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) __lowerCAmelCase = 0 __lowerCAmelCase = 1 while True: if check_bouncy(lowerCAmelCase_ ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(99)}""")
53
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def a_ ( UpperCamelCase_ ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: A_ = k.replace(UpperCamelCase_ , UpperCamelCase_ ) if k.startswith("encoder" ): A_ = k.replace(".attn" , ".self_attn" ) A_ = k.replace("norm1" , "self_attn_layer_norm" ) A_ = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): A_ = k.replace("norm1" , "self_attn_layer_norm" ) A_ = k.replace("norm2" , "encoder_attn_layer_norm" ) A_ = k.replace("norm3" , "final_layer_norm" ) return k def a_ ( UpperCamelCase_ ): A_ = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: A_ = sd.pop(UpperCamelCase_ ) A_ = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd A_ = v __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''START'''] @torch.no_grad() def a_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): A_ = torch.load(UpperCamelCase_ , map_location="cpu" ) A_ = model["model"] A_ = BlenderbotConfig.from_json_file(UpperCamelCase_ ) A_ = BlenderbotForConditionalGeneration(UpperCamelCase_ ) A_ = m.model.state_dict().keys() A_ = [] A_ = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue A_ = rename_state_dict_key(UpperCamelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: A_ = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCamelCase_ ) m.model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) m.half() m.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) __SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
452
0
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
171
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class SCREAMING_SNAKE_CASE_ (pl.LightningModule ): '''simple docstring''' def __init__( self : Any , __a : Optional[int] ) ->str: super().__init__() lowerCamelCase_ : List[Any] = model lowerCamelCase_ : List[Any] = 2 lowerCamelCase_ : Optional[int] = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCAmelCase ( self : Any ) ->Tuple: pass def __lowerCamelCase ( A__ : str , A__ : str , A__ : str ) -> Any: # load longformer model from model identifier lowerCamelCase_ : Tuple = LongformerModel.from_pretrained(A__ ) lowerCamelCase_ : Optional[Any] = LightningModel(A__ ) lowerCamelCase_ : Tuple = torch.load(A__ , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model lowerCamelCase_ : List[str] = LongformerForQuestionAnswering.from_pretrained(A__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(A__ ) print(f'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) snake_case__ : Dict = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
171
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :Union[str, Any] , __A :int = 3 , __A :int = 3 , __A :Tuple[str] = ("DownEncoderBlock2D",) , __A :Tuple[str] = ("UpDecoderBlock2D",) , __A :Tuple[int] = (64,) , __A :int = 1 , __A :str = "silu" , __A :int = 3 , __A :int = 32 , __A :int = 256 , __A :int = 32 , __A :Optional[int] = None , __A :float = 0.1_8_2_1_5 , __A :str = "group" , ) -> Any: """simple docstring""" super().__init__() # pass init params to Encoder SCREAMING_SNAKE_CASE__ = Encoder( in_channels=__A , out_channels=__A , down_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , double_z=__A , ) SCREAMING_SNAKE_CASE__ = vq_embed_dim if vq_embed_dim is not None else latent_channels SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) SCREAMING_SNAKE_CASE__ = VectorQuantizer(__A , __A , beta=0.2_5 , remap=__A , sane_index_shape=__A ) SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 ) # pass init params to Decoder SCREAMING_SNAKE_CASE__ = Decoder( in_channels=__A , out_channels=__A , up_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , norm_type=__A , ) @apply_forward_hook def _snake_case ( self :Union[str, Any] , __A :torch.FloatTensor , __A :bool = True ) -> VQEncoderOutput: """simple docstring""" SCREAMING_SNAKE_CASE__ = self.encoder(__A ) SCREAMING_SNAKE_CASE__ = self.quant_conv(__A ) if not return_dict: return (h,) return VQEncoderOutput(latents=__A ) @apply_forward_hook def _snake_case ( self :Tuple , __A :torch.FloatTensor , __A :bool = False , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" if not force_not_quantize: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.quantize(__A ) else: SCREAMING_SNAKE_CASE__ = h SCREAMING_SNAKE_CASE__ = self.post_quant_conv(__A ) SCREAMING_SNAKE_CASE__ = self.decoder(__A , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=__A ) def _snake_case ( self :int , __A :torch.FloatTensor , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: """simple docstring""" SCREAMING_SNAKE_CASE__ = sample SCREAMING_SNAKE_CASE__ = self.encode(__A ).latents SCREAMING_SNAKE_CASE__ = self.decode(__A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__A )
6
import argparse import datetime def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ): SCREAMING_SNAKE_CASE__ = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } SCREAMING_SNAKE_CASE__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(UpperCamelCase__ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month SCREAMING_SNAKE_CASE__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) SCREAMING_SNAKE_CASE__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day SCREAMING_SNAKE_CASE__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator SCREAMING_SNAKE_CASE__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year SCREAMING_SNAKE_CASE__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8_500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation SCREAMING_SNAKE_CASE__ = datetime.date(int(UpperCamelCase__ ) , int(UpperCamelCase__ ) , int(UpperCamelCase__ ) ) # Start math if m <= 2: SCREAMING_SNAKE_CASE__ = y - 1 SCREAMING_SNAKE_CASE__ = m + 12 # maths var SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[:2] ) SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[2:] ) SCREAMING_SNAKE_CASE__ = int(2.6 * m - 5.3_9 ) SCREAMING_SNAKE_CASE__ = int(c / 4 ) SCREAMING_SNAKE_CASE__ = int(k / 4 ) SCREAMING_SNAKE_CASE__ = int(d + k ) SCREAMING_SNAKE_CASE__ = int(t + u + v + x ) SCREAMING_SNAKE_CASE__ = int(z - (2 * c) ) SCREAMING_SNAKE_CASE__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response SCREAMING_SNAKE_CASE__ = f'''Your date {date_input}, is a {days[str(UpperCamelCase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) _lowerCamelCase = parser.parse_args() zeller(args.date_input)
6
1
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() __lowerCAmelCase : Any = logging.get_logger(__name__) __lowerCAmelCase : Any = "The Nymphenburg Palace is a beautiful palace in Munich!" def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 1024, """hidden_size""": 768, """max_length""": 512, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 1024, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } lowerCAmelCase__ = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCAmelCase__ = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] , num_layers=predefined_args["""num_layers"""] , units=predefined_args["""units"""] , hidden_size=predefined_args["""hidden_size"""] , max_length=predefined_args["""max_length"""] , num_heads=predefined_args["""num_heads"""] , scaled=predefined_args["""scaled"""] , dropout=predefined_args["""dropout"""] , output_attention=lowerCamelCase__ , output_all_encodings=lowerCamelCase__ , use_residual=predefined_args["""use_residual"""] , activation=predefined_args.get("""activation""" , """gelu""" ) , layer_norm_eps=predefined_args.get("""layer_norm_eps""" , lowerCamelCase__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCAmelCase__ = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab lowerCAmelCase__ = os.path.join(get_home_dir() , """models""" ) lowerCAmelCase__ = _load_vocab(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , cls=lowerCamelCase__ ) lowerCAmelCase__ = nlp.model.BERTModel( lowerCamelCase__ , len(lowerCamelCase__ ) , units=predefined_args["""units"""] , embed_size=predefined_args["""embed_size"""] , embed_dropout=predefined_args["""embed_dropout"""] , word_embed=predefined_args["""word_embed"""] , use_pooler=lowerCamelCase__ , use_token_type_embed=lowerCamelCase__ , token_type_vocab_size=predefined_args["""token_type_vocab_size"""] , use_classifier=lowerCamelCase__ , use_decoder=lowerCamelCase__ , ) original_bort.load_parameters(lowerCamelCase__ , cast_dtype=lowerCamelCase__ , ignore_extra=lowerCamelCase__ ) lowerCAmelCase__ = original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCAmelCase__ = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.02, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(lowerCamelCase__ ), } lowerCAmelCase__ = BertConfig.from_dict(lowerCamelCase__ ) lowerCAmelCase__ = BertForMaskedLM(lowerCamelCase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowerCamelCase__ ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = hf_param.shape lowerCAmelCase__ = to_torch(params[gluon_param] ) lowerCAmelCase__ = gluon_param.shape assert ( shape_hf == shape_gluon ), f"""The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers""" return gluon_param lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , """word_embed.0.weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , """encoder.position_weight""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , """encoder.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , """encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCAmelCase__ = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCAmelCase__ = hf_bort_model.bert.encoder.layer[i] # self attention lowerCAmelCase__ = layer.attention.self lowerCAmelCase__ = check_and_map_params( self_attn.key.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.key.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_key.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.query.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_query.weight""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.bias.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.bias""" ) lowerCAmelCase__ = check_and_map_params( self_attn.value.weight.data , f"""encoder.transformer_cells.{i}.attention_cell.proj_value.weight""" ) # self attention output lowerCAmelCase__ = layer.attention.output lowerCAmelCase__ = check_and_map_params( self_output.dense.bias , f"""encoder.transformer_cells.{i}.proj.bias""" ) lowerCAmelCase__ = check_and_map_params( self_output.dense.weight , f"""encoder.transformer_cells.{i}.proj.weight""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( self_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.layer_norm.gamma""" ) # intermediate lowerCAmelCase__ = layer.intermediate lowerCAmelCase__ = check_and_map_params( intermediate.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_1.bias""" ) lowerCAmelCase__ = check_and_map_params( intermediate.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_1.weight""" ) # output lowerCAmelCase__ = layer.output lowerCAmelCase__ = check_and_map_params( bert_output.dense.bias , f"""encoder.transformer_cells.{i}.ffn.ffn_2.bias""" ) lowerCAmelCase__ = check_and_map_params( bert_output.dense.weight , f"""encoder.transformer_cells.{i}.ffn.ffn_2.weight""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.bias , f"""encoder.transformer_cells.{i}.ffn.layer_norm.beta""" ) lowerCAmelCase__ = check_and_map_params( bert_output.LayerNorm.weight , f"""encoder.transformer_cells.{i}.ffn.layer_norm.gamma""" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCAmelCase__ = RobertaTokenizer.from_pretrained("""roberta-base""" ) lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ )["""input_ids"""] # Get gluon output lowerCAmelCase__ = mx.nd.array([input_ids] ) lowerCAmelCase__ = original_bort(inputs=lowerCamelCase__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowerCamelCase__ ) lowerCAmelCase__ = BertModel.from_pretrained(lowerCamelCase__ ) hf_bort_model.eval() lowerCAmelCase__ = tokenizer.encode_plus(lowerCamelCase__ , return_tensors="""pt""" ) lowerCAmelCase__ = hf_bort_model(**lowerCamelCase__ )[0] lowerCAmelCase__ = output_gluon[0].asnumpy() lowerCAmelCase__ = output_hf[0].detach().numpy() lowerCAmelCase__ = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCAmelCase__ = np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : str = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
674
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) lowerCAmelCase__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = weights[0][0][0] lowerCAmelCase__ = np.asarray(layer_norm_a[0] ) lowerCAmelCase__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # lsh weights + output lowerCAmelCase__ = weights[0][1] if len(lowerCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) else: set_layer_weights_in_torch_local(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) # intermediate weighs lowerCAmelCase__ = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase__ ) == 4: lowerCAmelCase__ = intermediate_weights[2] # layernorm 2 lowerCAmelCase__ = np.asarray(intermediate_weights[0][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # intermediate dense lowerCAmelCase__ = np.asarray(intermediate_weights[1][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) # intermediate out lowerCAmelCase__ = np.asarray(intermediate_weights[4][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = torch_model.reformer # word embeds lowerCAmelCase__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase__ ) , ) if isinstance(weights[3] , lowerCamelCase__ ): lowerCAmelCase__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCAmelCase__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" lowerCAmelCase__ = nn.Parameter(torch.tensor(lowerCamelCase__ ) ) lowerCAmelCase__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCAmelCase__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # output layer norm lowerCAmelCase__ = np.asarray(weights[7][0] ) lowerCAmelCase__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # output embeddings lowerCAmelCase__ = np.asarray(weights[9][0] ) lowerCAmelCase__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = ReformerConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = ReformerModelWithLMHead(lowerCamelCase__ ) with open(lowerCamelCase__ , """rb""" ) as f: lowerCAmelCase__ = pickle.load(lowerCamelCase__ )["""weights"""] set_model_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
674
1
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class _lowercase ( unittest.TestCase ): def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=16 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=4 , ): __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_attention_mask __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = num_choices def lowerCAmelCase__ ( self ): __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = None if self.use_attention_mask: __magic_name__ = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase__ ( self ): __magic_name__ = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = config_and_inputs __magic_name__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self ): __magic_name__ = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = config_and_inputs __magic_name__ = True __magic_name__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class _lowercase ( a_ , unittest.TestCase ): _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase__ ( self ): __magic_name__ = FlaxRobertaModelTester(self ) @slow def lowerCAmelCase__ ( self ): for model_class_name in self.all_model_classes: __magic_name__ = model_class_name.from_pretrained('''roberta-base''' , from_pt=__SCREAMING_SNAKE_CASE ) __magic_name__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
490
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) class A_ ( a_ ): _SCREAMING_SNAKE_CASE = ["""pixel_values"""] def __init__( self : Any , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 2_55 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : bool = True , **__SCREAMING_SNAKE_CASE : Optional[int] , ): super().__init__(**__SCREAMING_SNAKE_CASE ) __a = size if size is not None else {"height": 3_84, "width": 3_84} __a = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) __a = do_resize __a = size __a = resample __a = do_rescale __a = rescale_factor __a = do_normalize __a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __a = image_std if image_std is not None else OPENAI_CLIP_STD __a = do_convert_rgb def _UpperCAmelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Any , ): __a = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) __a = (size["height"], size["width"]) return resize(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[int, float] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : str , ): return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : int , ): return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : ImageInput , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[Dict[str, int]] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[float] = None , __SCREAMING_SNAKE_CASE : Optional[bool] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : ChannelDimension = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE : Any , ): __a = do_resize if do_resize is not None else self.do_resize __a = resample if resample is not None else self.resample __a = do_rescale if do_rescale is not None else self.do_rescale __a = rescale_factor if rescale_factor is not None else self.rescale_factor __a = do_normalize if do_normalize is not None else self.do_normalize __a = image_mean if image_mean is not None else self.image_mean __a = image_std if image_std is not None else self.image_std __a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __a = size if size is not None else self.size __a = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) __a = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: __a = [convert_to_rgb(__SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. __a = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: __a = [self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: __a = [self.rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: __a = [self.normalize(image=__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE ) for image in images] __a = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] __a = BatchFeature(data={"pixel_values": images} , tensor_type=__SCREAMING_SNAKE_CASE ) return encoded_outputs
197
0
import numpy as np def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Tuple = int(np.ceil((x_end - xa) / h ) ) UpperCAmelCase_ : Tuple = np.zeros((n + 1,) ) UpperCAmelCase_ : int = ya UpperCAmelCase_ : Tuple = xa for k in range(__lowercase ): UpperCAmelCase_ : int = f(__lowercase , y[k] ) UpperCAmelCase_ : Union[str, Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCAmelCase_ : Dict = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCAmelCase_ : Optional[Any] = f(x + h , y[k] + h * ka ) UpperCAmelCase_ : Union[str, Any] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
717
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig _snake_case : Any = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class A ( _a ): lowercase_ = 'albert' def __init__( self : List[str] , lowerCAmelCase_ : Tuple=3_00_00 , lowerCAmelCase_ : Dict=1_28 , lowerCAmelCase_ : str=40_96 , lowerCAmelCase_ : int=12 , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Tuple=64 , lowerCAmelCase_ : Union[str, Any]=1_63_84 , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Union[str, Any]="gelu_new" , lowerCAmelCase_ : List[str]=0 , lowerCAmelCase_ : int=0 , lowerCAmelCase_ : Dict=5_12 , lowerCAmelCase_ : Any=2 , lowerCAmelCase_ : Any=0.0_2 , lowerCAmelCase_ : Tuple=1e-12 , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : Union[str, Any]="absolute" , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : List[str]=2 , lowerCAmelCase_ : Dict=3 , **lowerCAmelCase_ : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) _a = vocab_size _a = embedding_size _a = hidden_size _a = num_hidden_layers _a = num_hidden_groups _a = num_attention_heads _a = inner_group_num _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = classifier_dropout_prob _a = position_embedding_type class A ( _a ): @property def __lowerCAmelCase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
22
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): lowercase_ = StableDiffusionInstructPixaPixPipeline lowercase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} lowercase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowercase_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowercase( self : str )-> int: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE__ : List[str] = PNDMScheduler(skip_prk_steps=a_ ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE__ : int = CLIPTextModel(a_ ) SCREAMING_SNAKE_CASE__ : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE__ : List[str] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowercase( self : List[Any] , a_ : Tuple , a_ : Optional[Any]=0 )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(a_ ) ).to(a_ ) SCREAMING_SNAKE_CASE__ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ : List[Any] = Image.fromarray(np.uinta(a_ ) ).convert('RGB' ) if str(a_ ).startswith('mps' ): SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(a_ ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.Generator(device=a_ ).manual_seed(a_ ) SCREAMING_SNAKE_CASE__ : Dict = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def __lowercase( self : str )-> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : List[str] = StableDiffusionInstructPixaPixPipeline(**a_ ) SCREAMING_SNAKE_CASE__ : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = self.get_dummy_inputs(a_ ) SCREAMING_SNAKE_CASE__ : int = sd_pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ : Dict = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowercase( self : Optional[Any] )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Dict = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : List[str] = self.get_dummy_inputs(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = 'french fries' SCREAMING_SNAKE_CASE__ : Optional[Any] = sd_pipe(**a_ , negative_prompt=a_ ) SCREAMING_SNAKE_CASE__ : Dict = output.images SCREAMING_SNAKE_CASE__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ : List[str] = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowercase( self : List[Any] )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Optional[Any] = StableDiffusionInstructPixaPixPipeline(**a_ ) SCREAMING_SNAKE_CASE__ : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_inputs(a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [inputs['prompt']] * 2 SCREAMING_SNAKE_CASE__ : List[str] = np.array(inputs['image'] ).astype(np.floataa ) / 255.0 SCREAMING_SNAKE_CASE__ : Tuple = torch.from_numpy(a_ ).unsqueeze(0 ).to(a_ ) SCREAMING_SNAKE_CASE__ : Dict = image / 2 + 0.5 SCREAMING_SNAKE_CASE__ : Tuple = image.permute(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE__ : int = image.repeat(2 , 1 , 1 , 1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = sd_pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : Any = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) SCREAMING_SNAKE_CASE__ : int = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowercase( self : List[Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : str = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Optional[Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' ) SCREAMING_SNAKE_CASE__ : List[Any] = StableDiffusionInstructPixaPixPipeline(**a_ ) SCREAMING_SNAKE_CASE__ : Dict = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_dummy_inputs(a_ ) SCREAMING_SNAKE_CASE__ : Tuple = sd_pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : Any = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Any = [round(a_ , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(a_ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE__ : List[Any] = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowercase( self : Union[str, Any] )-> Any: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __lowercase( self : List[Any] )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : List[str] = StableDiffusionInstructPixaPixPipeline(**a_ ) SCREAMING_SNAKE_CASE__ : int = VaeImageProcessor(do_resize=a_ , do_normalize=a_ ) SCREAMING_SNAKE_CASE__ : Tuple = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) SCREAMING_SNAKE_CASE__ : Any = pipe(**self.get_dummy_inputs_by_type(a_ , input_image_type='pt' ) )[0] SCREAMING_SNAKE_CASE__ : Optional[int] = components['vae'] SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_inputs_by_type(a_ , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = vae.encode(inputs[image_param] ).latent_dist.mode() SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe(**a_ )[0] SCREAMING_SNAKE_CASE__ : List[Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(a_ , 1e-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def __lowercase( self : Tuple )-> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase( self : List[Any] , a_ : Dict=0 )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = torch.manual_seed(a_ ) SCREAMING_SNAKE_CASE__ : List[str] = load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) SCREAMING_SNAKE_CASE__ : Tuple = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def __lowercase( self : int )-> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : str = self.get_inputs() SCREAMING_SNAKE_CASE__ : Optional[Any] = pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __lowercase( self : Dict )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=a_ ) SCREAMING_SNAKE_CASE__ : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : Tuple = self.get_inputs() SCREAMING_SNAKE_CASE__ : Dict = pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ : List[Any] = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __lowercase( self : Optional[int] )-> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=a_ ) SCREAMING_SNAKE_CASE__ : Dict = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : str = self.get_inputs() SCREAMING_SNAKE_CASE__ : Tuple = pipe(**a_ ).images SCREAMING_SNAKE_CASE__ : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE__ : List[str] = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def __lowercase( self : int )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = 0 def callback_fn(a_ : int , a_ : int , a_ : torch.FloatTensor ) -> None: SCREAMING_SNAKE_CASE__ : Tuple = True nonlocal number_of_steps number_of_steps += 1 if step == 1: SCREAMING_SNAKE_CASE__ : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) SCREAMING_SNAKE_CASE__ : List[Any] = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Optional[int] = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: SCREAMING_SNAKE_CASE__ : Optional[int] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) SCREAMING_SNAKE_CASE__ : Tuple = latents[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Dict = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : List[Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=a_ , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Tuple = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : Tuple = self.get_inputs() pipe(**a_ , callback=a_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __lowercase( self : int )-> Any: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE__ : Union[str, Any] = StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=a_ , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Tuple = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE__ : Tuple = self.get_inputs() SCREAMING_SNAKE_CASE__ : Union[str, Any] = pipe(**a_ ) SCREAMING_SNAKE_CASE__ : Any = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __lowercase( self : Tuple )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 SCREAMING_SNAKE_CASE__ : Dict = inputs['image'].resize((504, 504) ) SCREAMING_SNAKE_CASE__ : List[Any] = 'timbrooks/instruct-pix2pix' SCREAMING_SNAKE_CASE__ : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( a_ , safety_checker=a_ , ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() SCREAMING_SNAKE_CASE__ : Any = pipe(**a_ ) SCREAMING_SNAKE_CASE__ : List[str] = output.images[0] SCREAMING_SNAKE_CASE__ : Any = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) SCREAMING_SNAKE_CASE__ : str = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
85
0
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = ["""vqvae"""] def __init__( self : Optional[Any] , A : AutoencoderKL , A : UNetaDConditionModel , A : Mel , A : Union[DDIMScheduler, DDPMScheduler] , ): super().__init__() self.register_modules(unet=A , scheduler=A , mel=A , vqvae=A ) def UpperCAmelCase__ ( self : str ): return 50 if isinstance(self.scheduler , A ) else 1_000 @torch.no_grad() def __call__( self : int , A : int = 1 , A : str = None , A : np.ndarray = None , A : int = 0 , A : int = 0 , A : int = None , A : torch.Generator = None , A : float = 0 , A : float = 0 , A : torch.Generator = None , A : float = 0 , A : torch.Tensor = None , A : torch.Tensor = None , A : Optional[int]=True , ): __snake_case: Union[str, Any] = steps or self.get_default_steps() self.scheduler.set_timesteps(A ) __snake_case: List[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __snake_case: Dict = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __snake_case: Any = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=A , device=self.device , ) __snake_case: List[Any] = noise __snake_case: Union[str, Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(A , A ) __snake_case: Tuple = self.mel.audio_slice_to_image(A ) __snake_case: Dict = np.frombuffer(input_image.tobytes() , dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) __snake_case: Union[str, Any] = (input_image / 255) * 2 - 1 __snake_case: int = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: __snake_case: Tuple = self.vqvae.encode(torch.unsqueeze(A , 0 ) ).latent_dist.sample( generator=A )[0] __snake_case: List[str] = self.vqvae.config.scaling_factor * input_images if start_step > 0: __snake_case: Optional[Any] = self.scheduler.add_noise(A , A , self.scheduler.timesteps[start_step - 1] ) __snake_case: str = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __snake_case: List[Any] = int(mask_start_secs * pixels_per_second ) __snake_case: Union[str, Any] = int(mask_end_secs * pixels_per_second ) __snake_case: Optional[int] = self.scheduler.add_noise(A , A , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , A ): __snake_case: List[Any] = self.unet(A , A , A )["""sample"""] else: __snake_case: str = self.unet(A , A )["""sample"""] if isinstance(self.scheduler , A ): __snake_case: int = self.scheduler.step( model_output=A , timestep=A , sample=A , eta=A , generator=A , )["""prev_sample"""] else: __snake_case: str = self.scheduler.step( model_output=A , timestep=A , sample=A , generator=A , )["""prev_sample"""] if mask is not None: if mask_start > 0: __snake_case: Union[str, Any] = mask[:, step, :, :mask_start] if mask_end > 0: __snake_case: Dict = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __snake_case: Any = 1 / self.vqvae.config.scaling_factor * images __snake_case: Optional[int] = self.vqvae.decode(A )["""sample"""] __snake_case: int = (images / 2 + 0.5).clamp(0 , 1 ) __snake_case: Dict = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() __snake_case: Any = (images * 255).round().astype("""uint8""" ) __snake_case: Tuple = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(A , mode="""RGB""" ).convert("""L""" ) for _ in images) ) __snake_case: Dict = [self.mel.image_to_audio(A ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(A )[:, np.newaxis, :] ) , **ImagePipelineOutput(A ) ) @torch.no_grad() def UpperCAmelCase__ ( self : List[Any] , A : List[Image.Image] , A : int = 50 ): assert isinstance(self.scheduler , A ) self.scheduler.set_timesteps(A ) __snake_case: List[str] = np.array( [np.frombuffer(image.tobytes() , dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) __snake_case: Optional[Any] = (sample / 255) * 2 - 1 __snake_case: List[Any] = torch.Tensor(A ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): __snake_case: List[str] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __snake_case: Any = self.scheduler.alphas_cumprod[t] __snake_case: Any = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __snake_case: Dict = 1 - alpha_prod_t __snake_case: int = self.unet(A , A )["""sample"""] __snake_case: str = (1 - alpha_prod_t_prev) ** 0.5 * model_output __snake_case: List[str] = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __snake_case: int = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase__ ( A : torch.Tensor , A : torch.Tensor , A : float ): __snake_case: Any = acos(torch.dot(torch.flatten(A ) , torch.flatten(A ) ) / torch.norm(A ) / torch.norm(A ) ) return sin((1 - alpha) * theta ) * xa / sin(A ) + sin(alpha * theta ) * xa / sin(A )
155
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_50, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """pytorch""", """script""": """run_ddp.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_00, """eval_accuracy""": 0.7, """eval_loss""": 0.6}, }, { """framework""": """tensorflow""", """script""": """run_tf_dist.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.p3.16xlarge""", """results""": {"""train_runtime""": 6_00, """eval_accuracy""": 0.6, """eval_loss""": 0.7}, }, ] ) class __snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : Optional[Any] ): if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=A , ) assert hasattr(self , """env""" ) def UpperCAmelCase__ ( self : int , A : List[Any] ): __snake_case: Optional[int] = f'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}''' # distributed data settings __snake_case: Optional[int] = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=A , instance_count=A , instance_type=self.instance_type , debugger_hook_config=A , hyperparameters={**self.env.distributed_hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=A , py_version="""py36""" , ) def UpperCAmelCase__ ( self : List[Any] , A : int ): TrainingJobAnalytics(A ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def UpperCAmelCase__ ( self : str , A : Any ): # create estimator __snake_case: str = self.create_estimator(A ) # run training estimator.fit() # result dataframe __snake_case: Optional[int] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis __snake_case: Union[str, Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) __snake_case: List[str] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping __snake_case: Tuple = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , A )
155
1
'''simple docstring''' from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
50
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
240
0
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class a ( unittest.TestCase ): def lowerCamelCase__ ( self : List[Any] , lowerCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =3 SCREAMING_SNAKE_CASE_: List[str] =250 SCREAMING_SNAKE_CASE_: Any =ids_tensor((batch_size, length) , lowerCAmelCase ) SCREAMING_SNAKE_CASE_: Tuple =torch.ones((batch_size, length) , device=lowerCAmelCase , dtype=torch.float ) / length return input_ids, scores def lowerCamelCase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =self._get_tensors(5 ) SCREAMING_SNAKE_CASE_: int =StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Dict =self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: int =self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def lowerCamelCase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =MaxLengthCriteria(max_length=10 ) SCREAMING_SNAKE_CASE_: Dict =self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Tuple =self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: int =self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def lowerCamelCase__ ( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =self._get_tensors(5 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Any =self._get_tensors(9 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: str =self._get_tensors(10 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: List[str] =StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def lowerCamelCase__ ( self : str ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[Any] =self._get_tensors(5 ) SCREAMING_SNAKE_CASE_: Union[str, Any] =MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCAmelCase , lowerCAmelCase ) ) SCREAMING_SNAKE_CASE_: Optional[int] =MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCAmelCase , lowerCAmelCase ) ) def lowerCamelCase__ ( self : str ) -> Dict: '''simple docstring''' validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) SCREAMING_SNAKE_CASE_: Optional[int] =validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCAmelCase ) , 1 )
713
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
36
0
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract __lowerCamelCase = logging.get_logger(__name__) def UpperCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : int ): return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def UpperCamelCase ( __lowerCamelCase : np.ndarray , __lowerCamelCase : Optional[str] , __lowerCamelCase : Optional[str] = None ): snake_case : Tuple = tesseract_config if tesseract_config is not None else "" # apply OCR snake_case : List[Any] = to_pil_image(__lowerCamelCase ) snake_case , snake_case : Union[str, Any] = pil_image.size snake_case : Dict = pytesseract.image_to_data(__lowerCamelCase , lang=__lowerCamelCase , output_type="dict" , config=__lowerCamelCase ) snake_case , snake_case , snake_case , snake_case , snake_case : Dict = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates snake_case : Tuple = [idx for idx, word in enumerate(__lowerCamelCase ) if not word.strip()] snake_case : int = [word for idx, word in enumerate(__lowerCamelCase ) if idx not in irrelevant_indices] snake_case : Tuple = [coord for idx, coord in enumerate(__lowerCamelCase ) if idx not in irrelevant_indices] snake_case : Optional[int] = [coord for idx, coord in enumerate(__lowerCamelCase ) if idx not in irrelevant_indices] snake_case : str = [coord for idx, coord in enumerate(__lowerCamelCase ) if idx not in irrelevant_indices] snake_case : str = [coord for idx, coord in enumerate(__lowerCamelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format snake_case : Optional[int] = [] for x, y, w, h in zip(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): snake_case : Optional[Any] = [x, y, x + w, y + h] actual_boxes.append(__lowerCamelCase ) # finally, normalize the bounding boxes snake_case : Optional[Any] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ) assert len(__lowerCamelCase ) == len(__lowerCamelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase ( A_ ): A__ : Union[str, Any] = ["pixel_values"] def __init__(self : Optional[int] , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = PILImageResampling.BILINEAR , snake_case__ : bool = True , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = "" , **snake_case__ : Optional[int] , ) -> None: '''simple docstring''' super().__init__(**snake_case__ ) snake_case : Tuple = size if size is not None else {"height": 2_24, "width": 2_24} snake_case : str = get_size_dict(snake_case__ ) snake_case : List[Any] = do_resize snake_case : Dict = size snake_case : Dict = resample snake_case : List[Any] = apply_ocr snake_case : str = ocr_lang snake_case : List[str] = tesseract_config def _SCREAMING_SNAKE_CASE (self : int , snake_case__ : np.ndarray , snake_case__ : Dict[str, int] , snake_case__ : PILImageResampling = PILImageResampling.BILINEAR , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Optional[Any] , ) -> np.ndarray: '''simple docstring''' snake_case : str = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) snake_case : Optional[int] = (size["height"], size["width"]) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : ImageInput , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = None , snake_case__ : bool = None , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : ChannelDimension = ChannelDimension.FIRST , **snake_case__ : Union[str, Any] , ) -> PIL.Image.Image: '''simple docstring''' snake_case : Any = do_resize if do_resize is not None else self.do_resize snake_case : List[Any] = size if size is not None else self.size snake_case : Any = get_size_dict(snake_case__ ) snake_case : Union[str, Any] = resample if resample is not None else self.resample snake_case : List[str] = apply_ocr if apply_ocr is not None else self.apply_ocr snake_case : Union[str, Any] = ocr_lang if ocr_lang is not None else self.ocr_lang snake_case : int = tesseract_config if tesseract_config is not None else self.tesseract_config snake_case : int = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) # All transformations expect numpy arrays. snake_case : int = [to_numpy_array(snake_case__ ) for image in images] if apply_ocr: requires_backends(self , "pytesseract" ) snake_case : str = [] snake_case : Dict = [] for image in images: snake_case , snake_case : Any = apply_tesseract(snake_case__ , snake_case__ , snake_case__ ) words_batch.append(snake_case__ ) boxes_batch.append(snake_case__ ) if do_resize: snake_case : Optional[int] = [self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) snake_case : Any = [flip_channel_order(snake_case__ ) for image in images] snake_case : List[str] = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] snake_case : Optional[Any] = BatchFeature(data={"pixel_values": images} , tensor_type=snake_case__ ) if apply_ocr: snake_case : List[Any] = words_batch snake_case : Union[str, Any] = boxes_batch return data
204
def UpperCamelCase ( __lowerCamelCase : int = 1 , __lowerCamelCase : int = 1000 ): snake_case : int = 1 snake_case : int = 0 for divide_by_number in range(__lowerCamelCase , digit + 1 ): snake_case : list[int] = [] snake_case : Optional[int] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__lowerCamelCase ): snake_case : List[Any] = len(__lowerCamelCase ) snake_case : List[str] = divide_by_number else: has_been_divided.append(__lowerCamelCase ) snake_case : Any = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
204
1
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint a__ = { """169M""": 12, """430M""": 24, """1B5""": 24, """3B""": 32, """7B""": 32, """14B""": 40, } a__ = { """169M""": 768, """430M""": 1_024, """1B5""": 2_048, """3B""": 2_560, """7B""": 4_096, """14B""": 5_120, } def snake_case__ ( a ) -> Tuple: '''simple docstring''' snake_case__ = list(state_dict.keys() ) for name in state_dict_keys: snake_case__ = state_dict.pop(a ) # emb -> embedding if name.startswith("""emb.""" ): snake_case__ = name.replace("""emb.""" , """embeddings.""" ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("""blocks.0.ln0""" ): snake_case__ = name.replace("""blocks.0.ln0""" , """blocks.0.pre_ln""" ) # att -> attention snake_case__ = re.sub(R"""blocks\.(\d+)\.att""" , R"""blocks.\1.attention""" , a ) # ffn -> feed_forward snake_case__ = re.sub(R"""blocks\.(\d+)\.ffn""" , R"""blocks.\1.feed_forward""" , a ) # time_mix_k -> time_mix_key and reshape if name.endswith(""".time_mix_k""" ): snake_case__ = name.replace(""".time_mix_k""" , """.time_mix_key""" ) # time_mix_v -> time_mix_value and reshape if name.endswith(""".time_mix_v""" ): snake_case__ = name.replace(""".time_mix_v""" , """.time_mix_value""" ) # time_mix_r -> time_mix_key and reshape if name.endswith(""".time_mix_r""" ): snake_case__ = name.replace(""".time_mix_r""" , """.time_mix_receptance""" ) if name != "head.weight": snake_case__ = """rwkv.""" + name snake_case__ = weight return state_dict def snake_case__ ( a , a , a , a=None , a=None , a=False , a=None ) -> Optional[int]: '''simple docstring''' if tokenizer_file is None: print("""No `--tokenizer_file` provided, we will use the default tokenizer.""" ) snake_case__ = 5_0277 snake_case__ = AutoTokenizer.from_pretrained("""EleutherAI/gpt-neox-20b""" ) else: snake_case__ = PreTrainedTokenizerFast(tokenizer_file=a ) snake_case__ = len(a ) tokenizer.save_pretrained(a ) # 2. Build the config snake_case__ = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: snake_case__ = candidate break if size is None: raise ValueError("""Could not infer the size, please provide it with the `--size` argument.""" ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) snake_case__ = RwkvConfig( vocab_size=a , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(a ) # 3. Download model file then convert state_dict snake_case__ = hf_hub_download(a , a ) snake_case__ = torch.load(a , map_location="""cpu""" ) snake_case__ = convert_state_dict(a ) # 4. Split in shards and save snake_case__ , snake_case__ = shard_checkpoint(a ) for shard_file, shard in shards.items(): torch.save(a , os.path.join(a , a ) ) if index is not None: snake_case__ = os.path.join(a , a ) # Save the index as well with open(a , """w""" , encoding="""utf-8""" ) as f: snake_case__ = json.dumps(a , indent=2 , sort_keys=a ) + """\n""" f.write(a ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( """Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model.""" ) snake_case__ = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: snake_case__ = torch.load(os.path.join(a , a ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(a , a ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("""Please provide a `model_name` to push the model to the Hub.""" ) snake_case__ = AutoModelForCausalLM.from_pretrained(a ) model.push_to_hub(a , max_shard_size="""2GB""" ) tokenizer.push_to_hub(a ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) a__ = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
701
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def snake_case__ ( a , a , a , a , a ) -> Optional[int]: '''simple docstring''' snake_case__ = StableDiffusionPipeline.from_pretrained(a , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors snake_case__ = load_file(a ) snake_case__ = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: snake_case__ = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) snake_case__ = pipeline.text_encoder else: snake_case__ = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) snake_case__ = pipeline.unet # find the target layer snake_case__ = layer_infos.pop(0 ) while len(a ) > -1: try: snake_case__ = curr_layer.__getattr__(a ) if len(a ) > 0: snake_case__ = layer_infos.pop(0 ) elif len(a ) == 0: break except Exception: if len(a ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: snake_case__ = layer_infos.pop(0 ) snake_case__ = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(a ) else: pair_keys.append(a ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: snake_case__ = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) snake_case__ = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a , a ).unsqueeze(2 ).unsqueeze(3 ) else: snake_case__ = state_dict[pair_keys[0]].to(torch.floataa ) snake_case__ = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(a , a ) # update visited list for item in pair_keys: visited.append(a ) return pipeline if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') a__ = parser.parse_args() a__ = args.base_model_path a__ = args.checkpoint_path a__ = args.dump_path a__ = args.lora_prefix_unet a__ = args.lora_prefix_text_encoder a__ = args.alpha a__ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) a__ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
566
0
from math import isqrt def UpperCamelCase ( _A : int )-> list[int]: """simple docstring""" A__ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , _A , _A ): A__ = False return [i for i in range(2 , _A ) if is_prime[i]] def UpperCamelCase ( _A : int = 10**8 )-> int: """simple docstring""" A__ = calculate_prime_numbers(max_number // 2 ) A__ = 0 A__ = 0 A__ = len(_A ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'''{solution() = }''')
491
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__=768 ): super().__init__(UpperCAmelCase__ ) A__ = proj_size A__ = CLIPVisionModel(UpperCAmelCase__ ) A__ = PaintByExampleMapper(UpperCAmelCase__ ) A__ = nn.LayerNorm(config.hidden_size ) A__ = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling A__ = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__=False ): A__ = self.model(pixel_values=UpperCAmelCase__ ) A__ = clip_output.pooler_output A__ = self.mapper(latent_states[:, None] ) A__ = self.final_layer_norm(UpperCAmelCase__ ) A__ = self.proj_out(UpperCAmelCase__ ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class UpperCamelCase ( nn.Module ): def __init__( self , UpperCAmelCase__ ): super().__init__() A__ = (config.num_hidden_layers + 1) // 5 A__ = config.hidden_size A__ = 1 A__ = nn.ModuleList( [ BasicTransformerBlock(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , activation_fn="gelu" , attention_bias=UpperCAmelCase__ ) for _ in range(UpperCAmelCase__ ) ] ) def __A ( self , UpperCAmelCase__ ): for block in self.blocks: A__ = block(UpperCAmelCase__ ) return hidden_states
491
1
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowercase__ ( __A , __A , unittest.TestCase ): __UpperCamelCase = AutoencoderKL __UpperCamelCase = """sample""" __UpperCamelCase = 1E-2 @property def UpperCAmelCase__ ( self ): lowerCAmelCase_ : List[Any] = 4 lowerCAmelCase_ : Any = 3 lowerCAmelCase_ : int = (32, 32) lowerCAmelCase_ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(_lowercase ) return {"sample": image} @property def UpperCAmelCase__ ( self ): return (3, 32, 32) @property def UpperCAmelCase__ ( self ): return (3, 32, 32) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : int = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } lowerCAmelCase_ : Dict = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase__ ( self ): pass def UpperCAmelCase__ ( self ): pass @unittest.skipIf(torch_device == """mps""" , """Gradient checkpointing skipped on MPS""" ) def UpperCAmelCase__ ( self ): # enable deterministic behavior for gradient checkpointing lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self.prepare_init_args_and_inputs_for_common() lowerCAmelCase_ : List[str] = self.model_class(**_lowercase ) model.to(_lowercase ) assert not model.is_gradient_checkpointing and model.training lowerCAmelCase_ : Union[str, Any] = model(**_lowercase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() lowerCAmelCase_ : Tuple = torch.randn_like(_lowercase ) lowerCAmelCase_ : Optional[Any] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing lowerCAmelCase_ : List[str] = self.model_class(**_lowercase ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(_lowercase ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training lowerCAmelCase_ : str = model_a(**_lowercase ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() lowerCAmelCase_ : Any = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) lowerCAmelCase_ : Dict = dict(model.named_parameters() ) lowerCAmelCase_ : List[Any] = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ , lowerCAmelCase_ : str = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" , output_loading_info=_lowercase ) self.assertIsNotNone(_lowercase ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(_lowercase ) lowerCAmelCase_ : Union[str, Any] = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def UpperCAmelCase__ ( self ): lowerCAmelCase_ : List[Any] = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" ) lowerCAmelCase_ : Optional[Any] = model.to(_lowercase ) model.eval() if torch_device == "mps": lowerCAmelCase_ : int = torch.manual_seed(0 ) else: lowerCAmelCase_ : List[Any] = torch.Generator(device=_lowercase ).manual_seed(0 ) lowerCAmelCase_ : Tuple = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCAmelCase_ : Tuple = image.to(_lowercase ) with torch.no_grad(): lowerCAmelCase_ : int = model(_lowercase , sample_posterior=_lowercase , generator=_lowercase ).sample lowerCAmelCase_ : Union[str, Any] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": lowerCAmelCase_ : Tuple = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": lowerCAmelCase_ : Optional[Any] = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: lowerCAmelCase_ : Tuple = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(_lowercase , _lowercase , rtol=1e-2 ) ) @slow class lowercase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self , _lowercase , _lowercase ): return F'gaussian_noise_s={seed}_shape={"_".join([str(_lowercase ) for s in shape] )}.npy' def UpperCAmelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self , _lowercase=0 , _lowercase=(4, 3, 512, 512) , _lowercase=False ): lowerCAmelCase_ : List[Any] = torch.floataa if fpaa else torch.floataa lowerCAmelCase_ : int = torch.from_numpy(load_hf_numpy(self.get_file_format(_lowercase , _lowercase ) ) ).to(_lowercase ).to(_lowercase ) return image def UpperCAmelCase__ ( self , _lowercase="CompVis/stable-diffusion-v1-4" , _lowercase=False ): lowerCAmelCase_ : Any = """fp16""" if fpaa else None lowerCAmelCase_ : List[str] = torch.floataa if fpaa else torch.floataa lowerCAmelCase_ : Union[str, Any] = AutoencoderKL.from_pretrained( _lowercase , subfolder="""vae""" , torch_dtype=_lowercase , revision=_lowercase , ) model.to(_lowercase ).eval() return model def UpperCAmelCase__ ( self , _lowercase=0 ): if torch_device == "mps": return torch.manual_seed(_lowercase ) return torch.Generator(device=_lowercase ).manual_seed(_lowercase ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ): lowerCAmelCase_ : int = self.get_sd_vae_model() lowerCAmelCase_ : Any = self.get_sd_image(_lowercase ) lowerCAmelCase_ : str = self.get_generator(_lowercase ) with torch.no_grad(): lowerCAmelCase_ : List[str] = model(_lowercase , generator=_lowercase , sample_posterior=_lowercase ).sample assert sample.shape == image.shape lowerCAmelCase_ : int = sample[-1, -2:, -2:, :2].flatten().float().cpu() lowerCAmelCase_ : List[str] = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(_lowercase , _lowercase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def UpperCAmelCase__ ( self , _lowercase , _lowercase ): lowerCAmelCase_ : Optional[Any] = self.get_sd_vae_model(fpaa=_lowercase ) lowerCAmelCase_ : Any = self.get_sd_image(_lowercase , fpaa=_lowercase ) lowerCAmelCase_ : Dict = self.get_generator(_lowercase ) with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = model(_lowercase , generator=_lowercase , sample_posterior=_lowercase ).sample assert sample.shape == image.shape lowerCAmelCase_ : List[str] = sample[-1, -2:, :2, -2:].flatten().float().cpu() lowerCAmelCase_ : str = torch.tensor(_lowercase ) assert torch_all_close(_lowercase , _lowercase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ): lowerCAmelCase_ : List[str] = self.get_sd_vae_model() lowerCAmelCase_ : Optional[int] = self.get_sd_image(_lowercase ) with torch.no_grad(): lowerCAmelCase_ : Dict = model(_lowercase ).sample assert sample.shape == image.shape lowerCAmelCase_ : Optional[Any] = sample[-1, -2:, -2:, :2].flatten().float().cpu() lowerCAmelCase_ : Optional[Any] = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice ) assert torch_all_close(_lowercase , _lowercase , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def UpperCAmelCase__ ( self , _lowercase , _lowercase ): lowerCAmelCase_ : Dict = self.get_sd_vae_model() lowerCAmelCase_ : Optional[int] = self.get_sd_image(_lowercase , shape=(3, 4, 64, 64) ) with torch.no_grad(): lowerCAmelCase_ : Any = model.decode(_lowercase ).sample assert list(sample.shape ) == [3, 3, 512, 512] lowerCAmelCase_ : Tuple = sample[-1, -2:, :2, -2:].flatten().cpu() lowerCAmelCase_ : str = torch.tensor(_lowercase ) assert torch_all_close(_lowercase , _lowercase , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def UpperCAmelCase__ ( self , _lowercase , _lowercase ): lowerCAmelCase_ : Union[str, Any] = self.get_sd_vae_model(fpaa=_lowercase ) lowerCAmelCase_ : Union[str, Any] = self.get_sd_image(_lowercase , shape=(3, 4, 64, 64) , fpaa=_lowercase ) with torch.no_grad(): lowerCAmelCase_ : List[str] = model.decode(_lowercase ).sample assert list(sample.shape ) == [3, 3, 512, 512] lowerCAmelCase_ : int = sample[-1, -2:, :2, -2:].flatten().float().cpu() lowerCAmelCase_ : Union[str, Any] = torch.tensor(_lowercase ) assert torch_all_close(_lowercase , _lowercase , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def UpperCAmelCase__ ( self , _lowercase ): lowerCAmelCase_ : Optional[int] = self.get_sd_vae_model(fpaa=_lowercase ) lowerCAmelCase_ : List[Any] = self.get_sd_image(_lowercase , shape=(3, 4, 64, 64) , fpaa=_lowercase ) with torch.no_grad(): lowerCAmelCase_ : List[Any] = model.decode(_lowercase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): lowerCAmelCase_ : int = model.decode(_lowercase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowercase , _lowercase , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" ) def UpperCAmelCase__ ( self , _lowercase ): lowerCAmelCase_ : int = self.get_sd_vae_model() lowerCAmelCase_ : Any = self.get_sd_image(_lowercase , shape=(3, 4, 64, 64) ) with torch.no_grad(): lowerCAmelCase_ : Tuple = model.decode(_lowercase ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): lowerCAmelCase_ : List[str] = model.decode(_lowercase ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(_lowercase , _lowercase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def UpperCAmelCase__ ( self , _lowercase , _lowercase ): lowerCAmelCase_ : Dict = self.get_sd_vae_model() lowerCAmelCase_ : Any = self.get_sd_image(_lowercase ) lowerCAmelCase_ : int = self.get_generator(_lowercase ) with torch.no_grad(): lowerCAmelCase_ : List[Any] = model.encode(_lowercase ).latent_dist lowerCAmelCase_ : List[str] = dist.sample(generator=_lowercase ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] lowerCAmelCase_ : Optional[int] = sample[0, -1, -3:, -3:].flatten().cpu() lowerCAmelCase_ : Dict = torch.tensor(_lowercase ) lowerCAmelCase_ : List[str] = 3e-3 if torch_device != """mps""" else 1e-2 assert torch_all_close(_lowercase , _lowercase , atol=_lowercase )
440
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : Tuple = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
440
1
def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("""Input value must be an \'int\' type""" ) lowercase__ : List[str] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
12
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py UpperCamelCase_ = '''.''' if __name__ == "__main__": UpperCamelCase_ = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') UpperCamelCase_ = [] UpperCamelCase_ = [] with open(doctest_file_path) as fp: for line in fp: UpperCamelCase_ = line.strip() UpperCamelCase_ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: UpperCamelCase_ = '''\n'''.join(non_existent_paths) raise ValueError(f"`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}") if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
209
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase__ ( A ): '''simple docstring''' A_ = (DDIMParallelScheduler,) A_ = (("""eta""", 0.0), ("""num_inference_steps""", 50)) def __UpperCAmelCase ( self : Any , **UpperCamelCase_ : Dict ) -> Union[str, Any]: '''simple docstring''' _lowercase : Tuple = { 'num_train_timesteps': 1000, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**UpperCamelCase_ ) return config def __UpperCAmelCase ( self : List[str] , **UpperCamelCase_ : Optional[Any] ) -> Dict: '''simple docstring''' _lowercase : List[str] = self.scheduler_classes[0] _lowercase : List[str] = self.get_scheduler_config(**UpperCamelCase_ ) _lowercase : Optional[Any] = scheduler_class(**UpperCamelCase_ ) _lowercase : Dict = 10, 0.0 _lowercase : Any = self.dummy_model() _lowercase : Any = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase_ ) for t in scheduler.timesteps: _lowercase : List[Any] = model(UpperCamelCase_ , UpperCamelCase_ ) _lowercase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample return sample def __UpperCAmelCase ( self : str ) -> List[str]: '''simple docstring''' for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] ) -> Any: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCamelCase_ ) _lowercase : List[str] = self.scheduler_classes[0] _lowercase : List[Any] = self.get_scheduler_config(steps_offset=1 ) _lowercase : str = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def __UpperCAmelCase ( self : Tuple ) -> Any: '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def __UpperCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ) -> List[str]: '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=UpperCamelCase_ ) def __UpperCAmelCase ( self : Dict ) -> List[Any]: '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=UpperCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.check_over_configs(thresholding=UpperCamelCase_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=UpperCamelCase_ ) def __UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=UpperCamelCase_ , num_inference_steps=UpperCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=UpperCamelCase_ , eta=UpperCamelCase_ ) def __UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' _lowercase : Optional[Any] = self.scheduler_classes[0] _lowercase : List[Any] = self.get_scheduler_config() _lowercase : str = scheduler_class(**UpperCamelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_47_71 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_24_60 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_09_79 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def __UpperCAmelCase ( self : int ) -> Dict: '''simple docstring''' _lowercase : Any = self.scheduler_classes[0] _lowercase : Optional[Any] = self.get_scheduler_config() _lowercase : List[Any] = scheduler_class(**UpperCamelCase_ ) _lowercase : Tuple = 10, 0.0 scheduler.set_timesteps(UpperCamelCase_ ) _lowercase : List[str] = self.dummy_model() _lowercase : List[str] = self.dummy_sample_deter _lowercase : Optional[Any] = self.dummy_sample_deter + 0.1 _lowercase : str = self.dummy_sample_deter - 0.1 _lowercase : str = samplea.shape[0] _lowercase : Tuple = torch.stack([samplea, samplea, samplea] , dim=0 ) _lowercase : str = torch.arange(UpperCamelCase_ )[0:3, None].repeat(1 , UpperCamelCase_ ) _lowercase : int = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) _lowercase : List[str] = scheduler.batch_step_no_noise(UpperCamelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , UpperCamelCase_ ) _lowercase : Dict = torch.sum(torch.abs(UpperCamelCase_ ) ) _lowercase : Union[str, Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.49_82 ) < 1E-3 def __UpperCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' _lowercase : Any = self.full_loop() _lowercase : Optional[Any] = torch.sum(torch.abs(UpperCamelCase_ ) ) _lowercase : Tuple = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1E-3 def __UpperCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' _lowercase : int = self.full_loop(prediction_type='v_prediction' ) _lowercase : Tuple = torch.sum(torch.abs(UpperCamelCase_ ) ) _lowercase : List[Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 52.53_02 ) < 1E-2 assert abs(result_mean.item() - 0.06_84 ) < 1E-3 def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _lowercase : List[Any] = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.01 ) _lowercase : Union[str, Any] = torch.sum(torch.abs(UpperCamelCase_ ) ) _lowercase : Union[str, Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.19_51 ) < 1E-3 def __UpperCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' _lowercase : Optional[int] = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.01 ) _lowercase : str = torch.sum(torch.abs(UpperCamelCase_ ) ) _lowercase : Tuple = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.19_41 ) < 1E-3
702
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _A : Optional[int] =logging.get_logger(__name__) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = ["""input_features""", """is_longer"""] def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=64 , UpperCamelCase_ : int=4_8000 , UpperCamelCase_ : Union[str, Any]=480 , UpperCamelCase_ : Any=10 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 1_4000 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__( feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : Tuple = top_db _lowercase : Any = truncation _lowercase : str = padding _lowercase : int = fft_window_size _lowercase : Any = (fft_window_size >> 1) + 1 _lowercase : int = hop_length _lowercase : Any = max_length_s _lowercase : str = max_length_s * sampling_rate _lowercase : Any = sampling_rate _lowercase : List[Any] = frequency_min _lowercase : Tuple = frequency_max _lowercase : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale='htk' , ) _lowercase : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm='slaney' , mel_scale='slaney' , ) def __UpperCAmelCase ( self : Tuple ) -> Dict[str, Any]: '''simple docstring''' _lowercase : Tuple = copy.deepcopy(self.__dict__ ) _lowercase : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' _lowercase : List[str] = spectrogram( UpperCamelCase_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel='dB' , ) return log_mel_spectrogram.T def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowercase : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : int = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : Union[str, Any] = [0] # randomly choose index for each part _lowercase : Tuple = np.random.choice(ranges[0] ) _lowercase : int = np.random.choice(ranges[1] ) _lowercase : Any = np.random.choice(ranges[2] ) _lowercase : int = mel[idx_front : idx_front + chunk_frames, :] _lowercase : int = mel[idx_middle : idx_middle + chunk_frames, :] _lowercase : Tuple = mel[idx_back : idx_back + chunk_frames, :] _lowercase : List[Any] = torch.tensor(mel[None, None, :] ) _lowercase : Optional[int] = torch.nn.functional.interpolate( UpperCamelCase_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=UpperCamelCase_ ) _lowercase : str = mel_shrink[0][0].numpy() _lowercase : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : np.array , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": _lowercase : Tuple = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _lowercase : Any = len(UpperCamelCase_ ) - max_length _lowercase : Dict = np.random.randint(0 , overflow + 1 ) _lowercase : Optional[int] = waveform[idx : idx + max_length] _lowercase : Dict = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : List[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _lowercase : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _lowercase : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 ) _lowercase : List[Any] = False else: _lowercase : Union[str, Any] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : int = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: _lowercase : Any = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _lowercase : List[Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : List[str] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _lowercase : Union[str, Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : Union[str, Any] = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_ ) ) _lowercase : Dict = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _lowercase : str = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Dict , ) -> BatchFeature: '''simple docstring''' _lowercase : Dict = truncation if truncation is not None else self.truncation _lowercase : int = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase : Optional[Any] = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase : List[str] = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): _lowercase : Any = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : int = [np.asarray(UpperCamelCase_ )] # convert to mel spectrogram, truncate and pad if needed. _lowercase : Optional[Any] = [ self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_ ) for waveform in raw_speech ] _lowercase : List[Any] = [] _lowercase : Dict = [] for mel, longer in padded_inputs: input_mel.append(UpperCamelCase_ ) is_longer.append(UpperCamelCase_ ) if truncation == "fusion" and sum(UpperCamelCase_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _lowercase : Optional[Any] = np.random.randint(0 , len(UpperCamelCase_ ) ) _lowercase : str = True if isinstance(input_mel[0] , UpperCamelCase_ ): _lowercase : str = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _lowercase : Tuple = [[longer] for longer in is_longer] _lowercase : Optional[Any] = {'input_features': input_mel, 'is_longer': is_longer} _lowercase : Optional[int] = BatchFeature(UpperCamelCase_ ) if return_tensors is not None: _lowercase : List[Any] = input_features.convert_to_tensors(UpperCamelCase_ ) return input_features
4
0
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowerCAmelCase__: Optional[Any] = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple[int, int]: def constraint_to_multiple_of(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=None ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: SCREAMING_SNAKE_CASE_ : Optional[int] = math.floor(val / multiple ) * multiple if x < min_val: SCREAMING_SNAKE_CASE_ : Optional[int] = math.ceil(val / multiple ) * multiple return x SCREAMING_SNAKE_CASE_ : Dict = (output_size, output_size) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else output_size SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = get_image_size(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = output_size # determine new height and width SCREAMING_SNAKE_CASE_ : Tuple = output_height / input_height SCREAMING_SNAKE_CASE_ : Dict = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width SCREAMING_SNAKE_CASE_ : Dict = scale_width else: # fit height SCREAMING_SNAKE_CASE_ : Optional[int] = scale_height SCREAMING_SNAKE_CASE_ : Any = constraint_to_multiple_of(scale_height * input_height , multiple=SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = constraint_to_multiple_of(scale_width * input_width , multiple=SCREAMING_SNAKE_CASE ) return (new_height, new_width) class snake_case_ ( lowerCAmelCase ): __lowerCamelCase : List[Any] = ['pixel_values'] def __init__( self , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = PILImageResampling.BILINEAR , __lowerCAmelCase = False , __lowerCAmelCase = 1 , __lowerCAmelCase = True , __lowerCAmelCase = 1 / 255 , __lowerCAmelCase = True , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): super().__init__(**__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = size if size is not None else {'height': 384, 'width': 384} SCREAMING_SNAKE_CASE_ : Dict = get_size_dict(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = do_resize SCREAMING_SNAKE_CASE_ : str = size SCREAMING_SNAKE_CASE_ : Any = keep_aspect_ratio SCREAMING_SNAKE_CASE_ : str = ensure_multiple_of SCREAMING_SNAKE_CASE_ : List[Any] = resample SCREAMING_SNAKE_CASE_ : Any = do_rescale SCREAMING_SNAKE_CASE_ : Optional[int] = rescale_factor SCREAMING_SNAKE_CASE_ : str = do_normalize SCREAMING_SNAKE_CASE_ : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE_ : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = 1 , __lowerCAmelCase = PILImageResampling.BICUBIC , __lowerCAmelCase = None , **__lowerCAmelCase , ): SCREAMING_SNAKE_CASE_ : Any = get_size_dict(__lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) SCREAMING_SNAKE_CASE_ : str = get_resize_output_image_size( __lowerCAmelCase , output_size=(size['height'], size['width']) , keep_aspect_ratio=__lowerCAmelCase , multiple=__lowerCAmelCase , ) return resize(__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): return rescale(__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ): return normalize(__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = ChannelDimension.FIRST , **__lowerCAmelCase , ): SCREAMING_SNAKE_CASE_ : List[Any] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ : Optional[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_size_dict(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio SCREAMING_SNAKE_CASE_ : Optional[Any] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of SCREAMING_SNAKE_CASE_ : Any = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ : str = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ : Tuple = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ : List[str] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ : Dict = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ : Optional[Any] = make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ : Dict = [to_numpy_array(__lowerCAmelCase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ : List[Any] = [self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_ : Tuple = [self.rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_ : int = [self.normalize(image=__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_ : Optional[Any] = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'pixel_values': images} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase ) def __A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): SCREAMING_SNAKE_CASE_ : str = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(__lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = target_sizes.numpy() SCREAMING_SNAKE_CASE_ : str = [] for idx in range(len(__lowerCAmelCase ) ): SCREAMING_SNAKE_CASE_ : Optional[int] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ : List[str] = logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE_ : str = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
345
import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> int: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = f'Input value of [number={number}] must be an integer' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 1: SCREAMING_SNAKE_CASE_ : List[Any] = f'Input value of [number={number}] must be > 0' raise ValueError(SCREAMING_SNAKE_CASE ) elif number == 1: return 3 elif number == 2: return 5 else: SCREAMING_SNAKE_CASE_ : Optional[int] = int(math.log(number // 3 , 2 ) ) + 2 SCREAMING_SNAKE_CASE_ : List[str] = [3, 5] SCREAMING_SNAKE_CASE_ : Any = 2 SCREAMING_SNAKE_CASE_ : Optional[int] = 3 for block in range(1 , SCREAMING_SNAKE_CASE ): for _ in range(SCREAMING_SNAKE_CASE ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): lowerCAmelCase__: Union[str, Any] = 0 try: lowerCAmelCase__: List[Any] = proth(number) except ValueError: print(f'''ValueError: there is no {number}th Proth number''') continue print(f'''The {number}th Proth number: {value}''')
345
1
from __future__ import annotations def A_ ( A__ , A__ ) -> set[str]: a__ , a__ : int = set(A__ ), [start] while stack: a__ : List[Any] = stack.pop() explored.add(A__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(A__ ) return explored lowercase : List[str] = { """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
392
import qiskit def A_ ( A__ , A__ ) -> qiskit.result.counts.Counts: a__ : str = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register a__ : str = qiskit.QuantumCircuit(A__ , A__ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator a__ : Dict = qiskit.execute(A__ , A__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(A__ ) if __name__ == "__main__": print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
392
1
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__: def __init__( self , __UpperCAmelCase , __UpperCAmelCase=3 , __UpperCAmelCase=3_2 , __UpperCAmelCase=3 , __UpperCAmelCase=1_0 , __UpperCAmelCase=[1_0, 2_0, 3_0, 4_0] , __UpperCAmelCase=[1, 1, 2, 1] , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=3 , __UpperCAmelCase=None , ): """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = embeddings_size __lowercase = hidden_sizes __lowercase = depths __lowercase = is_training __lowercase = use_labels __lowercase = hidden_act __lowercase = num_labels __lowercase = scope __lowercase = len(__UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __lowercase = TFRegNetModel(config=__UpperCAmelCase ) __lowercase = model(__UpperCAmelCase , training=__UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __lowercase = self.num_labels __lowercase = TFRegNetForImageClassification(__UpperCAmelCase ) __lowercase = model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase__( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Optional[Any] = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () UpperCamelCase : Dict = ( {"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase : Any = False UpperCamelCase : Optional[int] = False UpperCamelCase : Tuple = False UpperCamelCase : Dict = False UpperCamelCase : List[str] = False def __magic_name__ ( self ): """simple docstring""" __lowercase = TFRegNetModelTester(self ) __lowercase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def __magic_name__ ( self ): """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def __magic_name__ ( self ): """simple docstring""" super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def __magic_name__ ( self ): """simple docstring""" pass def __magic_name__ ( self ): """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(__UpperCAmelCase ) __lowercase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __lowercase = model_class(__UpperCAmelCase ) __lowercase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) , training=__UpperCAmelCase ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = self.model_tester.num_stages self.assertEqual(len(__UpperCAmelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __lowercase = layer_type __lowercase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase={} ): __lowercase = model(__UpperCAmelCase , return_dict=__UpperCAmelCase , **__UpperCAmelCase ) __lowercase = model(__UpperCAmelCase , return_dict=__UpperCAmelCase , **__UpperCAmelCase ).to_tuple() def recursive_check(__UpperCAmelCase , __UpperCAmelCase ): if isinstance(__UpperCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__UpperCAmelCase , __UpperCAmelCase ): recursive_check(__UpperCAmelCase , __UpperCAmelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__UpperCAmelCase , __UpperCAmelCase ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ) , ) recursive_check(__UpperCAmelCase , __UpperCAmelCase ) for model_class in self.all_model_classes: __lowercase = model_class(__UpperCAmelCase ) __lowercase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __lowercase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __lowercase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __lowercase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , {"""output_hidden_states""": True} ) __lowercase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __lowercase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) check_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , {"""output_hidden_states""": True} ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def __magic_name__ ( self ): """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFRegNetModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowercase__ ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class lowerCamelCase__( unittest.TestCase ): @cached_property def __magic_name__ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __magic_name__ ( self ): """simple docstring""" __lowercase = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=__UpperCAmelCase , return_tensors="""tf""" ) # forward pass __lowercase = model(**__UpperCAmelCase , training=__UpperCAmelCase ) # verify the logits __lowercase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __lowercase = tf.constant([-0.41_80, -1.50_51, -3.48_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 )
566
'''simple docstring''' import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case : List[Any] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class lowerCamelCase__( snake_case_ , unittest.TestCase ): UpperCamelCase : List[str] = DebertaVaTokenizer UpperCamelCase : Optional[int] = DebertaVaTokenizerFast UpperCamelCase : Tuple = True UpperCamelCase : Dict = True def __magic_name__ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __lowercase = DebertaVaTokenizer(__UpperCAmelCase , unk_token="""<unk>""" ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" __lowercase = """this is a test""" __lowercase = """this is a test""" return input_text, output_text def __magic_name__ ( self ): """simple docstring""" __lowercase = """<pad>""" __lowercase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """[PAD]""" ) self.assertEqual(len(__UpperCAmelCase ) , 3_0_0_0_1 ) def __magic_name__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def __magic_name__ ( self ): """simple docstring""" __lowercase = """ \tHeLLo!how \n Are yoU? """ __lowercase = ["""▁hello""", """!""", """how""", """▁are""", """▁you""", """?"""] # fmt: on __lowercase = DebertaVaTokenizer(__UpperCAmelCase , do_lower_case=__UpperCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = DebertaVaTokenizerFast(__UpperCAmelCase , do_lower_case=__UpperCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def __magic_name__ ( self ): """simple docstring""" pass @unittest.skip("""There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.""" ) def __magic_name__ ( self ): """simple docstring""" pass def __magic_name__ ( self ): """simple docstring""" __lowercase = """I was born in 92000, and this is falsé.""" __lowercase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowercase = DebertaVaTokenizer(__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = DebertaVaTokenizerFast(__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = """I was born in 92000, and this is falsé.""" __lowercase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowercase = DebertaVaTokenizer(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = DebertaVaTokenizerFast(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = """I was born in 92000, and this is falsé.""" __lowercase = ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowercase = DebertaVaTokenizer(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = DebertaVaTokenizerFast(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = """I was born in 92000, and this is falsé.""" __lowercase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """▁""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """▁""", """.""", ] # fmt: on __lowercase = DebertaVaTokenizer(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = DebertaVaTokenizerFast(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = """ \tHeLLo!how \n Are yoU? """ __lowercase = ["""▁""", """<unk>""", """e""", """<unk>""", """o""", """!""", """how""", """▁""", """<unk>""", """re""", """▁yo""", """<unk>""", """?"""] # fmt: on __lowercase = DebertaVaTokenizer(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = DebertaVaTokenizerFast(__UpperCAmelCase , do_lower_case=__UpperCAmelCase , split_by_punct=__UpperCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() __lowercase = """I was born in 92000, and this is falsé.""" __lowercase = tokenizer.convert_ids_to_tokens(tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) __lowercase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) __lowercase = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(__UpperCAmelCase ) __lowercase = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = """This is a test""" __lowercase = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9] __lowercase = ["""▁""", """T""", """his""", """▁is""", """▁a""", """▁test"""] __lowercase = ["""▁""", """<unk>""", """his""", """▁is""", """▁a""", """▁test"""] __lowercase = DebertaVaTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) __lowercase = DebertaVaTokenizerFast(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) __lowercase = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # fmt: off __lowercase = """I was born in 92000, and this is falsé.""" __lowercase = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] __lowercase = ["""▁""", """I""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """.""", ] __lowercase = ["""▁""", """<unk>""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """.""", ] # fmt: on __lowercase = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = rust_tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = DebertaVaTokenizer(__UpperCAmelCase ) __lowercase = tokenizer.encode("""sequence builders""" ) __lowercase = tokenizer.encode("""multi-sequence build""" ) __lowercase = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , __UpperCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , __UpperCAmelCase , ) @slow def __magic_name__ ( self ): """simple docstring""" __lowercase = {"""input_ids""": [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name="""microsoft/deberta-v2-xlarge""" , revision="""ad6e42c1532ddf3a15c39246b63f5559d558b670""" , )
566
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 snake_case_ = get_tests_dir('fixtures') class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : Optional[int] ): """simple docstring""" __snake_case = mock.Mock() __snake_case = 500 __snake_case = {} __snake_case = HTTPError __snake_case = {} # Download this model to make sure it's in the cache. __snake_case = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=a__ ) as mock_head: __snake_case = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' ) # This check we did call the fake head request mock_head.assert_called() def a (self : Optional[int] ): """simple docstring""" __snake_case = WavaVecaFeatureExtractor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' ) @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @classmethod def a (cls : Tuple ): """simple docstring""" __snake_case = TOKEN HfFolder.save_token(a__ ) @classmethod def a (cls : str ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-feature-extractor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' ) except HTTPError: pass def a (self : int ): """simple docstring""" __snake_case = WavaVecaFeatureExtractor.from_pretrained(a__ ) feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token ) __snake_case = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(a__ , getattr(a__ , a__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( a__ , repo_id='''test-feature-extractor''' , push_to_hub=a__ , use_auth_token=self._token ) __snake_case = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(a__ , getattr(a__ , a__ ) ) def a (self : Optional[int] ): """simple docstring""" __snake_case = WavaVecaFeatureExtractor.from_pretrained(a__ ) feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token ) __snake_case = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(a__ , getattr(a__ , a__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( a__ , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=a__ , use_auth_token=self._token ) __snake_case = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(a__ , getattr(a__ , a__ ) ) def a (self : List[Any] ): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() __snake_case = CustomFeatureExtractor.from_pretrained(a__ ) feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , ) __snake_case = AutoFeatureExtractor.from_pretrained( f"""{USER}/test-dynamic-feature-extractor""" , trust_remote_code=a__ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
388
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCamelCase__ ( snake_case_ : Any , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Union[str, Any] ) -> str: for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def lowerCamelCase__ ( snake_case_ : int , snake_case_ : List[Any] , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Any=True ) -> Dict: model.train() __snake_case = model(snake_case_ ) __snake_case = F.mse_loss(snake_case_ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(snake_case_ ) def lowerCamelCase__ ( snake_case_ : Union[str, Any] , snake_case_ : Optional[int]=False ) -> Optional[int]: set_seed(42 ) __snake_case = RegressionModel() __snake_case = deepcopy(snake_case_ ) __snake_case = RegressionDataset(length=80 ) __snake_case = DataLoader(snake_case_ , batch_size=16 ) model.to(accelerator.device ) if sched: __snake_case = AdamW(params=model.parameters() , lr=1e-3 ) __snake_case = AdamW(params=ddp_model.parameters() , lr=1e-3 ) __snake_case = LambdaLR(snake_case_ , lr_lambda=lambda snake_case_ : epoch**0.65 ) __snake_case = LambdaLR(snake_case_ , lr_lambda=lambda snake_case_ : epoch**0.65 ) # Make a copy of `model` if sched: __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: __snake_case , __snake_case = accelerator.prepare(snake_case_ , snake_case_ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCamelCase__ ( snake_case_ : Any ) -> str: # Test when on a single CPU or GPU that the context manager does nothing __snake_case , __snake_case , __snake_case = get_training_setup(snake_case_ ) # Use a single batch __snake_case , __snake_case = next(iter(snake_case_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __snake_case , __snake_case = accelerator.gather((ddp_input, ddp_target) ) __snake_case , __snake_case = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: # Sync grads step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __snake_case = ddp_input[torch.randperm(len(snake_case_ ) )] def lowerCamelCase__ ( snake_case_ : int ) -> Tuple: # Test on distributed setup that context manager behaves properly __snake_case , __snake_case , __snake_case = get_training_setup(snake_case_ ) # Use a single batch __snake_case , __snake_case = next(iter(snake_case_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __snake_case , __snake_case = accelerator.gather((ddp_input, ddp_target) ) __snake_case , __snake_case = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: # Sync grads step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __snake_case = ddp_input[torch.randperm(len(snake_case_ ) )] def lowerCamelCase__ ( snake_case_ : int=False , snake_case_ : List[str]=False ) -> Optional[Any]: __snake_case = Accelerator( split_batches=snake_case_ , dispatch_batches=snake_case_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __snake_case , __snake_case , __snake_case = get_training_setup(snake_case_ ) for iteration, batch in enumerate(snake_case_ ): __snake_case , __snake_case = batch.values() # Gather the distributed inputs and targs for the base model __snake_case , __snake_case = accelerator.gather((ddp_input, ddp_target) ) __snake_case , __snake_case = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(snake_case_ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) __snake_case = ddp_input[torch.randperm(len(snake_case_ ) )] GradientState._reset_state() def lowerCamelCase__ ( snake_case_ : Dict=False , snake_case_ : Optional[int]=False ) -> Any: __snake_case = Accelerator( split_batches=snake_case_ , dispatch_batches=snake_case_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = get_training_setup(snake_case_ , snake_case_ ) for iteration, batch in enumerate(snake_case_ ): __snake_case , __snake_case = batch.values() # Gather the distributed inputs and targs for the base model __snake_case , __snake_case = accelerator.gather((ddp_input, ddp_target) ) __snake_case , __snake_case = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(snake_case_ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n""" __snake_case = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(snake_case_ )) if accelerator.num_processes > 1: check_model_parameters(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def lowerCamelCase__ ( ) -> Any: __snake_case = Accelerator() __snake_case = RegressionDataset(length=80 ) __snake_case = DataLoader(snake_case_ , batch_size=16 ) __snake_case = RegressionDataset(length=96 ) __snake_case = DataLoader(snake_case_ , batch_size=16 ) __snake_case , __snake_case = accelerator.prepare(snake_case_ , snake_case_ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(snake_case_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case_ ) if iteration < len(snake_case_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(snake_case_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case_ ) if batch_num < len(snake_case_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCamelCase__ ( ) -> List[str]: __snake_case = Accelerator() __snake_case = accelerator.state if state.local_process_index == 0: print('''**Test `accumulate` gradient accumulation with dataloader break**''' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('''**Test NOOP `no_sync` context manager**''' ) test_noop_sync(snake_case_ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('''**Test Distributed `no_sync` context manager**''' ) test_distributed_sync(snake_case_ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation, ''' , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(snake_case_ , snake_case_ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('''<''' , '''2.0''' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , '''`split_batches=False`, `dispatch_batches=False`**''' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''' , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(snake_case_ , snake_case_ ) def lowerCamelCase__ ( snake_case_ : str ) -> str: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
388
1
from __future__ import annotations def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = len(a_ ) // 2 # choose the middle 3 elements SCREAMING_SNAKE_CASE : List[Any] = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
62
'''simple docstring''' import math def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Any = [True] * n _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : str = False _UpperCAmelCase : int = True for i in range(3, int(n**0.5 + 1 ), 2 ): _UpperCAmelCase : Any = i * 2 while index < n: _UpperCAmelCase : List[Any] = False _UpperCAmelCase : int = index + i _UpperCAmelCase : Optional[int] = [2] for i in range(3, a_, 2 ): if is_prime[i]: primes.append(a_ ) return primes def __UpperCAmelCase ( a_: int = 999_966_663_333 ): _UpperCAmelCase : Tuple = math.floor(math.sqrt(a_ ) ) + 100 _UpperCAmelCase : Union[str, Any] = prime_sieve(a_ ) _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : int = primes[prime_index] while (last_prime**2) <= limit: _UpperCAmelCase : List[str] = primes[prime_index + 1] _UpperCAmelCase : Any = last_prime**2 _UpperCAmelCase : Optional[Any] = next_prime**2 # Get numbers divisible by lps(current) _UpperCAmelCase : List[str] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) _UpperCAmelCase : Dict = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps _UpperCAmelCase : Dict = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair _UpperCAmelCase : Union[str, Any] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
494
0
from ...processing_utils import ProcessorMixin class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Optional[Any] = ['''image_processor''', '''feature_extractor'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = '''TvltImageProcessor''' __SCREAMING_SNAKE_CASE : Optional[Any] = '''TvltFeatureExtractor''' def __init__( self , snake_case , snake_case ): super().__init__(image_processor=snake_case , feature_extractor=snake_case ) snake_case_ = image_processor snake_case_ = feature_extractor def __call__( self , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=False , snake_case=False , *snake_case , **snake_case , ): if images is None and audio is None: raise ValueError('You need to specify either an `images` or `audio` input to process.' ) snake_case_ = None if images is not None: snake_case_ = self.image_processor(snake_case , mask_pixel=snake_case , *snake_case , **snake_case ) if images_mixed is not None: snake_case_ = self.image_processor(snake_case , is_mixed=snake_case , *snake_case , **snake_case ) if audio is not None: snake_case_ = self.feature_extractor( snake_case , *snake_case , sampling_rate=snake_case , mask_audio=snake_case , **snake_case ) snake_case_ = {} if audio is not None: output_dict.update(snake_case ) if images is not None: output_dict.update(snake_case ) if images_mixed_dict is not None: output_dict.update(snake_case ) return output_dict @property def a ( self ): snake_case_ = self.image_processor.model_input_names snake_case_ = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
108
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : int = PhobertTokenizer __SCREAMING_SNAKE_CASE : int = False def a ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ = ['T@@', 'i', 'I', 'R@@', 'r', 'e@@'] snake_case_ = dict(zip(snake_case , range(len(snake_case ) ) ) ) snake_case_ = ['#version: 0.2', 'l à</w>'] snake_case_ = {'unk_token': '<unk>'} snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(F'''{token} {vocab_tokens[token]}\n''' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case ) ) def a ( self , **snake_case ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def a ( self , snake_case ): snake_case_ = 'Tôi là VinAI Research' snake_case_ = 'T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>' return input_text, output_text def a ( self ): snake_case_ = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case_ = 'Tôi là VinAI Research' snake_case_ = 'T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'.split() snake_case_ = tokenizer.tokenize(snake_case ) print(snake_case ) self.assertListEqual(snake_case , snake_case ) snake_case_ = tokens + [tokenizer.unk_token] snake_case_ = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) , snake_case )
108
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _A = "xlnet" _A = ["mems"] _A = { "n_token": "vocab_size", # Backward compatibility "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : str , SCREAMING_SNAKE_CASE_ : Tuple=3_2_0_0_0 , SCREAMING_SNAKE_CASE_ : int=1_0_2_4 , SCREAMING_SNAKE_CASE_ : str=2_4 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_6 , SCREAMING_SNAKE_CASE_ : Tuple=4_0_9_6 , SCREAMING_SNAKE_CASE_ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : int="bi" , SCREAMING_SNAKE_CASE_ : Any=0.02 , SCREAMING_SNAKE_CASE_ : List[str]=1e-1_2 , SCREAMING_SNAKE_CASE_ : List[str]=0.1 , SCREAMING_SNAKE_CASE_ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : Any=True , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , SCREAMING_SNAKE_CASE_ : Optional[Any]=False , SCREAMING_SNAKE_CASE_ : Any=-1 , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : str="last" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : Optional[Any]="tanh" , SCREAMING_SNAKE_CASE_ : Dict=0.1 , SCREAMING_SNAKE_CASE_ : Any=5 , SCREAMING_SNAKE_CASE_ : Optional[Any]=5 , SCREAMING_SNAKE_CASE_ : Any=5 , SCREAMING_SNAKE_CASE_ : Dict=1 , SCREAMING_SNAKE_CASE_ : int=2 , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ): _a = vocab_size _a = d_model _a = n_layer _a = n_head if d_model % n_head != 0: raise ValueError(f"""\'d_model % n_head\' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"""`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) _a = d_model // n_head _a = ff_activation _a = d_inner _a = untie_r _a = attn_type _a = initializer_range _a = layer_norm_eps _a = dropout _a = mem_len _a = reuse_len _a = bi_data _a = clamp_len _a = same_length _a = summary_type _a = summary_use_proj _a = summary_activation _a = summary_last_dropout _a = start_n_top _a = end_n_top _a = bos_token_id _a = pad_token_id _a = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , snake_case__ , ) _a = kwargs['use_cache'] _a = use_mems_eval _a = use_mems_train super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) @property def _UpperCAmelCase ( self : Union[str, Any] ): logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _UpperCAmelCase ( self : int , SCREAMING_SNAKE_CASE_ : Tuple ): raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
562
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer lowerCAmelCase : Optional[int] = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Optional[Any] = { """vocab_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""", }, """merges_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""", }, """tokenizer_file""": { """Salesforce/codegen-350M-mono""": ( """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """Salesforce/codegen-350M-mono""": 20_48, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = CodeGenTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="<|endoftext|>" , snake_case__="<|endoftext|>" , snake_case__="<|endoftext|>" , snake_case__=False , **snake_case__ , ): '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , unk_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , add_prefix_space=snake_case__ , **snake_case__ , ) if kwargs.pop('add_bos_token' , snake_case__ ): _lowerCAmelCase : Tuple = kwargs.pop('name_or_path' , '' ) raise ValueError( 'Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.' 'Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n' F'`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n' F'`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n' 'This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.' ' so that the fast tokenizer works correctly.' ) _lowerCAmelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : List[Any] = getattr(snake_case__ , pre_tok_state.pop('type' ) ) _lowerCAmelCase : Dict = add_prefix_space _lowerCAmelCase : List[Any] = pre_tok_class(**snake_case__ ) _lowerCAmelCase : Tuple = add_prefix_space def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[str] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : List[str] = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def a ( self , snake_case__ , snake_case__ = False , snake_case__ = None , snake_case__ = None , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Dict = super().decode( token_ids=snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ , **snake_case__ , ) if truncate_before_pattern is not None and len(snake_case__ ) > 0: _lowerCAmelCase : Optional[int] = self.truncate(snake_case__ , snake_case__ ) return decoded_text def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' def find_re(snake_case__ , snake_case__ , snake_case__ ): _lowerCAmelCase : List[Any] = pattern.search(snake_case__ , snake_case__ ) return m.start() if m else -1 _lowerCAmelCase : Any = [re.compile(snake_case__ , re.MULTILINE ) for pattern in truncate_before_pattern] _lowerCAmelCase : Dict = list(re.finditer('^print' , snake_case__ , re.MULTILINE ) ) if len(snake_case__ ) > 1: _lowerCAmelCase : Optional[int] = completion[: prints[1].start()] _lowerCAmelCase : Optional[int] = list(re.finditer('^def' , snake_case__ , re.MULTILINE ) ) if len(snake_case__ ) > 1: _lowerCAmelCase : Optional[Any] = completion[: defs[1].start()] _lowerCAmelCase : int = 0 _lowerCAmelCase : Tuple = [ pos for pos in [find_re(snake_case__ , snake_case__ , snake_case__ ) for terminal in terminals] if pos != -1 ] if len(snake_case__ ) > 0: return completion[: min(snake_case__ )] else: return completion
444
0
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[int] = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class a__( snake_case__ ): a_ : List[Any] = '''conditional_detr''' a_ : Any = ['''past_key_values'''] a_ : Union[str, Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=3 , _UpperCAmelCase=300 , _UpperCAmelCase=6 , _UpperCAmelCase=2048 , _UpperCAmelCase=8 , _UpperCAmelCase=6 , _UpperCAmelCase=2048 , _UpperCAmelCase=8 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase="sine" , _UpperCAmelCase="resnet50" , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=2 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=0.25 , **_UpperCAmelCase , ) -> Any: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) snake_case__ =CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): snake_case__ =backbone_config.get('model_type' ) snake_case__ =CONFIG_MAPPING[backbone_model_type] snake_case__ =config_class.from_dict(_UpperCAmelCase ) snake_case__ =use_timm_backbone snake_case__ =backbone_config snake_case__ =num_channels snake_case__ =num_queries snake_case__ =d_model snake_case__ =encoder_ffn_dim snake_case__ =encoder_layers snake_case__ =encoder_attention_heads snake_case__ =decoder_ffn_dim snake_case__ =decoder_layers snake_case__ =decoder_attention_heads snake_case__ =dropout snake_case__ =attention_dropout snake_case__ =activation_dropout snake_case__ =activation_function snake_case__ =init_std snake_case__ =init_xavier_std snake_case__ =encoder_layerdrop snake_case__ =decoder_layerdrop snake_case__ =encoder_layers snake_case__ =auxiliary_loss snake_case__ =position_embedding_type snake_case__ =backbone snake_case__ =use_pretrained_backbone snake_case__ =dilation # Hungarian matcher snake_case__ =class_cost snake_case__ =bbox_cost snake_case__ =giou_cost # Loss coefficients snake_case__ =mask_loss_coefficient snake_case__ =dice_loss_coefficient snake_case__ =cls_loss_coefficient snake_case__ =bbox_loss_coefficient snake_case__ =giou_loss_coefficient snake_case__ =focal_alpha super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase ) @property def _lowercase ( self ) -> int: return self.encoder_attention_heads @property def _lowercase ( self ) -> int: return self.d_model def _lowercase ( self ) -> Any: snake_case__ =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: snake_case__ =self.backbone_config.to_dict() snake_case__ =self.__class__.model_type return output class a__( snake_case__ ): a_ : Tuple = version.parse('''1.11''' ) @property def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def _lowercase ( self ) -> float: return 1E-5 @property def _lowercase ( self ) -> int: return 12
581
'''simple docstring''' from itertools import permutations def a ( UpperCamelCase_ : tuple ) -> bool: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False snake_case__ =[7, 11, 13, 17] for i, test in enumerate(UpperCamelCase_ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def a ( UpperCamelCase_ : int = 10 ) -> int: return sum( int(''.join(map(UpperCamelCase_ , UpperCamelCase_ ) ) ) for num in permutations(range(UpperCamelCase_ ) ) if is_substring_divisible(UpperCamelCase_ ) ) if __name__ == "__main__": print(f"""{solution() = }""")
581
1
"""simple docstring""" from torch import nn def _snake_case ( snake_case__ : Union[str, Any] ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'Unsupported activation function: {act_fn}' )
91
"""simple docstring""" # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers _lowercase = float('''nan''') class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[str] ,A_ : Tuple ) -> Any: A = sys.stdout A = open(A_ ,'a' ) def __getattr__( self : int ,A_ : Optional[Any] ) -> Tuple: return getattr(self.stdout ,A_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ) -> str: self.stdout.write(A_ ) # strip tqdm codes self.file.write(re.sub(R'^.*\r' ,'' ,A_ ,0 ,re.M ) ) def _snake_case ( snake_case__ : Optional[Any]=80 , snake_case__ : List[str]=False ): A = [] # deal with critical env vars A = ['CUDA_VISIBLE_DEVICES'] for key in env_keys: A = os.environ.get(snake_case__ , snake_case__ ) if val is not None: cmd.append(F'{key}={val}' ) # python executable (not always needed if the script is executable) A = sys.executable if full_python_path else sys.executable.split('/' )[-1] cmd.append(snake_case__ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes A = [] A = '' while len(snake_case__ ) > 0: current_line += F'{cmd.pop(0 )} ' if len(snake_case__ ) == 0 or len(snake_case__ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(snake_case__ ) A = '' return "\\\n".join(snake_case__ ) def _snake_case ( snake_case__ : str , snake_case__ : str ): # unwrap multi-line input A = re.sub(r'[\\\n]+' , ' ' , args.base_cmd ) # remove --output_dir if any and set our own A = re.sub('--output_dir\s+[^\s]+' , '' , args.base_cmd ) args.base_cmd += F' --output_dir {output_dir}' # ensure we have --overwrite_output_dir A = re.sub('--overwrite_output_dir\s+' , '' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _snake_case ( snake_case__ : List[str] , snake_case__ : Union[str, Any] , snake_case__ : str , snake_case__ : int , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : List[Any] ): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.22222222] )} , ) A = subprocess.run(snake_case__ , capture_output=snake_case__ , text=snake_case__ ) if verbose: print('STDOUT' , result.stdout ) print('STDERR' , result.stderr ) # save the streams A = variation.replace(' ' , '-' ) with open(Path(snake_case__ ) / F'log.{prefix}.stdout.txt' , 'w' ) as f: f.write(result.stdout ) with open(Path(snake_case__ ) / F'log.{prefix}.stderr.txt' , 'w' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('failed' ) return {target_metric_key: nan} with io.open(F'{output_dir}/all_results.json' , 'r' , encoding='utf-8' ) as f: A = json.load(snake_case__ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _snake_case ( snake_case__ : str , snake_case__ : str , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Optional[Any] , ): A = [] A = [] A = F'{id}: {variation:<{longest_variation_len}}' A = F'{preamble}: ' A = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(snake_case__ ) , desc=snake_case__ , leave=snake_case__ ): A = process_run_single( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) A = single_run_metrics[target_metric_key] if not math.isnan(snake_case__ ): metrics.append(snake_case__ ) results.append(snake_case__ ) outcome += "✓" else: outcome += "✘" A = F'\33[2K\r{outcome}' if len(snake_case__ ) > 0: A = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} A = round(mean_metrics[target_metric_key] , 2 ) A = F'{outcome} {mean_target}' if len(snake_case__ ) > 1: results_str += F' {tuple(round(snake_case__ , 2 ) for x in results )}' print(snake_case__ ) A = variation return mean_metrics else: print(snake_case__ ) return {variation_key: variation, target_metric_key: nan} def _snake_case ( ): A = torch.cuda.get_device_properties(torch.device('cuda' ) ) return F'\nDatetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n' def _snake_case ( snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Union[str, Any] ): A = pd.DataFrame(snake_case__ ) A = 'variation' A = 'diff_%' A = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan A = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(snake_case__ ): # as a fallback, use the minimal value as the sentinel A = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(snake_case__ ): A = df.apply( lambda snake_case__ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='columns' , ) # re-order columns A = [variation_key, target_metric_key, diff_key, *report_metric_keys] A = df.reindex(snake_case__ , axis='columns' ) # reorder cols # capitalize A = df.rename(str.capitalize , axis='columns' ) # make the cols as narrow as possible A = df.rename(lambda snake_case__ : c.replace('_' , '<br>' ) , axis='columns' ) A = df.rename(lambda snake_case__ : c.replace('_' , '\n' ) , axis='columns' ) A = ['', 'Copy between the cut-here-lines and paste as is to github or a forum'] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=snake_case__ , floatfmt='.2f' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=snake_case__ , floatfmt='.2f' )] print('\n\n'.join(snake_case__ ) ) def _snake_case ( ): A = argparse.ArgumentParser() parser.add_argument( '--base-cmd' , default=snake_case__ , type=snake_case__ , required=snake_case__ , help='Base cmd' , ) parser.add_argument( '--variations' , default=snake_case__ , type=snake_case__ , nargs='+' , required=snake_case__ , help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'' , ) parser.add_argument( '--base-variation' , default=snake_case__ , type=snake_case__ , help='Baseline variation to compare to. if None the minimal target value will be used to compare against' , ) parser.add_argument( '--target-metric-key' , default=snake_case__ , type=snake_case__ , required=snake_case__ , help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second' , ) parser.add_argument( '--report-metric-keys' , default='' , type=snake_case__ , help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples' , ) parser.add_argument( '--repeat-times' , default=1 , type=snake_case__ , help='How many times to re-run each variation - an average will be reported' , ) parser.add_argument( '--output_dir' , default='output_benchmark' , type=snake_case__ , help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked' , ) parser.add_argument( '--verbose' , default=snake_case__ , action='store_true' , help='Whether to show the outputs of each run or just the benchmark progress' , ) A = parser.parse_args() A = args.output_dir Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) A = get_base_command(snake_case__ , snake_case__ ) # split each dimension into its --foo variations A = [list(map(str.strip , re.split(r'\|' , snake_case__ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty A = list(map(str.strip , map(' '.join , itertools.product(*snake_case__ ) ) ) ) A = max(len(snake_case__ ) for x in variations ) # split wanted keys A = args.report_metric_keys.split() # capture prints into a log file for convenience A = F'benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt' print(F'\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt' ) print(F'and this script\'s output is also piped into {report_fn}' ) A = Tee(snake_case__ ) print(F'\n*** Running {len(snake_case__ )} benchmarks:' ) print(F'Base command: {" ".join(snake_case__ )}' ) A = 'variation' A = [] for id, variation in enumerate(tqdm(snake_case__ , desc='Total completion: ' , leave=snake_case__ ) ): A = base_cmd + variation.split() results.append( process_run( id + 1 , snake_case__ , snake_case__ , snake_case__ , snake_case__ , args.target_metric_key , snake_case__ , args.repeat_times , snake_case__ , args.verbose , ) ) process_results(snake_case__ , args.target_metric_key , snake_case__ , args.base_variation , snake_case__ ) if __name__ == "__main__": main()
91
1
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() A : Tuple = logging.get_logger(__name__) A : int = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def _a ( lowerCamelCase_ ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: snake_case : Optional[Any] =k.replace(lowerCamelCase_ , lowerCamelCase_ ) if k.startswith('''encoder''' ): snake_case : List[Any] =k.replace('''.attn''' , '''.self_attn''' ) snake_case : str =k.replace('''norm1''' , '''self_attn_layer_norm''' ) snake_case : List[Any] =k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): snake_case : Union[str, Any] =k.replace('''norm1''' , '''self_attn_layer_norm''' ) snake_case : Optional[Any] =k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) snake_case : List[Any] =k.replace('''norm3''' , '''final_layer_norm''' ) return k def _a ( lowerCamelCase_ ): snake_case : List[str] =[ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: snake_case : List[Any] =sd.pop(lowerCamelCase_ ) snake_case : Optional[int] =k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd snake_case : int =v A : Tuple = ["""START"""] @torch.no_grad() def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): snake_case : Union[str, Any] =torch.load(lowerCamelCase_ , map_location='''cpu''' ) snake_case : List[str] =model['''model'''] snake_case : Union[str, Any] =BlenderbotConfig.from_json_file(lowerCamelCase_ ) snake_case : Optional[int] =BlenderbotForConditionalGeneration(lowerCamelCase_ ) snake_case : str =m.model.state_dict().keys() snake_case : str =[] snake_case : List[Any] ={} for k, v in sd.items(): if k in IGNORE_KEYS: continue snake_case : Dict =rename_state_dict_key(lowerCamelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: snake_case : Dict =v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(lowerCamelCase_ ) m.model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) m.half() m.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": A : str = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) A : Tuple = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
714
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def _a ( lowerCamelCase_ , lowerCamelCase_ ): snake_case : Dict =list(lowerCamelCase_ ) snake_case : Optional[int] =list(lowerCamelCase_ ) snake_case : str =0 for i in range(len(lowerCamelCase_ ) ): if lista[i] != lista[i]: count += 1 snake_case : int ='''_''' if count > 1: return False else: return "".join(lowerCamelCase_ ) def _a ( lowerCamelCase_ ): snake_case : str =[] while True: snake_case : str =['''$'''] * len(lowerCamelCase_ ) snake_case : Optional[int] =[] for i in range(len(lowerCamelCase_ ) ): for j in range(i + 1 , len(lowerCamelCase_ ) ): snake_case : Optional[Any] =compare_string(binary[i] , binary[j] ) if k is False: snake_case : Any ='''*''' snake_case : Tuple ='''*''' temp.append('''X''' ) for i in range(len(lowerCamelCase_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowerCamelCase_ ) == 0: return pi snake_case : Optional[int] =list(set(lowerCamelCase_ ) ) def _a ( lowerCamelCase_ , lowerCamelCase_ ): snake_case : List[Any] =[] for minterm in minterms: snake_case : List[str] ='''''' for _ in range(lowerCamelCase_ ): snake_case : List[str] =str(minterm % 2 ) + string minterm //= 2 temp.append(lowerCamelCase_ ) return temp def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): snake_case : Tuple =list(lowerCamelCase_ ) snake_case : str =list(lowerCamelCase_ ) snake_case : List[str] =0 for i in range(len(lowerCamelCase_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def _a ( lowerCamelCase_ , lowerCamelCase_ ): snake_case : Union[str, Any] =[] snake_case : Dict =[0] * len(lowerCamelCase_ ) for i in range(len(chart[0] ) ): snake_case : Dict =0 snake_case : List[Any] =-1 for j in range(len(lowerCamelCase_ ) ): if chart[j][i] == 1: count += 1 snake_case : Tuple =j if count == 1: snake_case : List[Any] =1 for i in range(len(lowerCamelCase_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowerCamelCase_ ) ): snake_case : Any =0 temp.append(prime_implicants[i] ) while True: snake_case : Dict =0 snake_case : Optional[int] =-1 snake_case : Optional[int] =0 for i in range(len(lowerCamelCase_ ) ): snake_case : Dict =chart[i].count(1 ) if count_n > max_n: snake_case : Union[str, Any] =count_n snake_case : List[str] =i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowerCamelCase_ ) ): snake_case : str =0 def _a ( lowerCamelCase_ , lowerCamelCase_ ): snake_case : Union[str, Any] =[[0 for x in range(len(lowerCamelCase_ ) )] for x in range(len(lowerCamelCase_ ) )] for i in range(len(lowerCamelCase_ ) ): snake_case : Optional[int] =prime_implicants[i].count('''_''' ) for j in range(len(lowerCamelCase_ ) ): if is_for_table(prime_implicants[i] , binary[j] , lowerCamelCase_ ): snake_case : Optional[int] =1 return chart def _a ( ): snake_case : int =int(input('''Enter the no. of variables\n''' ) ) snake_case : Tuple =[ float(lowerCamelCase_ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] snake_case : Any =decimal_to_binary(lowerCamelCase_ , lowerCamelCase_ ) snake_case : Optional[Any] =check(lowerCamelCase_ ) print('''Prime Implicants are:''' ) print(lowerCamelCase_ ) snake_case : Any =prime_implicant_chart(lowerCamelCase_ , lowerCamelCase_ ) snake_case : Optional[int] =selection(lowerCamelCase_ , lowerCamelCase_ ) print('''Essential Prime Implicants are:''' ) print(lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
136
0
'''simple docstring''' import os from distutils.util import strtobool def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' for e in env_keys: _snake_case = int(os.environ.get(SCREAMING_SNAKE_CASE__ , -1 ) ) if val >= 0: return val return default def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' _snake_case = os.environ.get(SCREAMING_SNAKE_CASE__ , str(SCREAMING_SNAKE_CASE__ ) ) return strtobool(SCREAMING_SNAKE_CASE__ ) == 1 # As its name indicates `strtobool` actually returns an int... def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="no" ): '''simple docstring''' _snake_case = os.environ.get(SCREAMING_SNAKE_CASE__ , str(SCREAMING_SNAKE_CASE__ ) ) return value
672
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase__ = logging.get_logger(__name__) lowercase__ = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowercase__ = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowercase__ = {"facebook/blenderbot-3B": 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) snake_case : int = bs[:] snake_case : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(SCREAMING_SNAKE_CASE__ ) cs.append(2**8 + n ) n += 1 snake_case : Tuple = [chr(SCREAMING_SNAKE_CASE__ ) for n in cs] return dict(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> Any: '''simple docstring''' snake_case : List[str] = set() snake_case : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case : Dict = char return pairs class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str="replace" , UpperCamelCase__ : int="<s>" , UpperCamelCase__ : Optional[int]="</s>" , UpperCamelCase__ : int="</s>" , UpperCamelCase__ : Optional[int]="<s>" , UpperCamelCase__ : Any="<unk>" , UpperCamelCase__ : List[Any]="<pad>" , UpperCamelCase__ : Optional[int]="<mask>" , UpperCamelCase__ : Optional[Any]=False , **UpperCamelCase__ : Dict , ) -> str: """simple docstring""" snake_case : str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else bos_token snake_case : Any = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token snake_case : List[str] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else sep_token snake_case : Optional[Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cls_token snake_case : int = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else unk_token snake_case : str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case : str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) with open(UpperCamelCase__ , encoding='''utf-8''' ) as vocab_handle: snake_case : Union[str, Any] = json.load(UpperCamelCase__ ) snake_case : Dict = {v: k for k, v in self.encoder.items()} snake_case : Optional[int] = errors # how to handle errors in decoding snake_case : List[Any] = bytes_to_unicode() snake_case : Dict = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase__ , encoding='''utf-8''' ) as merges_handle: snake_case : Optional[Any] = merges_handle.read().split('''\n''' )[1:-1] snake_case : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] snake_case : Optional[int] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) snake_case : int = {} snake_case : Any = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case : Any = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" return len(self.encoder ) def lowerCAmelCase ( self : List[Any] ) -> Optional[int]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : Tuple ) -> Dict: """simple docstring""" if token in self.cache: return self.cache[token] snake_case : str = tuple(UpperCamelCase__ ) snake_case : Union[str, Any] = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: snake_case : Tuple = min(UpperCamelCase__ , key=lambda UpperCamelCase__ : self.bpe_ranks.get(UpperCamelCase__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break snake_case ,snake_case : List[str] = bigram snake_case : int = [] snake_case : int = 0 while i < len(UpperCamelCase__ ): try: snake_case : Optional[int] = word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case : Optional[int] = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case : str = tuple(UpperCamelCase__ ) snake_case : Tuple = new_word if len(UpperCamelCase__ ) == 1: break else: snake_case : List[str] = get_pairs(UpperCamelCase__ ) snake_case : str = ''' '''.join(UpperCamelCase__ ) snake_case : int = word return word def lowerCAmelCase ( self : Optional[int] , UpperCamelCase__ : List[Any] ) -> List[str]: """simple docstring""" snake_case : str = [] for token in re.findall(self.pat , UpperCamelCase__ ): snake_case : Optional[int] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase__ ).split(''' ''' ) ) return bpe_tokens def lowerCAmelCase ( self : int , UpperCamelCase__ : Any ) -> Any: """simple docstring""" return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : Any , UpperCamelCase__ : List[Any] ) -> int: """simple docstring""" return self.decoder.get(UpperCamelCase__ ) def lowerCAmelCase ( self : Tuple , UpperCamelCase__ : int ) -> List[str]: """simple docstring""" snake_case : Optional[int] = ''''''.join(UpperCamelCase__ ) snake_case : int = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowerCAmelCase ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return snake_case : int = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case : List[Any] = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + '''\n''' ) snake_case : str = 0 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) snake_case : List[str] = token_index writer.write(''' '''.join(UpperCamelCase__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self : List[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def lowerCAmelCase ( self : Optional[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case : List[Any] = [self.sep_token_id] snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any=False , **UpperCamelCase__ : List[Any] ) -> int: """simple docstring""" snake_case : Union[str, Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase__ ) > 0 and not text[0].isspace()): snake_case : Dict = ''' ''' + text return (text, kwargs) def lowerCAmelCase ( self : Optional[Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ) -> str: """simple docstring""" return token_ids_a + [self.eos_token_id] def lowerCAmelCase ( self : str , UpperCamelCase__ : "Conversation" ) -> List[int]: """simple docstring""" snake_case : Any = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(UpperCamelCase__ ) snake_case : List[str] = ''' '''.join(UpperCamelCase__ ) snake_case : Tuple = self.encode(UpperCamelCase__ ) if len(UpperCamelCase__ ) > self.model_max_length: snake_case : List[Any] = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
638
0
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] ) -> Any: """simple docstring""" return getitem, k def SCREAMING_SNAKE_CASE_ ( __A : Dict , __A : str ) -> Optional[int]: """simple docstring""" return setitem, k, v def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] ) -> Any: """simple docstring""" return delitem, k def SCREAMING_SNAKE_CASE_ ( __A : int , __A : List[Any] , *__A : Union[str, Any] ) -> str: """simple docstring""" try: return fun(__A , *__A ), None except Exception as e: return None, e UpperCAmelCase_ : Any = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) UpperCAmelCase_ : Dict = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] UpperCAmelCase_ : Optional[Any] = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] UpperCAmelCase_ : Union[str, Any] = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] UpperCAmelCase_ : Union[str, Any] = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] UpperCAmelCase_ : str = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def SCREAMING_SNAKE_CASE_ ( __A : List[Any] ) -> Optional[int]: """simple docstring""" a_ : str = HashMap(initial_block_size=4 ) a_ : Tuple = {} for _, (fun, *args) in enumerate(__A ): a_ , a_ : Any = _run_operation(__A , __A , *__A ) a_ , a_ : Union[str, Any] = _run_operation(__A , __A , *__A ) assert my_res == py_res assert str(__A ) == str(__A ) assert set(__A ) == set(__A ) assert len(__A ) == len(__A ) assert set(my.items() ) == set(py.items() ) def SCREAMING_SNAKE_CASE_ ( ) -> int: """simple docstring""" def is_public(__A : str ) -> bool: return not name.startswith('_' ) a_ : Tuple = {name for name in dir({} ) if is_public(__A )} a_ : Any = {name for name in dir(HashMap() ) if is_public(__A )} assert dict_public_names > hash_public_names
443
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : int = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Union[str, Any] = '''autoformer''' snake_case__ : Any = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : str = "student_t" , SCREAMING_SNAKE_CASE__ : str = "nll" , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : List[int] = [1, 2, 3, 4, 5, 6, 7] , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE__ : int = 6_4 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 2 , SCREAMING_SNAKE_CASE__ : int = 3_2 , SCREAMING_SNAKE_CASE__ : int = 3_2 , SCREAMING_SNAKE_CASE__ : str = "gelu" , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : float = 0.1 , SCREAMING_SNAKE_CASE__ : int = 1_0_0 , SCREAMING_SNAKE_CASE__ : float = 0.02 , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : int = 1_0 , SCREAMING_SNAKE_CASE__ : int = 2_5 , SCREAMING_SNAKE_CASE__ : int = 3 , **SCREAMING_SNAKE_CASE__ : int , ) -> Union[str, Any]: # time series specific configuration a_ : Optional[int] = prediction_length a_ : Tuple = context_length if context_length is not None else prediction_length a_ : Tuple = distribution_output a_ : int = loss a_ : Tuple = input_size a_ : int = num_time_features a_ : Dict = lags_sequence a_ : List[str] = scaling a_ : Tuple = num_dynamic_real_features a_ : Dict = num_static_real_features a_ : Dict = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) a_ : Any = cardinality else: a_ : Tuple = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(SCREAMING_SNAKE_CASE__ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) a_ : Tuple = embedding_dimension else: a_ : Optional[Any] = [min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] a_ : Optional[Any] = num_parallel_samples # Transformer architecture configuration a_ : Dict = input_size * len(self.lags_sequence ) + self._number_of_features a_ : Tuple = d_model a_ : int = encoder_attention_heads a_ : Optional[int] = decoder_attention_heads a_ : str = encoder_ffn_dim a_ : List[str] = decoder_ffn_dim a_ : Any = encoder_layers a_ : Any = decoder_layers a_ : List[Any] = dropout a_ : Tuple = attention_dropout a_ : Union[str, Any] = activation_dropout a_ : List[Any] = encoder_layerdrop a_ : List[str] = decoder_layerdrop a_ : Optional[Any] = activation_function a_ : Union[str, Any] = init_std a_ : List[str] = use_cache # Autoformer a_ : Tuple = label_length a_ : List[Any] = moving_average a_ : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
443
1
import datasets from .evaluate import evaluate A : Union[str, Any] = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' A : int = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' A : Any = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): '''simple docstring''' def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" lowercase__ = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} lowercase__ = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] lowercase__ = evaluate(dataset=_UpperCAmelCase , predictions=_UpperCAmelCase ) return score
15
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _lowerCAmelCase : SCREAMING_SNAKE_CASE_: Union[str, Any] = MBartConfig SCREAMING_SNAKE_CASE_: Optional[Any] = {} SCREAMING_SNAKE_CASE_: Tuple = 'gelu' def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=1_3 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=9_9 , lowerCAmelCase_=3_2 , lowerCAmelCase_=2 , lowerCAmelCase_=4 , lowerCAmelCase_=3_7 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=2_0 , lowerCAmelCase_=2 , lowerCAmelCase_=1 , lowerCAmelCase_=0 , ) -> int: _SCREAMING_SNAKE_CASE : Optional[Any] = parent _SCREAMING_SNAKE_CASE : str = batch_size _SCREAMING_SNAKE_CASE : str = seq_length _SCREAMING_SNAKE_CASE : Dict = is_training _SCREAMING_SNAKE_CASE : int = use_labels _SCREAMING_SNAKE_CASE : str = vocab_size _SCREAMING_SNAKE_CASE : List[Any] = hidden_size _SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers _SCREAMING_SNAKE_CASE : Tuple = num_attention_heads _SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size _SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings _SCREAMING_SNAKE_CASE : Optional[int] = eos_token_id _SCREAMING_SNAKE_CASE : Optional[int] = pad_token_id _SCREAMING_SNAKE_CASE : Tuple = bos_token_id def A ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _SCREAMING_SNAKE_CASE : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) _SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _SCREAMING_SNAKE_CASE : Any = prepare_mbart_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return config, inputs_dict def A ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _SCREAMING_SNAKE_CASE : int = TFMBartModel(config=lowerCAmelCase_ ).get_decoder() _SCREAMING_SNAKE_CASE : int = inputs_dict['input_ids'] _SCREAMING_SNAKE_CASE : Tuple = input_ids[:1, :] _SCREAMING_SNAKE_CASE : Any = inputs_dict['attention_mask'][:1, :] _SCREAMING_SNAKE_CASE : List[str] = inputs_dict['head_mask'] _SCREAMING_SNAKE_CASE : List[Any] = 1 # first forward pass _SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , use_cache=lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = outputs.to_tuple() _SCREAMING_SNAKE_CASE : str = past_key_values[1] def lowercase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, ): if attention_mask is None: _SCREAMING_SNAKE_CASE : Optional[Any] = tf.cast(tf.math.not_equal(lowerCamelCase, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE : Dict = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: _SCREAMING_SNAKE_CASE : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _SCREAMING_SNAKE_CASE : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _SCREAMING_SNAKE_CASE : int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_: List[str] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () SCREAMING_SNAKE_CASE_: Dict = (TFMBartForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE_: Tuple = ( { 'conversational': TFMBartForConditionalGeneration, 'feature-extraction': TFMBartModel, 'summarization': TFMBartForConditionalGeneration, 'text2text-generation': TFMBartForConditionalGeneration, 'translation': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_: Any = True SCREAMING_SNAKE_CASE_: int = False SCREAMING_SNAKE_CASE_: Optional[int] = False def A ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def A ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : List[Any] = TFMBartModelTester(self ) _SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase_ ) def A ( self ) -> List[Any]: self.config_tester.run_common_tests() def A ( self ) -> Dict: _SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class _lowerCAmelCase ( unittest.TestCase ): SCREAMING_SNAKE_CASE_: str = [ ' UN Chief Says There Is No Military Solution in Syria', ] SCREAMING_SNAKE_CASE_: Union[str, Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', ] SCREAMING_SNAKE_CASE_: Dict = 'facebook/mbart-large-en-ro' @cached_property def A ( self ) -> Union[str, Any]: return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def A ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def A ( self , **lowerCAmelCase_ ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Tuple = self.translate_src_text(**lowerCAmelCase_ ) self.assertListEqual(self.expected_text , lowerCAmelCase_ ) def A ( self , **lowerCAmelCase_ ) -> Tuple: _SCREAMING_SNAKE_CASE : Tuple = self.tokenizer(self.src_text , **lowerCAmelCase_ , return_tensors='tf' ) _SCREAMING_SNAKE_CASE : int = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) _SCREAMING_SNAKE_CASE : int = self.tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) return generated_words @slow def A ( self ) -> Any: self._assert_generated_batch_equal_expected()
621
0
"""simple docstring""" import math from collections.abc import Callable def __lowerCamelCase ( SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" _UpperCAmelCase = xa _UpperCAmelCase = xa while True: if x_n == x_na or function(SCREAMING_SNAKE_CASE ) == function(SCREAMING_SNAKE_CASE ): raise ZeroDivisionError('float division by zero, could not find root' ) _UpperCAmelCase = x_na - ( function(SCREAMING_SNAKE_CASE ) / ((function(SCREAMING_SNAKE_CASE ) - function(SCREAMING_SNAKE_CASE )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na _UpperCAmelCase = x_na _UpperCAmelCase = x_na def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return math.pow(SCREAMING_SNAKE_CASE,3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
710
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class lowerCAmelCase ( snake_case ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
494
0
import os import time import numpy as np import onnxruntime as ort __UpperCamelCase : int = """1""" __UpperCamelCase : Dict = """0""" __UpperCamelCase : str = """1""" __UpperCamelCase : int = ort.SessionOptions() __UpperCamelCase : Dict = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("""Create inference session...""") __UpperCamelCase : Tuple = ["""TensorrtExecutionProvider""", """CUDAExecutionProvider"""] __UpperCamelCase : int = ort.InferenceSession("""model.onnx""", sess_options=sess_opt, providers=execution_provider) __UpperCamelCase : Tuple = ort.RunOptions() __UpperCamelCase : int = 128 __UpperCamelCase : List[str] = 1 __UpperCamelCase : List[Any] = np.ones((batch, sequence), dtype=np.intaa) __UpperCamelCase : str = np.ones((batch, sequence), dtype=np.intaa) __UpperCamelCase : Optional[Any] = np.ones((batch, sequence), dtype=np.intaa) print("""Warm up phase...""") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Start inference...""") __UpperCamelCase : int = time.time() __UpperCamelCase : Dict = 2000 __UpperCamelCase : Optional[Any] = {} for iter in range(max_iters): __UpperCamelCase : Union[str, Any] = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Average Inference Time = {:.3f} ms""".format((time.time() - start_time) * 1000 / max_iters))
80
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCAmelCase_ : str = logging.getLogger(__name__) UpperCAmelCase_ : List[Any] = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCAmelCase_ : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a : '''simple docstring''' __lowerCAmelCase : Optional[str] = field( default=snake_case__ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) __lowerCAmelCase : Optional[str] = field( default=snake_case__ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(snake_case__ )} , ) __lowerCAmelCase : Optional[str] = field( default=snake_case__ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) __lowerCAmelCase : Optional[str] = field( default=snake_case__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __lowerCAmelCase : Optional[str] = field( default=snake_case__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __lowerCAmelCase : Optional[str] = field( default=snake_case__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __lowerCAmelCase : bool = field( default=snake_case__ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __lowerCAmelCase : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __lowerCAmelCase : bool = field( default=snake_case__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def __UpperCamelCase ( self ) -> Tuple: if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' ) @dataclass class a : '''simple docstring''' __lowerCAmelCase : Optional[str] = field( default=snake_case__ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) __lowerCAmelCase : Optional[str] = field( default=snake_case__ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __lowerCAmelCase : Optional[str] = field(default=snake_case__ , metadata={"""help""": """The input training data file (a text file)."""} ) __lowerCAmelCase : Optional[str] = field( default=snake_case__ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __lowerCAmelCase : Optional[str] = field( default=snake_case__ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) __lowerCAmelCase : Optional[str] = field( default=snake_case__ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) __lowerCAmelCase : bool = field( default=snake_case__ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) __lowerCAmelCase : Optional[int] = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) __lowerCAmelCase : Optional[int] = field( default=snake_case__ , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) __lowerCAmelCase : Optional[int] = field( default=snake_case__ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) __lowerCAmelCase : float = field( default=0.1_5 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) __lowerCAmelCase : bool = field( default=snake_case__ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def __UpperCamelCase ( self ) -> str: if self.train_file is not None: _a : int = self.train_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _a : List[Any] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def UpperCAmelCase_ ( A , A ): '''simple docstring''' with open(A , 'r' , encoding='utf-8' ) as f: _a : Dict = [json.loads(A ) for line in f.read().splitlines() if (len(A ) > 0 and not line.isspace())] assert len(A ) == len(A ) _a : Any = {c: dataset[c] for c in dataset.column_names} _a : Optional[Any] = refs return Dataset.from_dict(A ) def UpperCAmelCase_ ( ): '''simple docstring''' _a : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _a , _a , _a : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _a , _a , _a : Dict = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _a : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _a : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , A ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _a : Tuple = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _a : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''train[:{data_args.validation_split_percentage}%]''' , ) _a : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'''train[{data_args.validation_split_percentage}%:]''' , ) else: _a : int = {} if data_args.train_file is not None: _a : Tuple = data_args.train_file if data_args.validation_file is not None: _a : List[Any] = data_args.validation_file _a : Optional[Any] = data_args.train_file.split('.' )[-1] if extension == "txt": _a : Optional[Any] = 'text' _a : int = load_dataset(A , data_files=A ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _a : List[str] = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _a : List[str] = AutoConfig.from_pretrained(model_args.config_name , **A ) elif model_args.model_name_or_path: _a : Any = AutoConfig.from_pretrained(model_args.model_name_or_path , **A ) else: _a : Optional[Any] = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) _a : Any = { 'cache_dir': model_args.cache_dir, 'use_fast': model_args.use_fast_tokenizer, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _a : Tuple = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **A ) elif model_args.model_name_or_path: _a : Dict = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **A ) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) if model_args.model_name_or_path: _a : Optional[Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _a : List[Any] = AutoModelForMaskedLM.from_config(A ) model.resize_token_embeddings(len(A ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _a : str = datasets['train'].column_names else: _a : int = datasets['validation'].column_names _a : Union[str, Any] = 'text' if 'text' in column_names else column_names[0] _a : List[Any] = 'max_length' if data_args.pad_to_max_length else False def tokenize_function(A ): # Remove empty lines _a : Union[str, Any] = [line for line in examples['text'] if len(A ) > 0 and not line.isspace()] return tokenizer(examples['text'] , padding=A , truncation=A , max_length=data_args.max_seq_length ) _a : Any = datasets.map( A , batched=A , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _a : str = add_chinese_references(tokenized_datasets['train'] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _a : Tuple = add_chinese_references( tokenized_datasets['validation'] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _a : Union[str, Any] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _a : Optional[int] = False # Data collator # This one will take care of randomly masking the tokens. _a : Tuple = DataCollatorForWholeWordMask(tokenizer=A , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _a : Union[str, Any] = Trainer( model=A , args=A , train_dataset=tokenized_datasets['train'] if training_args.do_train else None , eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None , tokenizer=A , data_collator=A , ) # Training if training_args.do_train: if last_checkpoint is not None: _a : Any = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _a : Optional[int] = model_args.model_name_or_path else: _a : int = None _a : Tuple = trainer.train(resume_from_checkpoint=A ) trainer.save_model() # Saves the tokenizer too for easy upload _a : Union[str, Any] = os.path.join(training_args.output_dir , 'train_results.txt' ) if trainer.is_world_process_zero(): with open(A , 'w' ) as writer: logger.info('***** Train results *****' ) for key, value in sorted(train_result.metrics.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , 'trainer_state.json' ) ) # Evaluation _a : Optional[int] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) _a : Union[str, Any] = trainer.evaluate() _a : Any = math.exp(eval_output['eval_loss'] ) _a : List[str] = perplexity _a : Optional[int] = os.path.join(training_args.output_dir , 'eval_results_mlm_wwm.txt' ) if trainer.is_world_process_zero(): with open(A , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in sorted(results.items() ): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) return results def UpperCAmelCase_ ( A ): '''simple docstring''' main() if __name__ == "__main__": main()
120
0
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.6, 'eval_loss': 0.9}, }, { 'framework': 'tensorflow', 'script': 'run_tf.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.3, 'eval_loss': 0.9}, }, ] ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self ): """simple docstring""" if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='utf-8' , check=_a , ) assert hasattr(self , 'env' ) def lowercase__ ( self , _a=1 ): """simple docstring""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'''{self.env.base_job_name}-single''' , instance_count=_a , instance_type=self.instance_type , debugger_hook_config=_a , hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='py36' , ) def lowercase__ ( self , _a ): """simple docstring""" TrainingJobAnalytics(_a ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) def lowercase__ ( self ): """simple docstring""" # create estimator a__ = self.create_estimator() # run training estimator.fit() # result dataframe a__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis a__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) a__ = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping a__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , _a )
126
'''simple docstring''' from collections.abc import Callable import numpy as np def lowerCAmelCase_ ( a : Callable , a : float , a : float , a : float , a : float ): a__ = int(np.ceil((x_end - xa) / step_size ) ) a__ = np.zeros((n + 1,) ) a__ = ya a__ = xa for k in range(a ): a__ = y[k] + step_size * ode_func(a , y[k] ) a__ = y[k] + ( (step_size / 2) * (ode_func(a , y[k] ) + ode_func(x + step_size , a )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
126
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer __SCREAMING_SNAKE_CASE : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } __SCREAMING_SNAKE_CASE : List[str] = { '''unc-nlp/lxmert-base-uncased''': 5_1_2, } __SCREAMING_SNAKE_CASE : Optional[Any] = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class lowerCamelCase_( A__ ): '''simple docstring''' lowercase__ : List[str] = VOCAB_FILES_NAMES lowercase__ : Tuple = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowercase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = LxmertTokenizer def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__="[UNK]" , lowerCamelCase__="[SEP]" , lowerCamelCase__="[PAD]" , lowerCamelCase__="[CLS]" , lowerCamelCase__="[MASK]" , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ): super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , ) _lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , UpperCamelCase_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , UpperCamelCase_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , UpperCamelCase_ ) != tokenize_chinese_chars ): _lowerCamelCase = getattr(UpperCamelCase_ , normalizer_state.pop('''type''' ) ) _lowerCamelCase = do_lower_case _lowerCamelCase = strip_accents _lowerCamelCase = tokenize_chinese_chars _lowerCamelCase = normalizer_class(**UpperCamelCase_ ) _lowerCamelCase = do_lower_case def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__=None ): _lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = [self.sep_token_id] _lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ = None ): _lowerCamelCase = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ )
661
'''simple docstring''' from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
189
0
"""simple docstring""" import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ )-> str: """simple docstring""" assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Dict: """simple docstring""" UpperCamelCase = tmp_path / "cache" UpperCamelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase = SqlDatasetReader( "dataset" , "sqlite:///" + sqlite_path , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read() _check_sql_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) @require_sqlalchemy @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> int: """simple docstring""" UpperCamelCase = tmp_path / "cache" UpperCamelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} UpperCamelCase = features.copy() if features else default_expected_features UpperCamelCase = ( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_sql_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase__ ( UpperCAmelCase_ )-> List[Any]: """simple docstring""" with contextlib.closing(sqlitea.connect(UpperCAmelCase_ ) ) as con: UpperCamelCase = con.cursor() cur.execute("SELECT * FROM dataset" ) for row in cur: yield row @require_sqlalchemy def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Optional[int]: """simple docstring""" UpperCamelCase = tmp_path / "cache" UpperCamelCase = os.path.join(UpperCAmelCase_ , "tmp.sql" ) UpperCamelCase = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=UpperCAmelCase_ ).read() SqlDatasetWriter(UpperCAmelCase_ , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=1 ).write() UpperCamelCase = iter_sql_file(UpperCAmelCase_ ) UpperCamelCase = iter_sql_file(UpperCAmelCase_ ) for rowa, rowa in zip(UpperCAmelCase_ , UpperCAmelCase_ ): assert rowa == rowa @require_sqlalchemy def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Tuple: """simple docstring""" UpperCamelCase = tmp_path / "cache" UpperCamelCase = os.path.join(UpperCAmelCase_ , "tmp.sql" ) UpperCamelCase = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=UpperCAmelCase_ ).read() SqlDatasetWriter(UpperCAmelCase_ , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=2 ).write() UpperCamelCase = iter_sql_file(UpperCAmelCase_ ) UpperCamelCase = iter_sql_file(UpperCAmelCase_ ) for rowa, rowa in zip(UpperCAmelCase_ , UpperCAmelCase_ ): assert rowa == rowa @require_sqlalchemy def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> List[Any]: """simple docstring""" UpperCamelCase = tmp_path / "cache" UpperCamelCase = os.path.join(UpperCAmelCase_ , "tmp.sql" ) UpperCamelCase = SqlDatasetReader("dataset" , "sqlite:///" + sqlite_path , cache_dir=UpperCAmelCase_ ).read() with pytest.raises(UpperCAmelCase_ ): SqlDatasetWriter(UpperCAmelCase_ , "dataset" , "sqlite:///" + output_sqlite_path , num_proc=0 ).write()
708
"""simple docstring""" import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __a ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> int: """simple docstring""" UpperCamelCase = ["a", "b", "c"] # Defaults to last layer if both are None UpperCamelCase , UpperCamelCase = get_aligned_output_features_output_indices(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , ["c"] ) self.assertEqual(UpperCAmelCase_ , [2] ) # Out indices set to match out features UpperCamelCase , UpperCamelCase = get_aligned_output_features_output_indices(["a", "c"] , UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , ["a", "c"] ) self.assertEqual(UpperCAmelCase_ , [0, 2] ) # Out features set to match out indices UpperCamelCase , UpperCamelCase = get_aligned_output_features_output_indices(UpperCAmelCase_ , [0, 2] , UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , ["a", "c"] ) self.assertEqual(UpperCAmelCase_ , [0, 2] ) # Out features selected from negative indices UpperCamelCase , UpperCamelCase = get_aligned_output_features_output_indices(UpperCAmelCase_ , [-3, -1] , UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ , ["a", "c"] ) self.assertEqual(UpperCAmelCase_ , [-3, -1] ) def _SCREAMING_SNAKE_CASE ( self : int )-> Union[str, Any]: """simple docstring""" # Stage names must be set with self.assertRaises(UpperCAmelCase_ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , UpperCAmelCase_ ) # Out features must be a list with self.assertRaises(UpperCAmelCase_ ): verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"] ) # Out features must be a subset of stage names with self.assertRaises(UpperCAmelCase_ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"] ) # Out indices must be a list or tuple with self.assertRaises(UpperCAmelCase_ ): verify_out_features_out_indices(UpperCAmelCase_ , 0 , ["a", "b"] ) # Out indices must be a subset of stage names with self.assertRaises(UpperCAmelCase_ ): verify_out_features_out_indices(UpperCAmelCase_ , (0, 1) , ["a"] ) # Out features and out indices must be the same length with self.assertRaises(UpperCAmelCase_ ): verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"] ) # Out features should match out indices with self.assertRaises(UpperCAmelCase_ ): verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"] ) # Out features and out indices should be in order with self.assertRaises(UpperCAmelCase_ ): verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"] ) # Check passes with valid inputs verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"] ) def _SCREAMING_SNAKE_CASE ( self : Dict )-> List[Any]: """simple docstring""" UpperCamelCase = BackboneMixin() UpperCamelCase = ["a", "b", "c"] UpperCamelCase = ["a", "c"] UpperCamelCase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly UpperCamelCase = ["a", "b"] self.assertEqual(backbone.out_features , ["a", "b"] ) self.assertEqual(backbone.out_indices , [0, 1] ) UpperCamelCase = [-3, -1] self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [-3, -1] )
556
0
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py SCREAMING_SNAKE_CASE_ = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ SCREAMING_SNAKE_CASE_ = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ SCREAMING_SNAKE_CASE_ = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): """simple docstring""" def lowercase_ ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_=4 , snake_case_=False ): '''simple docstring''' __UpperCAmelCase: Optional[int] = compute_bleu( reference_corpus=lowerCamelCase__ , translation_corpus=lowerCamelCase__ , max_order=lowerCamelCase__ , smooth=lowerCamelCase__ ) (__UpperCAmelCase): Optional[Any] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
523
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def _a ( self ): lowerCAmelCase_: Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase__ , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(lowerCamelCase__ , "num_attention_heads" ) ) class _lowercase : '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=64 , lowerCamelCase__=3 , lowerCamelCase__=3 , lowerCamelCase__=2 , lowerCamelCase__=1 , lowerCamelCase__=16 , lowerCamelCase__=[128, 256, 384] , lowerCamelCase__=[4, 6, 8] , lowerCamelCase__=[2, 3, 4] , lowerCamelCase__=[16, 16, 16] , lowerCamelCase__=0 , lowerCamelCase__=[2, 2, 2] , lowerCamelCase__=[2, 2, 2] , lowerCamelCase__=0.0_2 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=2 , ): lowerCAmelCase_: int = parent lowerCAmelCase_: Tuple = batch_size lowerCAmelCase_: List[str] = image_size lowerCAmelCase_: Tuple = num_channels lowerCAmelCase_: Optional[int] = kernel_size lowerCAmelCase_: int = stride lowerCAmelCase_: Optional[int] = padding lowerCAmelCase_: Tuple = hidden_sizes lowerCAmelCase_: Union[str, Any] = num_attention_heads lowerCAmelCase_: Tuple = depths lowerCAmelCase_: Optional[int] = key_dim lowerCAmelCase_: Optional[Any] = drop_path_rate lowerCAmelCase_: List[str] = patch_size lowerCAmelCase_: Any = attention_ratio lowerCAmelCase_: Tuple = mlp_ratio lowerCAmelCase_: Any = initializer_range lowerCAmelCase_: List[str] = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowerCAmelCase_: Any = is_training lowerCAmelCase_: Optional[int] = use_labels lowerCAmelCase_: Dict = num_labels lowerCAmelCase_: Any = initializer_range def _a ( self ): lowerCAmelCase_: Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_: Tuple = None if self.use_labels: lowerCAmelCase_: int = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase_: Tuple = self.get_config() return config, pixel_values, labels def _a ( self ): return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def _a ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase_: int = LevitModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowerCAmelCase_: Optional[Any] = model(lowerCamelCase__ ) lowerCAmelCase_: Tuple = (self.image_size, self.image_size) lowerCAmelCase_ , lowerCAmelCase_: Optional[int] = image_size[0], image_size[1] for _ in range(4 ): lowerCAmelCase_: Union[str, Any] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) lowerCAmelCase_: str = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def _a ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase_: Tuple = self.num_labels lowerCAmelCase_: str = LevitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowerCAmelCase_: Optional[Any] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ): lowerCAmelCase_: Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_: Dict = config_and_inputs lowerCAmelCase_: Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _lowercase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE: Any = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) SCREAMING_SNAKE_CASE: int = ( { 'feature-extraction': LevitModel, 'image-classification': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE: Optional[int] = False SCREAMING_SNAKE_CASE: Optional[Any] = False SCREAMING_SNAKE_CASE: str = False SCREAMING_SNAKE_CASE: str = False SCREAMING_SNAKE_CASE: List[Any] = False def _a ( self ): lowerCAmelCase_: List[str] = LevitModelTester(self ) lowerCAmelCase_: Union[str, Any] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def _a ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self ): return @unittest.skip(reason="Levit does not use inputs_embeds" ) def _a ( self ): pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def _a ( self ): pass @unittest.skip(reason="Levit does not output attentions" ) def _a ( self ): pass def _a ( self ): lowerCAmelCase_ , lowerCAmelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_: List[str] = model_class(lowerCamelCase__ ) lowerCAmelCase_: Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_: Any = [*signature.parameters.keys()] lowerCAmelCase_: str = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def _a ( self ): def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase_: int = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase_: Dict = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) lowerCAmelCase_: str = outputs.hidden_states lowerCAmelCase_: List[Any] = len(self.model_tester.depths ) + 1 self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) lowerCAmelCase_: List[Any] = (self.model_tester.image_size, self.model_tester.image_size) lowerCAmelCase_ , lowerCAmelCase_: int = image_size[0], image_size[1] for _ in range(4 ): lowerCAmelCase_: Tuple = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) lowerCAmelCase_: Optional[int] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) lowerCAmelCase_ , lowerCAmelCase_: str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_: int = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_: Union[str, Any] = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _a ( self ): pass def _a ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ): lowerCAmelCase_: List[str] = super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a ( self ): lowerCAmelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def _a ( self ): lowerCAmelCase_: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def _a ( self ): if not self.model_tester.is_training: return lowerCAmelCase_ , lowerCAmelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_: int = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCamelCase__ ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowerCAmelCase_: Tuple = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() lowerCAmelCase_: Optional[int] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) lowerCAmelCase_: Tuple = model(**lowerCamelCase__ ).loss loss.backward() def _a ( self ): lowerCAmelCase_ , lowerCAmelCase_: List[str] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowerCAmelCase_: Any = False lowerCAmelCase_: Tuple = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowerCAmelCase_: Any = model_class(lowerCamelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCamelCase__ ) model.train() lowerCAmelCase_: str = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) lowerCAmelCase_: List[str] = model(**lowerCamelCase__ ).loss loss.backward() def _a ( self ): lowerCAmelCase_ , lowerCAmelCase_: int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_: Optional[int] = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCamelCase__ ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): lowerCAmelCase_: Tuple = problem_type["title"] lowerCAmelCase_: Optional[Any] = problem_type["num_labels"] lowerCAmelCase_: List[str] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() lowerCAmelCase_: List[Any] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if problem_type["num_labels"] > 1: lowerCAmelCase_: List[str] = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) lowerCAmelCase_: List[Any] = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCamelCase__ ) as warning_list: lowerCAmelCase_: Dict = model(**lowerCamelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def _a ( self ): for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_: Optional[int] = LevitModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def snake_case__ ( ): lowerCAmelCase_: Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def _a ( self ): return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _a ( self ): lowerCAmelCase_: Any = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCamelCase__ ) lowerCAmelCase_: str = self.default_image_processor lowerCAmelCase_: int = prepare_img() lowerCAmelCase_: Optional[int] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase_: Tuple = model(**lowerCamelCase__ ) # verify the logits lowerCAmelCase_: str = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) lowerCAmelCase_: Union[str, Any] = torch.tensor([1.0_4_4_8, -0.3_7_4_5, -1.8_3_1_7] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) )
613
0
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCamelCase__ = None lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase__ = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCamelCase__ = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] __A = TaTokenizer __A = [] def __init__( self : Optional[int] , lowercase_ : Optional[int]=None , lowercase_ : Optional[Any]=None , lowercase_ : List[str]="</s>" , lowercase_ : int="<unk>" , lowercase_ : Any="<pad>" , lowercase_ : List[str]=100 , lowercase_ : Optional[int]=None , **lowercase_ : List[str] , ) -> List[Any]: """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: _UpperCamelCase = [f'<extra_id_{i}>' for i in range(lowercase_)] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens _UpperCamelCase = len(set(filter(lambda lowercase_: bool("extra_id_" in str(lowercase_)) , lowercase_))) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens") super().__init__( lowercase_ , tokenizer_file=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , extra_ids=lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) _UpperCamelCase = vocab_file _UpperCamelCase = False if not self.vocab_file else True _UpperCamelCase = extra_ids @staticmethod def __UpperCAmelCase ( lowercase_ : str , lowercase_ : str , lowercase_ : Union[str, Any]) -> Dict: """simple docstring""" if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: _UpperCamelCase = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , lowercase_ , ) return max_model_length def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : str , lowercase_ : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(lowercase_): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return _UpperCamelCase = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase_): copyfile(self.vocab_file , lowercase_) logger.info(f'Copy vocab file to {out_vocab_file}') return (out_vocab_file,) def __UpperCAmelCase ( self : int , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCamelCase = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: _UpperCamelCase = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __UpperCAmelCase ( self : Dict , lowercase_ : List[int] , lowercase_ : Optional[List[int]] = None) -> List[int]: """simple docstring""" _UpperCamelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos) * [0] return len(token_ids_a + eos + token_ids_a + eos) * [0] def __UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" return list( set(filter(lambda lowercase_: bool(re.search(R"<extra_id_\d+>" , lowercase_)) is not None , self.additional_special_tokens))) def __UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" return [self.convert_tokens_to_ids(lowercase_) for token in self.get_sentinel_tokens()]
82
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = KandinskyVaaControlnetImgaImgPipeline __A = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] __A = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] __A = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] __A = False @property def __UpperCAmelCase ( self : List[Any]) -> Tuple: """simple docstring""" return 32 @property def __UpperCAmelCase ( self : Tuple) -> Tuple: """simple docstring""" return 32 @property def __UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" return self.time_input_dim @property def __UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" return self.time_input_dim * 4 @property def __UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" return 100 @property def __UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" torch.manual_seed(0) _UpperCamelCase = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } _UpperCamelCase = UNetaDConditionModel(**lowercase_) return model @property def __UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __UpperCAmelCase ( self : int) -> Dict: """simple docstring""" torch.manual_seed(0) _UpperCamelCase = VQModel(**self.dummy_movq_kwargs) return model def __UpperCAmelCase ( self : int) -> Any: """simple docstring""" _UpperCamelCase = self.dummy_unet _UpperCamelCase = self.dummy_movq _UpperCamelCase = { "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_00_85, "beta_end": 0.0_12, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } _UpperCamelCase = DDIMScheduler(**lowercase_) _UpperCamelCase = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __UpperCAmelCase ( self : str , lowercase_ : Dict , lowercase_ : List[str]=0) -> List[str]: """simple docstring""" _UpperCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase_)).to(lowercase_) _UpperCamelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( lowercase_) # create init_image _UpperCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase_)).to(lowercase_) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1)[0] _UpperCamelCase = Image.fromarray(np.uinta(lowercase_)).convert("RGB").resize((256, 256)) # create hint _UpperCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase_)).to(lowercase_) if str(lowercase_).startswith("mps"): _UpperCamelCase = torch.manual_seed(lowercase_) else: _UpperCamelCase = torch.Generator(device=lowercase_).manual_seed(lowercase_) _UpperCamelCase = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def __UpperCAmelCase ( self : Any) -> str: """simple docstring""" _UpperCamelCase = "cpu" _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = self.pipeline_class(**lowercase_) _UpperCamelCase = pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = pipe(**self.get_dummy_inputs(lowercase_)) _UpperCamelCase = output.images _UpperCamelCase = pipe( **self.get_dummy_inputs(lowercase_) , return_dict=lowercase_ , )[0] _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Union[str, Any]) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Optional[int]) -> Any: """simple docstring""" _UpperCamelCase = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy") _UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png") _UpperCamelCase = init_image.resize((512, 512)) _UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png") _UpperCamelCase = torch.from_numpy(np.array(lowercase_)).float() / 2_55.0 _UpperCamelCase = hint.permute(2 , 0 , 1).unsqueeze(0) _UpperCamelCase = "A robot, 4k photo" _UpperCamelCase = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa) pipe_prior.to(lowercase_) _UpperCamelCase = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa) _UpperCamelCase = pipeline.to(lowercase_) pipeline.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = torch.Generator(device="cpu").manual_seed(0) _UpperCamelCase , _UpperCamelCase = pipe_prior( lowercase_ , image=lowercase_ , strength=0.85 , generator=lowercase_ , negative_prompt="" , ).to_tuple() _UpperCamelCase = pipeline( image=lowercase_ , image_embeds=lowercase_ , negative_image_embeds=lowercase_ , hint=lowercase_ , generator=lowercase_ , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="np" , ) _UpperCamelCase = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowercase_ , lowercase_)
82
1
"""simple docstring""" import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput __A = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _lowerCAmelCase ( a ): """simple docstring""" def __init__( self , *__UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' super().__init__(*__UpperCAmelCase , **__UpperCAmelCase ) lowerCAmelCase__ :Tuple = eval_examples lowerCAmelCase__ :Optional[Any] = post_process_function lowerCAmelCase__ :Tuple = quant_trainer_args lowerCAmelCase__ :Tuple = 1_2_8 # default number of calibration samples def snake_case ( self , __UpperCAmelCase=None ): '''simple docstring''' if calib_dataset is None and self.calib_dataset is None: raise ValueError('Trainer: calibration requires an calib_dataset.' ) lowerCAmelCase__ :Dict = calib_dataset if calib_dataset is not None else self.calib_dataset lowerCAmelCase__ :Optional[int] = self._remove_unused_columns(__UpperCAmelCase , description='Calibration' ) return DataLoader( __UpperCAmelCase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=__UpperCAmelCase , ) def snake_case ( self , __UpperCAmelCase=None ): '''simple docstring''' lowerCAmelCase__ :List[Any] = self.train_dataset if calib_dataset is None else calib_dataset lowerCAmelCase__ :Tuple = self.get_calib_dataloader(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = self.model quant_trainer.configure_model(__UpperCAmelCase , self.quant_trainer_args , calib=__UpperCAmelCase ) model.eval() quant_trainer.enable_calibration(__UpperCAmelCase ) logger.info('***** Running calibration *****' ) logger.info(F" Num examples = {self.calib_num}" ) logger.info(F" Batch size = {calib_dataloader.batch_size}" ) for step, inputs in enumerate(__UpperCAmelCase ): # Prediction step lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ :Tuple = self.prediction_step(__UpperCAmelCase , __UpperCAmelCase , prediction_loss_only=__UpperCAmelCase ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(__UpperCAmelCase , self.quant_trainer_args ) lowerCAmelCase__ :List[str] = model def snake_case ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase = "eval" ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = self.eval_dataset if eval_dataset is None else eval_dataset lowerCAmelCase__ :List[Any] = self.get_eval_dataloader(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase__ :Union[str, Any] = self.compute_metrics lowerCAmelCase__ :List[Any] = None lowerCAmelCase__ :Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCAmelCase__ :Any = eval_loop( __UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__UpperCAmelCase , ) finally: lowerCAmelCase__ :int = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: lowerCAmelCase__ :List[Any] = self.post_process_function(__UpperCAmelCase , __UpperCAmelCase , output.predictions ) lowerCAmelCase__ :Any = self.compute_metrics(__UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): lowerCAmelCase__ :List[Any] = metrics.pop(__UpperCAmelCase ) self.log(__UpperCAmelCase ) else: lowerCAmelCase__ :int = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowerCAmelCase__ :str = self.callback_handler.on_evaluate(self.args , self.state , self.control , __UpperCAmelCase ) return metrics def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase = "test" ): '''simple docstring''' lowerCAmelCase__ :List[Any] = self.get_test_dataloader(__UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. lowerCAmelCase__ :Any = self.compute_metrics lowerCAmelCase__ :str = None lowerCAmelCase__ :Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowerCAmelCase__ :Dict = eval_loop( __UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__UpperCAmelCase , ) finally: lowerCAmelCase__ :Any = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output lowerCAmelCase__ :List[Any] = self.post_process_function(__UpperCAmelCase , __UpperCAmelCase , output.predictions , 'predict' ) lowerCAmelCase__ :Dict = self.compute_metrics(__UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"{metric_key_prefix}_" ): lowerCAmelCase__ :Dict = metrics.pop(__UpperCAmelCase ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase="./" ): '''simple docstring''' lowerCAmelCase__ :str = self.eval_dataset lowerCAmelCase__ :int = self.get_eval_dataloader(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = next(iter(__UpperCAmelCase ) ) # saving device - to make it consistent lowerCAmelCase__ :Tuple = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) # convert to tuple lowerCAmelCase__ :Any = tuple(v.to(__UpperCAmelCase ) for k, v in batch.items() ) logger.info('Converting model to be onnx compatible' ) from pytorch_quantization.nn import TensorQuantizer lowerCAmelCase__ :int = True lowerCAmelCase__ :Optional[Any] = self.model.to(__UpperCAmelCase ) model.eval() model.float() lowerCAmelCase__ :Dict = model.module if hasattr(__UpperCAmelCase , 'module' ) else model quant_trainer.configure_model(__UpperCAmelCase , self.quant_trainer_args ) lowerCAmelCase__ :Dict = os.path.join(__UpperCAmelCase , 'model.onnx' ) logger.info(F"exporting model to {output_model_file}" ) lowerCAmelCase__ :Any = {0: 'batch_size', 1: 'seq_len'} torch.onnx.export( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , export_params=__UpperCAmelCase , opset_version=1_3 , do_constant_folding=__UpperCAmelCase , input_names=['input_ids', 'attention_mask', 'token_type_ids'] , output_names=['output_start_logits', 'output_end_logits'] , dynamic_axes={ 'input_ids': axes, 'attention_mask': axes, 'token_type_ids': axes, 'output_start_logits': axes, 'output_end_logits': axes, } , verbose=__UpperCAmelCase , ) logger.info('onnx export finished' )
93
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } _lowerCAmelCase = { """bert-base-uncased""": 512, """bert-large-uncased""": 512, """bert-base-cased""": 512, """bert-large-cased""": 512, """bert-base-multilingual-uncased""": 512, """bert-base-multilingual-cased""": 512, """bert-base-chinese""": 512, """bert-base-german-cased""": 512, """bert-large-uncased-whole-word-masking""": 512, """bert-large-cased-whole-word-masking""": 512, """bert-large-uncased-whole-word-masking-finetuned-squad""": 512, """bert-large-cased-whole-word-masking-finetuned-squad""": 512, """bert-base-cased-finetuned-mrpc""": 512, """bert-base-german-dbmdz-cased""": 512, """bert-base-german-dbmdz-uncased""": 512, """TurkuNLP/bert-base-finnish-cased-v1""": 512, """TurkuNLP/bert-base-finnish-uncased-v1""": 512, """wietsedv/bert-base-dutch-cased""": 512, } _lowerCAmelCase = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class UpperCAmelCase__ ( snake_case__ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_INIT_CONFIGURATION snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = BertTokenizer def __init__( self , A__=None , A__=None , A__=True , A__="[UNK]" , A__="[SEP]" , A__="[PAD]" , A__="[CLS]" , A__="[MASK]" , A__=True , A__=None , **A__ , ): """simple docstring""" super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , tokenize_chinese_chars=A__ , strip_accents=A__ , **A__ , ) UpperCAmelCase_: Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , A__ ) != do_lower_case or normalizer_state.get("strip_accents" , A__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , A__ ) != tokenize_chinese_chars ): UpperCAmelCase_: Any = getattr(A__ , normalizer_state.pop("type" ) ) UpperCAmelCase_: Any = do_lower_case UpperCAmelCase_: Dict = strip_accents UpperCAmelCase_: int = tokenize_chinese_chars UpperCAmelCase_: Optional[int] = normalizer_class(**A__ ) UpperCAmelCase_: Dict = do_lower_case def snake_case_ ( self , A__ , A__=None ): """simple docstring""" UpperCAmelCase_: List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , A__ , A__ = None ): """simple docstring""" UpperCAmelCase_: Optional[Any] = [self.sep_token_id] UpperCAmelCase_: str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self , A__ , A__ = None ): """simple docstring""" UpperCAmelCase_: Optional[Any] = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ )
137
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def SCREAMING_SNAKE_CASE ( snake_case__ ) -> Dict: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __UpperCAmelCase =k.replace(__snake_case , __snake_case ) if k.startswith('''encoder''' ): __UpperCAmelCase =k.replace('''.attn''' , '''.self_attn''' ) __UpperCAmelCase =k.replace('''norm1''' , '''self_attn_layer_norm''' ) __UpperCAmelCase =k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): __UpperCAmelCase =k.replace('''norm1''' , '''self_attn_layer_norm''' ) __UpperCAmelCase =k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) __UpperCAmelCase =k.replace('''norm3''' , '''final_layer_norm''' ) return k def SCREAMING_SNAKE_CASE ( snake_case__ ) -> List[Any]: __UpperCAmelCase =[ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: __UpperCAmelCase =sd.pop(__snake_case ) __UpperCAmelCase =k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd __UpperCAmelCase =v UpperCamelCase_ = ["START"] @torch.no_grad() def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]: __UpperCAmelCase =torch.load(__snake_case , map_location='''cpu''' ) __UpperCAmelCase =model["model"] __UpperCAmelCase =BlenderbotConfig.from_json_file(__snake_case ) __UpperCAmelCase =BlenderbotForConditionalGeneration(__snake_case ) __UpperCAmelCase =m.model.state_dict().keys() __UpperCAmelCase =[] __UpperCAmelCase ={} for k, v in sd.items(): if k in IGNORE_KEYS: continue __UpperCAmelCase =rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __UpperCAmelCase =v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) UpperCamelCase_ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
713
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _SCREAMING_SNAKE_CASE : def __init__(self , UpperCAmelCase , UpperCAmelCase=3 , UpperCAmelCase=3_2 , UpperCAmelCase=3 , UpperCAmelCase=1_0 , UpperCAmelCase=[1_0, 2_0, 3_0, 4_0] , UpperCAmelCase=[1, 1, 2, 1] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase="relu" , UpperCAmelCase=3 , UpperCAmelCase=None , ): '''simple docstring''' __UpperCAmelCase =parent __UpperCAmelCase =batch_size __UpperCAmelCase =image_size __UpperCAmelCase =num_channels __UpperCAmelCase =embeddings_size __UpperCAmelCase =hidden_sizes __UpperCAmelCase =depths __UpperCAmelCase =is_training __UpperCAmelCase =use_labels __UpperCAmelCase =hidden_act __UpperCAmelCase =num_labels __UpperCAmelCase =scope __UpperCAmelCase =len(UpperCAmelCase) def A__ (self): '''simple docstring''' __UpperCAmelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __UpperCAmelCase =None if self.use_labels: __UpperCAmelCase =ids_tensor([self.batch_size] , self.num_labels) __UpperCAmelCase =self.get_config() return config, pixel_values, labels def A__ (self): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =TFRegNetModel(config=UpperCAmelCase) __UpperCAmelCase =model(UpperCAmelCase , training=UpperCAmelCase) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def A__ (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =self.num_labels __UpperCAmelCase =TFRegNetForImageClassification(UpperCAmelCase) __UpperCAmelCase =model(UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def A__ (self): '''simple docstring''' __UpperCAmelCase =self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase =config_and_inputs __UpperCAmelCase ={'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a_ : Any = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () a_ : Union[str, Any] = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) a_ : str = False a_ : List[str] = False a_ : int = False a_ : List[str] = False a_ : List[Any] = False def A__ (self): '''simple docstring''' __UpperCAmelCase =TFRegNetModelTester(self) __UpperCAmelCase =ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase) def A__ (self): '''simple docstring''' return @unittest.skip(reason='''RegNet does not use inputs_embeds''') def A__ (self): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''')) == 0 , reason='''TF does not support backprop for grouped convolutions on CPU.''' , ) @slow def A__ (self): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''') def A__ (self): '''simple docstring''' pass def A__ (self): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase =model_class(UpperCAmelCase) __UpperCAmelCase =inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase =[*signature.parameters.keys()] __UpperCAmelCase =['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase) def A__ (self): '''simple docstring''' __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase) def A__ (self): '''simple docstring''' def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): __UpperCAmelCase =model_class(UpperCAmelCase) __UpperCAmelCase =model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase) , training=UpperCAmelCase) __UpperCAmelCase =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase =self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase) , expected_num_stages + 1) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase =['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: __UpperCAmelCase =layer_type __UpperCAmelCase =True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase =True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase) def A__ (self): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase={}): __UpperCAmelCase =model(UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase) __UpperCAmelCase =model(UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase).to_tuple() def recursive_check(UpperCAmelCase , UpperCAmelCase): if isinstance(UpperCAmelCase , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase , UpperCAmelCase): recursive_check(UpperCAmelCase , UpperCAmelCase) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(UpperCAmelCase , UpperCAmelCase)) , msg=( '''Tuple and dict output are not equal. Difference:''' f""" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}""" ) , ) recursive_check(UpperCAmelCase , UpperCAmelCase) for model_class in self.all_model_classes: __UpperCAmelCase =model_class(UpperCAmelCase) __UpperCAmelCase =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase) __UpperCAmelCase =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase) __UpperCAmelCase =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase) __UpperCAmelCase =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase) __UpperCAmelCase =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase) __UpperCAmelCase =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'''output_hidden_states''': True}) __UpperCAmelCase =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase) __UpperCAmelCase =self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {'''output_hidden_states''': True}) def A__ (self): '''simple docstring''' __UpperCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase) @slow def A__ (self): '''simple docstring''' for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase =TFRegNetModel.from_pretrained(UpperCAmelCase) self.assertIsNotNone(UpperCAmelCase) def SCREAMING_SNAKE_CASE ( ) -> Tuple: __UpperCAmelCase =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def A__ (self): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def A__ (self): '''simple docstring''' __UpperCAmelCase =TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) __UpperCAmelCase =self.default_image_processor __UpperCAmelCase =prepare_img() __UpperCAmelCase =image_processor(images=UpperCAmelCase , return_tensors='''tf''') # forward pass __UpperCAmelCase =model(**UpperCAmelCase , training=UpperCAmelCase) # verify the logits __UpperCAmelCase =tf.TensorShape((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , UpperCAmelCase) __UpperCAmelCase =tf.constant([-0.4180, -1.5051, -3.4836]) tf.debugging.assert_near(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4)
142
0
import fire from utils import calculate_rouge, save_json def lowerCamelCase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str]=None , **lowerCAmelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' A = [x.strip() for x in open(lowerCAmelCase__ ).readlines()] A = [x.strip() for x in open(lowerCAmelCase__ ).readlines()][: len(lowerCAmelCase__ )] A = calculate_rouge(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) if save_path is not None: save_json(lowerCAmelCase__ , lowerCAmelCase__ , indent=lowerCAmelCase__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
106
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): UpperCamelCase__ : List[Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): UpperCamelCase__ : Any = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): UpperCamelCase__ : Optional[Any] = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCamelCase__ : Union[str, Any] = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] UpperCamelCase__ : Tuple = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(UpperCamelCase__ )-1}''' ) if "norm" in key: UpperCamelCase__ : Dict = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCamelCase__ : int = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] UpperCamelCase__ : Tuple = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(UpperCamelCase__ )-1}''' ) if "layer_norm1" in key: UpperCamelCase__ : Tuple = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: UpperCamelCase__ : Union[str, Any] = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 UpperCamelCase__ : Optional[Any] = key[key.find('''block''' ) + len('''block''' )] UpperCamelCase__ : str = key.replace(f'''block{idx}''' , f'''block.{int(UpperCamelCase__ )-1}''' ) if "attn.q" in key: UpperCamelCase__ : Dict = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: UpperCamelCase__ : Any = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: UpperCamelCase__ : List[Any] = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: UpperCamelCase__ : int = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: UpperCamelCase__ : str = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: UpperCamelCase__ : List[str] = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: UpperCamelCase__ : Union[str, Any] = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) UpperCamelCase__ : Optional[int] = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCamelCase__ : str = key[key.find('''linear_c''' ) + len('''linear_c''' )] UpperCamelCase__ : Tuple = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(UpperCamelCase__ )-1}''' ) if "bot_conv" in key: UpperCamelCase__ : List[Any] = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: UpperCamelCase__ : str = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: UpperCamelCase__ : Tuple = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: UpperCamelCase__ : List[Any] = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: UpperCamelCase__ : Tuple = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: UpperCamelCase__ : int = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: UpperCamelCase__ : List[str] = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): UpperCamelCase__ : Tuple = key.replace('''module.last_layer_depth''' , '''head.head''' ) UpperCamelCase__ : List[str] = value return new_state_dict def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCamelCase__ : Optional[Any] = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) UpperCamelCase__ : int = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict UpperCamelCase__ : Union[str, Any] = kv_weight[ : config.hidden_sizes[i], : ] UpperCamelCase__ : Tuple = kv_bias[: config.hidden_sizes[i]] UpperCamelCase__ : Tuple = kv_weight[ config.hidden_sizes[i] :, : ] UpperCamelCase__ : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def SCREAMING_SNAKE_CASE_ ( ): UpperCamelCase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ : Any = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=None ): UpperCamelCase__ : Any = GLPNConfig(hidden_sizes=[6_4, 1_2_8, 3_2_0, 5_1_2] , decoder_hidden_size=6_4 , depths=[3, 8, 2_7, 3] ) # load image processor (only resize + rescale) UpperCamelCase__ : str = GLPNImageProcessor() # prepare image UpperCamelCase__ : List[str] = prepare_img() UpperCamelCase__ : List[str] = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict UpperCamelCase__ : Tuple = torch.load(UpperCamelCase__ , map_location=torch.device('''cpu''' ) ) # rename keys UpperCamelCase__ : Optional[Any] = rename_keys(UpperCamelCase__ ) # key and value matrices need special treatment read_in_k_v(UpperCamelCase__ , UpperCamelCase__ ) # create HuggingFace model and load state dict UpperCamelCase__ : str = GLPNForDepthEstimation(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # forward pass UpperCamelCase__ : Union[str, Any] = model(UpperCamelCase__ ) UpperCamelCase__ : Optional[int] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: UpperCamelCase__ : Tuple = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: UpperCamelCase__ : Union[str, Any] = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) UpperCamelCase__ : Optional[Any] = torch.Size([1, 4_8_0, 6_4_0] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(UpperCamelCase__ , UpperCamelCase__ ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCamelCase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCamelCase__ , UpperCamelCase__ ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCamelCase__ , ) if __name__ == "__main__": lowerCamelCase =argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) parser.add_argument( "--model_name", default="glpn-kitti", type=str, help="Name of the model in case you're pushing to the hub.", ) lowerCamelCase =parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
285
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase_ ( snake_case_ : Any ) -> Dict: '''simple docstring''' __lowerCAmelCase = [2, 2, 6, 2] if """tiny""" in model_name else [2, 2, 18, 2] __lowerCAmelCase = True if """large""" in model_name or """huge""" in model_name else False __lowerCAmelCase = True if """large""" in model_name or """huge""" in model_name else False __lowerCAmelCase = True if """large""" in model_name or """huge""" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowerCAmelCase = [3, 3, 3, 3] __lowerCAmelCase = [5, 5, 5, 5] elif "fl4" in model_name: __lowerCAmelCase = [4, 4, 4, 4] __lowerCAmelCase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowerCAmelCase = [3, 3, 3, 3] if "lrf" in model_name: __lowerCAmelCase = [3, 3, 3, 3] else: __lowerCAmelCase = [2, 2, 2, 2] if "tiny" in model_name: __lowerCAmelCase = 96 elif "small" in model_name: __lowerCAmelCase = 96 elif "base" in model_name: __lowerCAmelCase = 1_28 elif "large" in model_name: __lowerCAmelCase = 1_92 elif "xlarge" in model_name: __lowerCAmelCase = 2_56 elif "huge" in model_name: __lowerCAmelCase = 3_52 # set label information __lowerCAmelCase = """huggingface/label-files""" if "large" in model_name or "huge" in model_name: __lowerCAmelCase = """imagenet-22k-id2label.json""" else: __lowerCAmelCase = """imagenet-1k-id2label.json""" __lowerCAmelCase = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase = {int(snake_case_ ): v for k, v in idalabel.items()} __lowerCAmelCase = {v: k for k, v in idalabel.items()} __lowerCAmelCase = FocalNetConfig( embed_dim=snake_case_ , depths=snake_case_ , focal_levels=snake_case_ , focal_windows=snake_case_ , use_conv_embed=snake_case_ , idalabel=snake_case_ , labelaid=snake_case_ , use_post_layernorm=snake_case_ , use_layerscale=snake_case_ , ) return config def UpperCamelCase_ ( snake_case_ : Dict ) -> Any: '''simple docstring''' if "patch_embed.proj" in name: __lowerCAmelCase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: __lowerCAmelCase = """encoder.""" + name if "encoder.layers" in name: __lowerCAmelCase = name.replace("""encoder.layers""" , """encoder.stages""" ) if "downsample.proj" in name: __lowerCAmelCase = name.replace("""downsample.proj""" , """downsample.projection""" ) if "blocks" in name: __lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowerCAmelCase = name.replace("""modulation.f""" , """modulation.projection_in""" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowerCAmelCase = name.replace("""modulation.h""" , """modulation.projection_context""" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowerCAmelCase = name.replace("""modulation.proj""" , """modulation.projection_out""" ) if name == "norm.weight": __lowerCAmelCase = """layernorm.weight""" if name == "norm.bias": __lowerCAmelCase = """layernorm.bias""" if "head" in name: __lowerCAmelCase = name.replace("""head""" , """classifier""" ) else: __lowerCAmelCase = """focalnet.""" + name return name def UpperCamelCase_ ( snake_case_ : int , snake_case_ : List[str] , snake_case_ : Optional[int]=False ) -> Optional[int]: '''simple docstring''' __lowerCAmelCase = { """focalnet-tiny""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth""", """focalnet-tiny-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth""", """focalnet-small""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth""", """focalnet-small-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth""", """focalnet-base""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth""", """focalnet-base-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth""", """focalnet-large-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth""", """focalnet-large-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth""", """focalnet-xlarge-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth""", """focalnet-xlarge-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth""", } # fmt: on __lowerCAmelCase = model_name_to_url[model_name] print("""Checkpoint URL: """ , snake_case_ ) __lowerCAmelCase = torch.hub.load_state_dict_from_url(snake_case_ , map_location="""cpu""" )["""model"""] # rename keys for key in state_dict.copy().keys(): __lowerCAmelCase = state_dict.pop(snake_case_ ) __lowerCAmelCase = val __lowerCAmelCase = get_focalnet_config(snake_case_ ) __lowerCAmelCase = FocalNetForImageClassification(snake_case_ ) model.eval() # load state dict model.load_state_dict(snake_case_ ) # verify conversion __lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase = BitImageProcessor( do_resize=snake_case_ , size={"""shortest_edge""": 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=snake_case_ , crop_size=2_24 , do_normalize=snake_case_ , image_mean=snake_case_ , image_std=snake_case_ , ) __lowerCAmelCase = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) __lowerCAmelCase = processor(images=snake_case_ , return_tensors="""pt""" ) __lowerCAmelCase = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) __lowerCAmelCase = image_transforms(snake_case_ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , snake_case_ , atol=1E-4 ) __lowerCAmelCase = model(**snake_case_ ) __lowerCAmelCase = outputs.logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) print("""First values of logits:""" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowerCAmelCase = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": __lowerCAmelCase = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": __lowerCAmelCase = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": __lowerCAmelCase = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": __lowerCAmelCase = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": __lowerCAmelCase = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) processor.save_pretrained(snake_case_ ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": _A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) _A : List[Any] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
330
'''simple docstring''' from collections import defaultdict class _lowercase : '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: __lowerCAmelCase = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 __lowerCAmelCase = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(SCREAMING_SNAKE_CASE__ ) ) ] __lowerCAmelCase = defaultdict(SCREAMING_SNAKE_CASE__ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 __lowerCAmelCase = (1 << len(SCREAMING_SNAKE_CASE__ )) - 1 def a ( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement __lowerCAmelCase = self.count_ways_until(SCREAMING_SNAKE_CASE__ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. __lowerCAmelCase = total_ways_util return self.dp[mask][task_no] def a ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> str: # Store the list of persons for each task for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in task_performed[i]: self.task[j].append(SCREAMING_SNAKE_CASE__ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": _A : Optional[int] = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _A : Union[str, Any] = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
330
1
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict UpperCamelCase_ : int = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def A_ (__a , __a ): '''simple docstring''' return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def A_ (__a ): '''simple docstring''' A_ = _TestCommandArgs(dataset=__A , all_configs=__A , save_infos=__A ) A_ = TestCommand(*__A ) test_command.run() A_ = os.path.join(__A , "README.md" ) assert os.path.exists(__A ) A_ = DatasetInfosDict.from_directory(__A ) A_ = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string" ) ), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] ) ), "langs": Sequence(Value("string" ) ), "spans": Sequence(Value("string" ) ), } ) , splits=[ { "name": "train", "num_bytes": 235_1563, "num_examples": 1_0000, }, { "name": "validation", "num_bytes": 23_8418, "num_examples": 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: A_ , A_ = getattr(dataset_infos["default"] , __A ), getattr(expected_dataset_infos["default"] , __A ) if key == "num_bytes": assert is_apercent_close(__A , __A ) elif key == "splits": assert list(__A ) == list(__A ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
115
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
601
0
def A ( _UpperCAmelCase : str , _UpperCAmelCase : bool = False ) -> str: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = F"Expected string as input, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): _UpperCAmelCase = F"Expected boolean as use_pascal parameter, found {type(_UpperCAmelCase )}" raise ValueError(_UpperCAmelCase ) _UpperCAmelCase = input_str.split('_' ) _UpperCAmelCase = 0 if use_pascal else 1 _UpperCAmelCase = words[start_index:] _UpperCAmelCase = [word[0].upper() + word[1:] for word in words_to_capitalize] _UpperCAmelCase = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
639
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = "https://openaipublic.azureedge.net/jukebox/models/" UpperCAmelCase__ = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def A ( _UpperCAmelCase : List[str] ) -> Tuple: '''simple docstring''' if key.endswith('.model.1.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.bias' , '.conv1d_1.bias' ) elif key.endswith('.model.1.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.1.weight' , '.conv1d_1.weight' ) elif key.endswith('.model.3.bias' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.bias' , '.conv1d_2.bias' ) elif key.endswith('.model.3.weight' ) and len(key.split('.' ) ) > 10: _UpperCAmelCase = key.replace('.model.3.weight' , '.conv1d_2.weight' ) if "conditioner_blocks.0." in key: _UpperCAmelCase = key.replace('conditioner_blocks.0' , 'conditioner_blocks' ) if "prime_prior" in key: _UpperCAmelCase = key.replace('prime_prior' , 'encoder' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _UpperCAmelCase = key.replace('.emb.' , '.' ) if key.endswith('k' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('.k' , '.codebook' ) if "y_emb." in key: return key.replace('y_emb.' , 'metadata_embedding.' ) if "x_emb.emb." in key: _UpperCAmelCase = key.replace('0.x_emb.emb' , 'embed_tokens' ) if "prime_state_ln" in key: return key.replace('prime_state_ln' , 'encoder.final_layer_norm' ) if ".ln" in key: return key.replace('.ln' , '.layer_norm' ) if "_ln" in key: return key.replace('_ln' , '_layer_norm' ) if "prime_state_proj" in key: return key.replace('prime_state_proj' , 'encoder.proj_in' ) if "prime_x_out" in key: return key.replace('prime_x_out' , 'encoder.lm_head' ) if "prior.x_out" in key: return key.replace('x_out' , 'fc_proj_out' ) if "x_emb" in key: return key.replace('x_emb' , 'embed_tokens' ) return key def A ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' _UpperCAmelCase = {} import re _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)' ) _UpperCAmelCase = re.compile( R'conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)' ) _UpperCAmelCase = re.compile(R'conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_conv_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_encoder_block_conv_in.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_encoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_encoder_block_proj_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" _UpperCAmelCase = re_encoder_block_proj_out.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_decoder_block_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[2] ) * 2 + int(groups[3] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_decoder_block_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_decoder_block_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" _UpperCAmelCase = re_decoder_block_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_conv_out.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" _UpperCAmelCase = re_prior_cond_conv_out.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_resnet.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = int(groups[1] ) * 2 + int(groups[2] ) - 2 _UpperCAmelCase = {'1': 1, '3': 2}[groups[-2]] _UpperCAmelCase = F"conditioner_blocks.upsampler.upsample_block.{block_index}." _UpperCAmelCase = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" _UpperCAmelCase = prefix + resnet_block _UpperCAmelCase = re_prior_cond_resnet.sub(_UpperCAmelCase , _UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(_UpperCAmelCase ): _UpperCAmelCase = re_prior_cond_proj_in.match(_UpperCAmelCase ) _UpperCAmelCase = regex_match.groups() _UpperCAmelCase = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}" _UpperCAmelCase = re_prior_cond_proj_in.sub(_UpperCAmelCase , _UpperCAmelCase ) # keep original key else: _UpperCAmelCase = original_key _UpperCAmelCase = replace_key(_UpperCAmelCase ) if F"{key_prefix}.{key}" not in model_state_dict or key is None: print(F"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape: _UpperCAmelCase = model_state_dict[F"{key_prefix}.{key}"] print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) _UpperCAmelCase = original_key _UpperCAmelCase = original_key _UpperCAmelCase = value return new_dict @torch.no_grad() def A ( _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Dict=None ) -> Dict: '''simple docstring''' for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): _UpperCAmelCase = requests.get(F"{PREFIX}{file}" , allow_redirects=_UpperCAmelCase ) os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=_UpperCAmelCase ) open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , 'wb' ).write(r.content ) _UpperCAmelCase = MODEL_MAPPING[model_name.split('/' )[-1]] _UpperCAmelCase = JukeboxConfig.from_pretrained(_UpperCAmelCase ) _UpperCAmelCase = JukeboxModel(_UpperCAmelCase ) _UpperCAmelCase = [] _UpperCAmelCase = {} for i, dict_name in enumerate(_UpperCAmelCase ): _UpperCAmelCase = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )['model'] _UpperCAmelCase = {} for k in old_dic.keys(): if k.endswith('.b' ): _UpperCAmelCase = old_dic[k] elif k.endswith('.w' ): _UpperCAmelCase = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _UpperCAmelCase = old_dic[k] else: _UpperCAmelCase = old_dic[k] _UpperCAmelCase = 'vqvae' if i == 0 else F"priors.{3 - i}" _UpperCAmelCase = fix_jukebox_keys(_UpperCAmelCase , model.state_dict() , _UpperCAmelCase , _UpperCAmelCase ) weight_dict.append(_UpperCAmelCase ) _UpperCAmelCase = weight_dict.pop(0 ) model.vqvae.load_state_dict(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) with open(F"{pytorch_dump_folder_path}/mapping.json" , 'w' ) as txtfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) return weight_dict if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) UpperCAmelCase__ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
639
1
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __lowerCAmelCase : Dict = 16 __lowerCAmelCase : str = 32 def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 16 , lowerCamelCase__ = "bert-base-cased" ): """simple docstring""" lowerCAmelCase__ = AutoTokenizer.from_pretrained(lowerCamelCase__ ) lowerCAmelCase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase__ = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowerCamelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) lowerCAmelCase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) return train_dataloader, eval_dataloader def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" model.eval() lowerCAmelCase__ = 0 for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ = model(**lowerCamelCase__ ) lowerCAmelCase__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCamelCase__ ) - 1: lowerCAmelCase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCamelCase__ , references=lowerCamelCase__ , ) lowerCAmelCase__ = metric.compute() return eval_metric["accuracy"] def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ = config["""lr"""] lowerCAmelCase__ = int(config["""num_epochs"""] ) lowerCAmelCase__ = int(config["""seed"""] ) lowerCAmelCase__ = int(config["""batch_size"""] ) lowerCAmelCase__ = args.model_name_or_path set_seed(lowerCamelCase__ ) lowerCAmelCase__ , lowerCAmelCase__ = get_dataloaders(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained(lowerCamelCase__ , return_dict=lowerCamelCase__ ) # Instantiate optimizer lowerCAmelCase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCAmelCase__ = optimizer_cls(params=model.parameters() , lr=lowerCamelCase__ ) if accelerator.state.deepspeed_plugin is not None: lowerCAmelCase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: lowerCAmelCase__ = 1 lowerCAmelCase__ = (len(lowerCamelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCAmelCase__ = get_linear_schedule_with_warmup( optimizer=lowerCamelCase__ , num_warmup_steps=0 , num_training_steps=lowerCamelCase__ , ) else: lowerCAmelCase__ = DummyScheduler(lowerCamelCase__ , total_num_steps=lowerCamelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase__ = 0 # We also need to keep track of the stating epoch so files are named properly lowerCAmelCase__ = 0 lowerCAmelCase__ = evaluate.load("""glue""" , """mrpc""" ) lowerCAmelCase__ = num_epochs if args.partial_train_epoch is not None: lowerCAmelCase__ = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowerCAmelCase__ = args.resume_from_checkpoint.split("""epoch_""" )[1] lowerCAmelCase__ = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowerCAmelCase__ = int(lowerCamelCase__ ) + 1 lowerCAmelCase__ = evaluation_loop(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) accelerator.print("""resumed checkpoint performance:""" , lowerCamelCase__ ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f"""state_{starting_epoch-1}.json""" ) , """r""" ) as f: lowerCAmelCase__ = json.load(lowerCamelCase__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowerCAmelCase__ = {} for epoch in range(lowerCamelCase__ , lowerCamelCase__ ): model.train() for step, batch in enumerate(lowerCamelCase__ ): lowerCAmelCase__ = model(**lowerCamelCase__ ) lowerCAmelCase__ = outputs.loss lowerCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowerCAmelCase__ = f"""epoch_{epoch}""" lowerCAmelCase__ = os.path.join(args.output_dir , lowerCamelCase__ ) accelerator.save_state(lowerCamelCase__ ) lowerCAmelCase__ = evaluation_loop(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = accuracy lowerCAmelCase__ = lr_scheduler.get_lr()[0] lowerCAmelCase__ = optimizer.param_groups[0]["""lr"""] lowerCAmelCase__ = epoch lowerCAmelCase__ = overall_step accelerator.print(f"""epoch {epoch}:""" , lowerCamelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"""state_{epoch}.json""" ) , """w""" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowerCamelCase__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCamelCase__ , ) parser.add_argument( """--output_dir""" , type=lowerCamelCase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=lowerCamelCase__ , default=lowerCamelCase__ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=lowerCamelCase__ , default=lowerCamelCase__ , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCamelCase__ , default=2 , help="""Number of train epochs.""" , ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
644
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __lowerCAmelCase : int = logging.get_logger(__name__) __lowerCAmelCase : Dict = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __lowerCAmelCase : Optional[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" for attribute in key.split(""".""" ): lowerCAmelCase__ = getattr(lowerCamelCase__ , lowerCamelCase__ ) if weight_type is not None: lowerCAmelCase__ = getattr(lowerCamelCase__ , lowerCamelCase__ ).shape else: lowerCAmelCase__ = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase__ = value elif weight_type == "weight_g": lowerCAmelCase__ = value elif weight_type == "weight_v": lowerCAmelCase__ = value elif weight_type == "bias": lowerCAmelCase__ = value else: lowerCAmelCase__ = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ = fairseq_model.state_dict() lowerCAmelCase__ = hf_model.feature_extractor lowerCAmelCase__ = hf_model.adapter for name, value in fairseq_dict.items(): lowerCAmelCase__ = False if "conv_layers" in name: load_conv_layer( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , hf_model.config.feat_extract_norm == """group""" , ) lowerCAmelCase__ = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowerCAmelCase__ = True if "*" in mapped_key: lowerCAmelCase__ = name.split(lowerCamelCase__ )[0].split(""".""" )[-2] lowerCAmelCase__ = mapped_key.replace("""*""" , lowerCamelCase__ ) if "weight_g" in name: lowerCAmelCase__ = """weight_g""" elif "weight_v" in name: lowerCAmelCase__ = """weight_v""" elif "bias" in name: lowerCAmelCase__ = """bias""" elif "weight" in name: lowerCAmelCase__ = """weight""" else: lowerCAmelCase__ = None set_recursively(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) continue if not is_used: unused_weights.append(lowerCamelCase__ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = full_name.split("""conv_layers.""" )[-1] lowerCAmelCase__ = name.split(""".""" ) lowerCAmelCase__ = int(items[0] ) lowerCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = full_name.split("""adaptor.""" )[-1] lowerCAmelCase__ = name.split(""".""" ) if items[1].isdigit(): lowerCAmelCase__ = int(items[1] ) else: lowerCAmelCase__ = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" lowerCAmelCase__ = value logger.info(f"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" lowerCAmelCase__ = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" lowerCAmelCase__ = value logger.info(f"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" lowerCAmelCase__ = value logger.info(f"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" lowerCAmelCase__ = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" lowerCAmelCase__ = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = emb.weight.shape lowerCAmelCase__ = nn.Linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ ) lowerCAmelCase__ = emb.weight.data return lin_layer @torch.no_grad() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ): """simple docstring""" lowerCAmelCase__ = WavaVecaConfig.from_pretrained( lowerCamelCase__ , add_adapter=lowerCamelCase__ , adapter_stride=lowerCamelCase__ , adapter_kernel_size=lowerCamelCase__ , use_auth_token=lowerCamelCase__ , output_hidden_size=lowerCamelCase__ , ) lowerCAmelCase__ = MBartConfig.from_pretrained(lowerCamelCase__ ) # load model lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) lowerCAmelCase__ = model[0].eval() # load feature extractor lowerCAmelCase__ = WavaVecaFeatureExtractor.from_pretrained(lowerCamelCase__ , use_auth_token=lowerCamelCase__ ) # set weights for wav2vec2 encoder lowerCAmelCase__ = WavaVecaModel(lowerCamelCase__ ) recursively_load_weights_wavaveca(model.encoder , lowerCamelCase__ ) # load decoder weights lowerCAmelCase__ = MBartForCausalLM(lowerCamelCase__ ) lowerCAmelCase__ , lowerCAmelCase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowerCamelCase__ ) logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) lowerCAmelCase__ = SpeechEncoderDecoderModel(encoder=lowerCamelCase__ , decoder=lowerCamelCase__ ) lowerCAmelCase__ = False lowerCAmelCase__ = MBartaaTokenizer(lowerCamelCase__ ) tokenizer.save_pretrained(lowerCamelCase__ ) lowerCAmelCase__ = hf_wavavec.config.to_dict() lowerCAmelCase__ = tokenizer.pad_token_id lowerCAmelCase__ = tokenizer.bos_token_id lowerCAmelCase__ = tokenizer.eos_token_id lowerCAmelCase__ = """mbart50""" lowerCAmelCase__ = """wav2vec2""" lowerCAmelCase__ = tokenizer.eos_token_id lowerCAmelCase__ = 25_0004 lowerCAmelCase__ = tokenizer.eos_token_id lowerCAmelCase__ = SpeechEncoderDecoderConfig.from_dict(lowerCamelCase__ ) hf_wavavec.save_pretrained(lowerCamelCase__ ) feature_extractor.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=10_24, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=25_00_04, type=int, help="`decoder_start_token_id` of model config") __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
644
1
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _a ( ) -> str: snake_case_ = argparse.ArgumentParser() parser.add_argument( """-m""" , """--pretrained_model_name_or_path""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , ) parser.add_argument( """-c""" , """--caption""" , type=_SCREAMING_SNAKE_CASE , default="""robotic cat with wings""" , help="""Text used to generate images.""" , ) parser.add_argument( """-n""" , """--images_num""" , type=_SCREAMING_SNAKE_CASE , default=4 , help="""How much images to generate.""" , ) parser.add_argument( """-s""" , """--seed""" , type=_SCREAMING_SNAKE_CASE , default=42 , help="""Seed for random process.""" , ) parser.add_argument( """-ci""" , """--cuda_id""" , type=_SCREAMING_SNAKE_CASE , default=0 , help="""cuda_id.""" , ) snake_case_ = parser.parse_args() return args def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if not len(_SCREAMING_SNAKE_CASE ) == rows * cols: raise ValueError("""The specified number of rows and columns are not correct.""" ) snake_case_ , snake_case_ = imgs[0].size snake_case_ = Image.new("""RGB""" , size=(cols * w, rows * h) ) snake_case_ , snake_case_ = grid.size for i, img in enumerate(_SCREAMING_SNAKE_CASE ): grid.paste(_SCREAMING_SNAKE_CASE , box=(i % cols * w, i // cols * h) ) return grid def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="robotic cat with wings" , _SCREAMING_SNAKE_CASE=7.5 , _SCREAMING_SNAKE_CASE=50 , _SCREAMING_SNAKE_CASE=1 , _SCREAMING_SNAKE_CASE=42 , ) -> Dict: snake_case_ = torch.Generator(pipeline.device ).manual_seed(_SCREAMING_SNAKE_CASE ) snake_case_ = pipeline( _SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE , ).images snake_case_ = int(math.sqrt(_SCREAMING_SNAKE_CASE ) ) snake_case_ = image_grid(_SCREAMING_SNAKE_CASE , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __SCREAMING_SNAKE_CASE : List[Any] = parse_args() # Load models and create wrapper for stable diffusion __SCREAMING_SNAKE_CASE : Optional[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') __SCREAMING_SNAKE_CASE : List[str] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') __SCREAMING_SNAKE_CASE : Optional[int] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') __SCREAMING_SNAKE_CASE : Optional[int] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') __SCREAMING_SNAKE_CASE : str = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __SCREAMING_SNAKE_CASE : Union[str, Any] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): __SCREAMING_SNAKE_CASE : Optional[Any] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: __SCREAMING_SNAKE_CASE : Any = unet.to(torch.device('cuda', args.cuda_id)) __SCREAMING_SNAKE_CASE : Tuple = pipeline.to(unet.device) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) __SCREAMING_SNAKE_CASE : Dict = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
2
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class __A (snake_case__): '''simple docstring''' __lowercase: Any = """mctct""" def __init__( self : Dict , UpperCAmelCase_ : List[Any]=8_065 , UpperCAmelCase_ : Tuple=1_536 , UpperCAmelCase_ : Optional[Any]=36 , UpperCAmelCase_ : int=6_144 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Any=384 , UpperCAmelCase_ : List[str]=920 , UpperCAmelCase_ : Any=1E-5 , UpperCAmelCase_ : Any=0.3 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=0.3 , UpperCAmelCase_ : str=0.3 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Tuple=0.3 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : Optional[Any]=(7,) , UpperCAmelCase_ : Optional[Any]=(3,) , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[str]="sum" , UpperCAmelCase_ : Union[str, Any]=False , **UpperCAmelCase_ : Any , ) ->Dict: """simple docstring""" super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = intermediate_size snake_case_ = num_attention_heads snake_case_ = attention_head_dim snake_case_ = max_position_embeddings snake_case_ = layer_norm_eps snake_case_ = layerdrop snake_case_ = hidden_act snake_case_ = initializer_range snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = pad_token_id snake_case_ = bos_token_id snake_case_ = eos_token_id snake_case_ = conv_glu_dim snake_case_ = conv_dropout snake_case_ = num_conv_layers snake_case_ = input_feat_per_channel snake_case_ = input_channels snake_case_ = conv_channels snake_case_ = ctc_loss_reduction snake_case_ = ctc_zero_infinity # prevents config testing fail with exporting to json snake_case_ = list(UpperCAmelCase_ ) snake_case_ = list(UpperCAmelCase_ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
2
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class snake_case_ : '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 42 class snake_case_ : '''simple docstring''' def __init__( self : Dict , __lowerCamelCase : int ) -> Optional[Any]: '''simple docstring''' __lowercase = [[] for _ in range(__lowerCamelCase )] __lowercase = size def __getitem__( self : List[str] , __lowerCamelCase : int ) -> Iterator[Edge]: '''simple docstring''' return iter(self._graph[vertex] ) @property def UpperCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' return self._size def UpperCAmelCase ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ) -> Any: '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(__lowerCamelCase , __lowerCamelCase ) ) def UpperCAmelCase ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : int ) -> int | None: '''simple docstring''' __lowercase = deque([start_vertex] ) __lowercase = [None] * self.size __lowercase = 0 while queue: __lowercase = queue.popleft() __lowercase = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: __lowercase = current_distance + edge.weight __lowercase = distances[edge.destination_vertex] if ( isinstance(__lowerCamelCase , __lowerCamelCase ) and new_distance >= dest_vertex_distance ): continue __lowercase = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
375
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ : Any = False, False, False @dataclass class snake_case_ : '''simple docstring''' __UpperCamelCase = None __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = None # Automatically constructed __UpperCamelCase = "dict" __UpperCamelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) __UpperCamelCase = field(default='''Audio''' , init=UpperCAmelCase_ , repr=UpperCAmelCase_ ) def __call__( self : Optional[Any] ) -> List[str]: '''simple docstring''' return self.pa_type def UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, bytes, dict] ) -> dict: '''simple docstring''' try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('To support encoding audio data, please install \'soundfile\'.' ) from err if isinstance(__lowerCamelCase , __lowerCamelCase ): return {"bytes": None, "path": value} elif isinstance(__lowerCamelCase , __lowerCamelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes __lowercase = BytesIO() sf.write(__lowerCamelCase , value['array'] , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('pcm' ): # "PCM" only has raw audio bytes if value.get('sampling_rate' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('To use PCM files, please specify a \'sampling_rate\' in Audio object' ) if value.get('bytes' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) __lowercase = np.frombuffer(value['bytes'] , dtype=np.intaa ).astype(np.floataa ) / 32_767 else: __lowercase = np.memmap(value['path'] , dtype='h' , mode='r' ).astype(np.floataa ) / 32_767 __lowercase = BytesIO(bytes() ) sf.write(__lowerCamelCase , __lowerCamelCase , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def UpperCAmelCase ( self : Any , __lowerCamelCase : dict , __lowerCamelCase : Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict: '''simple docstring''' if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Audio(decode=True) instead.' ) __lowercase , __lowercase = (value['path'], BytesIO(value['bytes'] )) if value['bytes'] is not None else (value['path'], None) if path is None and file is None: raise ValueError(F"An audio sample should have one of 'path' or 'bytes' but both are None in {value}." ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('To support decoding audio files, please install \'librosa\' and \'soundfile\'.' ) from err __lowercase = xsplitext(__lowerCamelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( 'Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( 'Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) if file is None: __lowercase = token_per_repo_id or {} __lowercase = path.split('::' )[-1] try: __lowercase = string_to_dict(__lowerCamelCase , config.HUB_DATASETS_URL )['repo_id'] __lowercase = token_per_repo_id[repo_id] except (ValueError, KeyError): __lowercase = None with xopen(__lowerCamelCase , 'rb' , use_auth_token=__lowerCamelCase ) as f: __lowercase , __lowercase = sf.read(__lowerCamelCase ) else: __lowercase , __lowercase = sf.read(__lowerCamelCase ) __lowercase = array.T if self.mono: __lowercase = librosa.to_mono(__lowerCamelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: __lowercase = librosa.resample(__lowerCamelCase , orig_sr=__lowerCamelCase , target_sr=self.sampling_rate ) __lowercase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def UpperCAmelCase ( self : int ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value if self.decode: raise ValueError('Cannot flatten a decoded Audio feature.' ) return { "bytes": Value('binary' ), "path": Value('string' ), } def UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray: '''simple docstring''' if pa.types.is_string(storage.type ): __lowercase = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) __lowercase = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): __lowercase = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) __lowercase = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('array' ): __lowercase = pa.array([Audio().encode_example(__lowerCamelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: __lowercase = storage.field('bytes' ) else: __lowercase = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: __lowercase = storage.field('path' ) else: __lowercase = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) __lowercase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) return array_cast(__lowerCamelCase , self.pa_type ) def UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : pa.StructArray ) -> pa.StructArray: '''simple docstring''' @no_op_if_value_is_null def path_to_bytes(__lowerCamelCase : Any ): with xopen(__lowerCamelCase , 'rb' ) as f: __lowercase = f.read() return bytes_ __lowercase = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __lowercase = pa.array( [os.path.basename(__lowerCamelCase ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) __lowercase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(__lowerCamelCase , self.pa_type )
375
1
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": A__ = pd.read_csv("sample_data.csv", header=None) A__ = df.shape[:1][0] # If you're using some other dataset input the target column A__ = df.iloc[:, 1:2] A__ = actual_data.values.reshape(len_data, 1) A__ = MinMaxScaler().fit_transform(actual_data) A__ = 10 A__ = 5 A__ = 20 A__ = len_data - periods * look_back A__ = actual_data[:division] A__ = actual_data[division - look_back :] A__ , A__ = [], [] A__ , A__ = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) A__ = np.array(train_x) A__ = np.array(test_x) A__ = np.array([list(i.ravel()) for i in train_y]) A__ = np.array([list(i.ravel()) for i in test_y]) A__ = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="mean_squared_error", optimizer="adam") A__ = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) A__ = model.predict(x_test)
721
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __UpperCamelCase ( SCREAMING_SNAKE_CASE ): _lowercase : int = 0 _lowercase : bool = False _lowercase : float = 3.0 class __UpperCamelCase ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self: Tuple ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=__UpperCamelCase ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def _SCREAMING_SNAKE_CASE ( self: Dict ): '''simple docstring''' __magic_name__ = GradScalerKwargs(init_scale=10_24 , growth_factor=2 ) AcceleratorState._reset_state() __magic_name__ = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __magic_name__ = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 20_00 ) self.assertEqual(scaler._enabled , __UpperCamelCase ) @require_multi_gpu def _SCREAMING_SNAKE_CASE ( self: Optional[Any] ): '''simple docstring''' __magic_name__ = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(__UpperCamelCase , env=os.environ.copy() ) if __name__ == "__main__": A__ = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) A__ = Accelerator(kwargs_handlers=[ddp_scaler]) A__ = torch.nn.Linear(100, 200) A__ = accelerator.prepare(model) # Check the values changed in kwargs A__ = "" A__ = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
184
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowercase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
370
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter __lowercase = '''Create a default config file for Accelerate with only a few flags set.''' def snake_case__ ( _A: Dict="no" , _A: str = default_json_config_file , _A: bool = False ) -> List[str]: '''simple docstring''' lowerCAmelCase = Path(_A ) path.parent.mkdir(parents=_A , exist_ok=_A ) if path.exists(): print( f"Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`." ) return False lowerCAmelCase = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f"`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}" ) lowerCAmelCase = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): lowerCAmelCase = torch.cuda.device_count() lowerCAmelCase = num_gpus lowerCAmelCase = False if num_gpus > 1: lowerCAmelCase = """MULTI_GPU""" else: lowerCAmelCase = """NO""" elif is_xpu_available() and use_xpu: lowerCAmelCase = torch.xpu.device_count() lowerCAmelCase = num_xpus lowerCAmelCase = False if num_xpus > 1: lowerCAmelCase = """MULTI_XPU""" else: lowerCAmelCase = """NO""" elif is_npu_available(): lowerCAmelCase = torch.npu.device_count() lowerCAmelCase = num_npus lowerCAmelCase = False if num_npus > 1: lowerCAmelCase = """MULTI_NPU""" else: lowerCAmelCase = """NO""" else: lowerCAmelCase = 0 lowerCAmelCase = True lowerCAmelCase = 1 lowerCAmelCase = """NO""" lowerCAmelCase = ClusterConfig(**_A ) config.to_json_file(_A ) return path def snake_case__ ( _A: str , _A: Any ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase = parser.add_parser("""default""" , parents=_A , help=_A , formatter_class=_A ) parser.add_argument( """--config_file""" , default=_A , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=_A , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=_A ) return parser def snake_case__ ( _A: Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f"accelerate configuration saved at {config_file}" )
370
1
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def __snake_case (__UpperCAmelCase ): """simple docstring""" if num <= 0: raise ValueError('''math domain error''' ) return quad(__UpperCAmelCase , 0 , __UpperCAmelCase , args=(__UpperCAmelCase) )[0] def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" return math.pow(__UpperCAmelCase , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
707
'''simple docstring''' def __snake_case (__UpperCAmelCase ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError('''String must only contain alphabetic characters.''' ) lowerCamelCase_ : Union[str, Any] = sorted(string.lower() ) return len(__UpperCAmelCase ) == len(set(__UpperCAmelCase ) ) if __name__ == "__main__": __lowerCamelCase : Tuple = input("""Enter a string """).strip() __lowerCamelCase : Union[str, Any] = is_isogram(input_str) print(f"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
418
0
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint UpperCamelCase__ = { '169M': 1_2, '430M': 2_4, '1B5': 2_4, '3B': 3_2, '7B': 3_2, '14B': 4_0, } UpperCamelCase__ = { '169M': 7_6_8, '430M': 1_0_2_4, '1B5': 2_0_4_8, '3B': 2_5_6_0, '7B': 4_0_9_6, '14B': 5_1_2_0, } def lowerCAmelCase_ ( __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = list(state_dict.keys() ) for name in state_dict_keys: UpperCAmelCase__ = state_dict.pop(__A ) # emb -> embedding if name.startswith("emb." ): UpperCAmelCase__ = name.replace("emb.", "embeddings." ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("blocks.0.ln0" ): UpperCAmelCase__ = name.replace("blocks.0.ln0", "blocks.0.pre_ln" ) # att -> attention UpperCAmelCase__ = re.sub(r"blocks\.(\d+)\.att", r"blocks.\1.attention", __A ) # ffn -> feed_forward UpperCAmelCase__ = re.sub(r"blocks\.(\d+)\.ffn", r"blocks.\1.feed_forward", __A ) # time_mix_k -> time_mix_key and reshape if name.endswith(".time_mix_k" ): UpperCAmelCase__ = name.replace(".time_mix_k", ".time_mix_key" ) # time_mix_v -> time_mix_value and reshape if name.endswith(".time_mix_v" ): UpperCAmelCase__ = name.replace(".time_mix_v", ".time_mix_value" ) # time_mix_r -> time_mix_key and reshape if name.endswith(".time_mix_r" ): UpperCAmelCase__ = name.replace(".time_mix_r", ".time_mix_receptance" ) if name != "head.weight": UpperCAmelCase__ = "rwkv." + name UpperCAmelCase__ = weight return state_dict def lowerCAmelCase_ ( __A, __A, __A, __A=None, __A=None, __A=False, __A=None ) -> List[Any]: '''simple docstring''' if tokenizer_file is None: print("No `--tokenizer_file` provided, we will use the default tokenizer." ) UpperCAmelCase__ = 50_277 UpperCAmelCase__ = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b" ) else: UpperCAmelCase__ = PreTrainedTokenizerFast(tokenizer_file=__A ) UpperCAmelCase__ = len(__A ) tokenizer.save_pretrained(__A ) # 2. Build the config UpperCAmelCase__ = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: UpperCAmelCase__ = candidate break if size is None: raise ValueError("Could not infer the size, please provide it with the `--size` argument." ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) UpperCAmelCase__ = RwkvConfig( vocab_size=__A, num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size], hidden_size=HIDEN_SIZE_MAPPING[size], ) config.save_pretrained(__A ) # 3. Download model file then convert state_dict UpperCAmelCase__ = hf_hub_download(__A, __A ) UpperCAmelCase__ = torch.load(__A, map_location="cpu" ) UpperCAmelCase__ = convert_state_dict(__A ) # 4. Split in shards and save UpperCAmelCase__ , UpperCAmelCase__ = shard_checkpoint(__A ) for shard_file, shard in shards.items(): torch.save(__A, os.path.join(__A, __A ) ) if index is not None: UpperCAmelCase__ = os.path.join(__A, __A ) # Save the index as well with open(__A, "w", encoding="utf-8" ) as f: UpperCAmelCase__ = json.dumps(__A, indent=2, sort_keys=__A ) + "\n" f.write(__A ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( "Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model." ) UpperCAmelCase__ = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: UpperCAmelCase__ = torch.load(os.path.join(__A, __A ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()}, os.path.join(__A, __A ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("Please provide a `model_name` to push the model to the Hub." ) UpperCAmelCase__ = AutoModelForCausalLM.from_pretrained(__A ) model.push_to_hub(__A, max_shard_size="2GB" ) tokenizer.push_to_hub(__A ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.' ) parser.add_argument( '--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.' ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='Where to save the converted model.' ) parser.add_argument( '--tokenizer_file', default=None, type=str, help='Path to the tokenizer file to use (if not provided, only the model is converted).', ) parser.add_argument( '--size', default=None, type=str, help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Push to the Hub the converted model.', ) parser.add_argument( '--model_name', default=None, type=str, help='Name of the pushed model on the Hub, including the username / organization.', ) UpperCamelCase__ = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
486
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class A ( UpperCAmelCase_ ): __UpperCAmelCase : Any = ['image_processor', 'tokenizer'] __UpperCAmelCase : List[str] = 'FlavaImageProcessor' __UpperCAmelCase : Dict = ('BertTokenizer', 'BertTokenizerFast') def __init__(self : int , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Union[str, Any]=None , **__UpperCAmelCase : Dict ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCAmelCase , ) UpperCAmelCase__ = kwargs.pop("feature_extractor" ) UpperCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) UpperCAmelCase__ = self.image_processor def __call__(self : Optional[int] , __UpperCAmelCase : Optional[ImageInput] = None , __UpperCAmelCase : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , __UpperCAmelCase : bool = True , __UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , __UpperCAmelCase : Union[bool, str, TruncationStrategy] = False , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : int = 0 , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , **__UpperCAmelCase : Any , ) -> Union[str, Any]: """simple docstring""" if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: UpperCAmelCase__ = self.tokenizer( text=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , stride=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_overflowing_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , return_length=__UpperCAmelCase , verbose=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) if images is not None: UpperCAmelCase__ = self.image_processor( __UpperCAmelCase , return_image_mask=__UpperCAmelCase , return_codebook_pixels=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase , ) if text is not None and images is not None: encoding.update(__UpperCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def lowercase_ (self : Optional[Any] , *__UpperCAmelCase : str , **__UpperCAmelCase : Tuple ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def lowercase_ (self : int , *__UpperCAmelCase : List[str] , **__UpperCAmelCase : Union[str, Any] ) -> Any: """simple docstring""" return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def lowercase_ (self : Tuple ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.tokenizer.model_input_names UpperCAmelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase_ (self : Any ) -> Optional[int]: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCAmelCase , ) return self.image_processor_class @property def lowercase_ (self : str ) -> Tuple: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCAmelCase , ) return self.image_processor
486
1
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) lowerCAmelCase__ = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ): __lowercase = None __lowercase = os.path.abspath(os.path.join("examples" , "by_feature" ) ) __lowercase = os.path.abspath("examples" ) for item in os.listdir(lowerCAmelCase_ ): if item not in EXCLUDE_EXAMPLES: __lowercase = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) if os.path.isfile(lowerCAmelCase_ ) and ".py" in item_path: with self.subTest( tested_script=lowerCAmelCase_ , feature_script=lowerCAmelCase_ , tested_section="main()" if parser_only else "training_function()" , ): __lowercase = compare_against_test( os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) __lowercase = "\n".join(lowerCAmelCase_ ) if special_strings is not None: for string in special_strings: __lowercase = diff.replace(lowerCAmelCase_ , "" ) self.assertEqual(lowerCAmelCase_ , "" ) def snake_case__ ( self ): self.one_complete_example("complete_nlp_example.py" , lowerCAmelCase_ ) self.one_complete_example("complete_nlp_example.py" , lowerCAmelCase_ ) def snake_case__ ( self ): __lowercase = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) __lowercase = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) self.one_complete_example("complete_cv_example.py" , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @mock.patch.dict(os.environ ,{"""TESTING_MOCKED_DATALOADERS""": """1"""} ) class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = False @classmethod def snake_case__ ( cls ): super().setUpClass() __lowercase = tempfile.mkdtemp() __lowercase = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) __lowercase = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def snake_case__ ( cls ): super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case__ ( self ): __lowercase = f''' examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def snake_case__ ( self ): __lowercase = f''' examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} '''.split() __lowercase = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def snake_case__ ( self ): __lowercase = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )} '''.split() __lowercase = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase_ ) self.assertNotIn("epoch 0:" , lowerCAmelCase_ ) self.assertIn("epoch 1:" , lowerCAmelCase_ ) def snake_case__ ( self ): __lowercase = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )} '''.split() __lowercase = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase_ ) if torch.cuda.is_available(): __lowercase = torch.cuda.device_count() else: __lowercase = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , lowerCAmelCase_ ) self.assertIn("epoch 1:" , lowerCAmelCase_ ) else: self.assertIn("epoch 0:" , lowerCAmelCase_ ) self.assertIn("epoch 1:" , lowerCAmelCase_ ) @slow def snake_case__ ( self ): __lowercase = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): __lowercase = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase_ ) __lowercase = re.findall("({.+})" , lowerCAmelCase_ ) __lowercase = [r for r in results if "accuracy" in r][-1] __lowercase = ast.literal_eval(lowerCAmelCase_ ) self.assertGreaterEqual(results["accuracy"] , 0.75 ) def snake_case__ ( self ): __lowercase = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def snake_case__ ( self ): with tempfile.TemporaryDirectory() as tmpdir: __lowercase = f''' examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase_ , "tracking" ) ) ) def snake_case__ ( self ): __lowercase = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def snake_case__ ( self ): __lowercase = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
576
def __lowercase ( ) -> List[Any]: '''simple docstring''' __lowercase = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] __lowercase = 6 __lowercase = 1 __lowercase = 1_901 __lowercase = 0 while year < 2_001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 __lowercase = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 __lowercase = day - 29 else: if day > days_per_month[month - 1]: month += 1 __lowercase = day - days_per_month[month - 2] if month > 12: year += 1 __lowercase = 1 if year < 2_001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
576
1
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
73
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __lowerCAmelCase ( __a ): snake_case : Union[List[PIL.Image.Image], np.ndarray] snake_case : Optional[List[bool]] snake_case : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
414
0
"""simple docstring""" import argparse import struct import unittest class UpperCamelCase__ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ ) -> None: A__ = data # Initialize hash values A__ = [ 0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A, 0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19, ] # Initialize round constants A__ = [ 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5, 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5, 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3, 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174, 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC, 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA, 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7, 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967, 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13, 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85, 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3, 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070, 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5, 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3, 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208, 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2, ] A__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def snake_case__ ( SCREAMING_SNAKE_CASE__ ) -> bytes: A__ = B"\x80" + (B"\x00" * (63 - (len(SCREAMING_SNAKE_CASE__ ) + 8) % 64)) A__ = struct.pack(">Q" , (len(SCREAMING_SNAKE_CASE__ ) * 8) ) return data + padding + big_endian_integer def snake_case__ ( self ) -> None: # Convert into blocks of 64 bytes A__ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A__ = list(struct.unpack(">16L" , SCREAMING_SNAKE_CASE__ ) ) # add 48 0-ed integers words += [0] * 48 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array A__ = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) A__ = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) A__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100000000 # Compression A__ = self.ror(SCREAMING_SNAKE_CASE__ , 6 ) ^ self.ror(SCREAMING_SNAKE_CASE__ , 11 ) ^ self.ror(SCREAMING_SNAKE_CASE__ , 25 ) A__ = (e & f) ^ ((~e & 0xFFFFFFFF) & g) A__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100000000 A__ = self.ror(SCREAMING_SNAKE_CASE__ , 2 ) ^ self.ror(SCREAMING_SNAKE_CASE__ , 13 ) ^ self.ror(SCREAMING_SNAKE_CASE__ , 22 ) A__ = (a & b) ^ (a & c) ^ (b & c) A__ = (sa + maj) % 0x100000000 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = ( g, f, e, ((d + tempa) % 0x100000000), c, b, a, ((tempa + tempa) % 0x100000000), ) A__ = [a, b, c, d, e, f, g, h] # Modify final values A__ = [ ((element + mutated_hash_values[index]) % 0x100000000) for index, element in enumerate(self.hashes ) ] A__ = "".join([hex(SCREAMING_SNAKE_CASE__ )[2:].zfill(8 ) for value in self.hashes] ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: return 0xFFFFFFFF & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ) -> None: import hashlib A__ = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(SCREAMING_SNAKE_CASE__ ).hash , hashlib.shaaaa(SCREAMING_SNAKE_CASE__ ).hexdigest() ) def _lowerCamelCase ( ) -> None: """simple docstring""" import doctest doctest.testmod() A__ = argparse.ArgumentParser() parser.add_argument( "-s", "--string", dest="input_string", default="Hello World!! Welcome to Cryptography", help="Hash the string", ) parser.add_argument( "-f", "--file", dest="input_file", help="Hash contents of a file" ) A__ = parser.parse_args() A__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file, "rb" ) as f: A__ = f.read() else: A__ = bytes(UpperCAmelCase_, "utf-8" ) print(SHAaaa(UpperCAmelCase_ ).hash ) if __name__ == "__main__": main()
716
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : Tuple = ["image_processor", "tokenizer"] A__ : Optional[int] = "FlavaImageProcessor" A__ : Optional[int] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: A__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , SCREAMING_SNAKE_CASE__ , ) A__ = kwargs.pop("feature_extractor" ) A__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = self.image_processor def __call__( self , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = False , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> str: if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: A__ = self.tokenizer( text=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , stride=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_overflowing_tokens=SCREAMING_SNAKE_CASE__ , return_special_tokens_mask=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , return_length=SCREAMING_SNAKE_CASE__ , verbose=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if images is not None: A__ = self.image_processor( SCREAMING_SNAKE_CASE__ , return_image_mask=SCREAMING_SNAKE_CASE__ , return_codebook_pixels=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if text is not None and images is not None: encoding.update(SCREAMING_SNAKE_CASE__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE__ ) , tensor_type=SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[str]: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> List[Any]: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def snake_case__ ( self ) -> Union[str, Any]: A__ = self.tokenizer.model_input_names A__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def snake_case__ ( self ) -> Any: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , SCREAMING_SNAKE_CASE__ , ) return self.image_processor_class @property def snake_case__ ( self ) -> List[Any]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , SCREAMING_SNAKE_CASE__ , ) return self.image_processor
562
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE_ = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } SCREAMING_SNAKE_CASE_ = { """YituTech/conv-bert-base""": 5_12, """YituTech/conv-bert-medium-small""": 5_12, """YituTech/conv-bert-small""": 5_12, } SCREAMING_SNAKE_CASE_ = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class snake_case_ ( a_ ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ConvBertTokenizer def __init__( self , a_=None , a_=None , a_=True , a_="[UNK]" , a_="[SEP]" , a_="[PAD]" , a_="[CLS]" , a_="[MASK]" , a_=True , a_=None , **a_ , ): super().__init__( a_ , tokenizer_file=a_ , do_lower_case=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , tokenize_chinese_chars=a_ , strip_accents=a_ , **a_ , ) a_ : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , a_ ) != do_lower_case or normalizer_state.get("strip_accents" , a_ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , a_ ) != tokenize_chinese_chars ): a_ : Optional[int] = getattr(a_ , normalizer_state.pop("type" ) ) a_ : Tuple = do_lower_case a_ : int = strip_accents a_ : List[str] = tokenize_chinese_chars a_ : List[Any] = normalizer_class(**a_ ) a_ : Optional[Any] = do_lower_case def snake_case_ ( self , a_ , a_=None ): a_ : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , a_ , a_ = None ): a_ : Optional[int] = [self.sep_token_id] a_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self , a_ , a_ = None ): a_ : Dict = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ )
237
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class snake_case_ ( unittest.TestCase ): def snake_case_ ( self ): a_ : str = tf.convert_to_tensor( [ [ 8.2_220_991, # 3rd highest value; idx. 0 -0.5_620_044, 5.23_229_752, 4.0_386_393, -6.8_798_378, -0.54_785_802, -3.2_012_153, 2.92_777_176, 1.88_171_953, 7.35_341_276, # 5th highest value; idx. 9 8.43_207_833, # 2nd highest value; idx. 10 -9.85_711_836, -5.96_209_236, -1.13_039_161, -7.1_115_294, -0.8_369_633, -5.3_186_408, 7.06_427_407, 0.81_369_344, -0.82_023_817, -5.9_179_796, 0.58_813_443, -6.99_778_438, 4.71_551_189, -0.18_771_637, 7.44_020_759, # 4th highest value; idx. 25 9.38_450_987, # 1st highest value; idx. 26 2.12_662_941, -9.32_562_038, 2.35_652_522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_425_518, 4.53_139_238, -5.57_510_464, -6.28_030_699, -7.19_529_503, -4.02_122_551, 1.39_337_037, -6.06_707_057, 1.59_480_517, -9.643_119, 0.03_907_799, 0.67_231_762, -8.88_206_726, 6.27_115_922, # 4th highest value; idx. 13 2.28_520_723, 4.82_767_506, 4.30_421_368, 8.8_275_313, # 2nd highest value; idx. 17 5.44_029_958, # 5th highest value; idx. 18 -4.4_735_794, 7.38_579_536, # 3rd highest value; idx. 20 -2.91_051_663, 2.61_946_077, -2.5_674_762, -9.48_959_302, -4.02_922_645, -1.35_416_918, 9.67_702_323, # 1st highest value; idx. 27 -5.89_478_553, 1.85_370_467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) a_ : List[str] = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 1_0], [0, 2_5], [0, 2_6], [1, 1_3], [1, 1_7], [1, 1_8], [1, 2_0], [1, 2_7]] , dtype=tf.intaa , ) # expected non filtered idx as noted above a_ : Optional[int] = tf.convert_to_tensor( [8.222_099, 7.3_534_126, 8.432_078, 7.4_402_075, 9.38_451, 6.271_159, 8.827_531, 5.4_402_995, 7.3_857_956, 9.677_023] , dtype=tf.floataa , ) # expected non filtered values as noted above a_ : Any = tf_top_k_top_p_filtering(a_ , top_k=1_0 , top_p=0.6 , min_tokens_to_keep=4 ) a_ : Dict = output[output != -float("inf" )] a_ : str = tf.cast( tf.where(tf.not_equal(a_ , tf.constant(-float("inf" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(a_ , a_ , rtol=1e-12 ) tf.debugging.assert_equal(a_ , a_ ) @require_tf class snake_case_ ( unittest.TestCase ,a_ ): # setting framework_dependent_parameters needs to be gated, just like its contents' imports if is_tf_available(): __lowerCAmelCase = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def snake_case_ ( self ): # TF-only test: tf.saved_model export a_ : Dict = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) a_ : str = 2 a_ : int = 2 class snake_case_ ( tf.Module ): def __init__( self , a_ ): super(a_ , self ).__init__() a_ : List[str] = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids" ), tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask" ), ) , jit_compile=a_ , ) def snake_case_ ( self , a_ , a_ ): a_ : int = self.model.generate( input_ids=a_ , attention_mask=a_ , max_new_tokens=a_ , return_dict_in_generate=a_ , ) return {"sequences": outputs["sequences"]} a_ : Optional[Any] = [[2, 0], [1_0_2, 1_0_3]] a_ : List[str] = [[1, 0], [1, 1]] a_ : Dict = DummyModel(model=a_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a_ , a_ , signatures={"serving_default": dummy_model.serving} ) a_ : List[str] = tf.saved_model.load(a_ ).signatures["serving_default"] for batch_size in range(1 , len(a_ ) + 1 ): a_ : str = { "input_ids": tf.constant(dummy_input_ids[:batch_size] ), "attention_mask": tf.constant(dummy_attention_masks[:batch_size] ), } a_ : Union[str, Any] = serving_func(**a_ )["sequences"] a_ : List[Any] = test_model.generate(**a_ , max_new_tokens=a_ ) tf.debugging.assert_equal(a_ , a_ ) @slow def snake_case_ ( self ): # TF-only test: tf.saved_model export a_ : List[Any] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) a_ : int = 1 a_ : Optional[Any] = 2 class snake_case_ ( tf.Module ): def __init__( self , a_ ): super(a_ , self ).__init__() a_ : str = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask" ), ) , jit_compile=a_ , ) def snake_case_ ( self , a_ , a_ ): a_ : Tuple = self.model.generate( input_ids=a_ , attention_mask=a_ , max_new_tokens=a_ , return_dict_in_generate=a_ , ) return {"sequences": outputs["sequences"]} a_ : Optional[int] = [[2], [1_0_2, 1_0_3]] a_ : Union[str, Any] = [[1], [1, 1]] a_ : List[str] = DummyModel(model=a_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(a_ , a_ , signatures={"serving_default": dummy_model.serving} ) a_ : List[Any] = tf.saved_model.load(a_ ).signatures["serving_default"] for input_row in range(len(a_ ) ): a_ : Optional[Any] = { "input_ids": tf.constant([dummy_input_ids[input_row]] ), "attention_mask": tf.constant([dummy_attention_masks[input_row]] ), } a_ : List[str] = serving_func(**a_ )["sequences"] a_ : Tuple = test_model.generate(**a_ , max_new_tokens=a_ ) tf.debugging.assert_equal(a_ , a_ ) @slow @require_tensorflow_text def snake_case_ ( self ): # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=a_ ) class snake_case_ ( tf.keras.layers.Layer ): def __init__( self ): super().__init__() a_ : str = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(a_ , "spiece.model" ) , "rb" ).read() ) a_ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5" ) def snake_case_ ( self , a_ , *a_ , **a_ ): a_ : Optional[int] = self.tokenizer.tokenize(a_ ) a_ , a_ : List[str] = text.pad_model_inputs( a_ , max_seq_length=6_4 , pad_value=self.model.config.pad_token_id ) a_ : Union[str, Any] = self.model.generate(input_ids=a_ , attention_mask=a_ ) return self.tokenizer.detokenize(a_ ) a_ : List[str] = CompleteSentenceTransformer() a_ : List[Any] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs" ) a_ : int = complete_model(a_ ) a_ : Optional[Any] = tf.keras.Model(a_ , a_ ) keras_model.save(a_ ) def snake_case_ ( self ): # Has PT equivalent: this test relies on random sampling a_ : Tuple = { "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 1_0, "temperature": 0.7, } a_ : List[Any] = 1_4 a_ : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) a_ : Any = "Hello, my dog is cute and" a_ : Tuple = tokenizer(a_ , return_tensors="tf" ) a_ : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) a_ : Tuple = 6_3_8 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) a_ : List[str] = model.generate(**a_ , eos_token_id=a_ , **a_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) a_ : Any = [6_3_8, 1_9_8] with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) a_ : List[str] = model.generate(**a_ , eos_token_id=a_ , **a_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def snake_case_ ( self ): # Has PT equivalent: ample use of framework-specific code a_ : Any = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart" ) a_ : Any = "Hugging Face is a technology company based in New York and Paris." a_ : List[Any] = bart_tokenizer(a_ , return_tensors="tf" ).input_ids a_ : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart" ) a_ : int = bart_model.generate(a_ ).numpy() class snake_case_ ( a_ ): def snake_case_ ( self , a_ , a_=None , **a_ ): return super().call(a_ , **a_ ) a_ : Union[str, Any] = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart" ) a_ : List[Any] = bart_model.generate(a_ , foo="bar" ).numpy() self.assertTrue(np.array_equal(a_ , a_ ) ) class snake_case_ ( bart_model.model.encoder.__class__ ): def snake_case_ ( self , a_ , **a_ ): return super().call(a_ , **a_ ) a_ : Dict = FakeEncoder(bart_model.config , bart_model.model.shared ) a_ : Optional[int] = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) a_ : Union[str, Any] = bart_model.generate(a_ ).numpy() with self.assertRaises(a_ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(a_ , foo="bar" )
237
1
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __magic_name__ ( UpperCAmelCase_, unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Tuple = BloomTokenizerFast SCREAMING_SNAKE_CASE_ : List[str] = BloomTokenizerFast SCREAMING_SNAKE_CASE_ : Union[str, Any] = True SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : Dict = 'tokenizer_file' SCREAMING_SNAKE_CASE_ : List[str] = {'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<pad>'} def lowerCamelCase__ ( self ) -> List[Any]: super().setUp() lowercase_ : int = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self , **_lowercase ) -> Any: kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Optional[int] = self.get_rust_tokenizer() lowercase_ : Any = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] lowercase_ : Dict = [[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] lowercase_ : List[Any] = tokenizer.batch_encode_plus(_lowercase )['input_ids'] self.assertListEqual(_lowercase , _lowercase ) lowercase_ : Optional[Any] = tokenizer.batch_decode(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self , _lowercase=6 ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowercase_ : int = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase_ : Dict = 'This is a simple input' lowercase_ : List[str] = ['This is a simple input 1', 'This is a simple input 2'] lowercase_ : List[Any] = ('This is a simple input', 'This is a pair') lowercase_ : List[str] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(_lowercase , max_length=_lowercase ) tokenizer_r.encode_plus(_lowercase , max_length=_lowercase ) tokenizer_r.batch_encode_plus(_lowercase , max_length=_lowercase ) tokenizer_r.encode(_lowercase , max_length=_lowercase ) tokenizer_r.batch_encode_plus(_lowercase , max_length=_lowercase ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) lowercase_ : List[Any] = None # Hotfixing padding = None self.assertRaises(_lowercase , tokenizer_r.encode , _lowercase , max_length=_lowercase , padding='max_length' ) # Simple input self.assertRaises(_lowercase , tokenizer_r.encode_plus , _lowercase , max_length=_lowercase , padding='max_length' ) # Simple input self.assertRaises( _lowercase , tokenizer_r.batch_encode_plus , _lowercase , max_length=_lowercase , padding='max_length' , ) # Pair input self.assertRaises(_lowercase , tokenizer_r.encode , _lowercase , max_length=_lowercase , padding='max_length' ) # Pair input self.assertRaises(_lowercase , tokenizer_r.encode_plus , _lowercase , max_length=_lowercase , padding='max_length' ) # Pair input self.assertRaises( _lowercase , tokenizer_r.batch_encode_plus , _lowercase , max_length=_lowercase , padding='max_length' , ) def lowerCamelCase__ ( self ) -> int: lowercase_ : List[str] = self.get_rust_tokenizer() lowercase_ : Dict = load_dataset('xnli' , 'all_languages' , split='test' , streaming=_lowercase ) lowercase_ : Optional[Any] = next(iter(_lowercase ) )['premise'] # pick up one data lowercase_ : Any = list(sample_data.values() ) lowercase_ : int = list(map(tokenizer.encode , _lowercase ) ) lowercase_ : Optional[Any] = [tokenizer.decode(_lowercase , clean_up_tokenization_spaces=_lowercase ) for x in output_tokens] self.assertListEqual(_lowercase , _lowercase ) def lowerCamelCase__ ( self ) -> int: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
7
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A: int = logging.get_logger(__name__) A: int = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'gpt_bigcode' SCREAMING_SNAKE_CASE_ : int = ['past_key_values'] SCREAMING_SNAKE_CASE_ : Any = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _lowercase=5_0257 , _lowercase=1024 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=None , _lowercase="gelu_pytorch_tanh" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=0.1 , _lowercase=1E-5 , _lowercase=0.02 , _lowercase=True , _lowercase=True , _lowercase=5_0256 , _lowercase=5_0256 , _lowercase=True , _lowercase=True , _lowercase=True , **_lowercase , ) -> Any: lowercase_ : Tuple = vocab_size lowercase_ : str = n_positions lowercase_ : List[str] = n_embd lowercase_ : str = n_layer lowercase_ : Optional[Any] = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = activation_function lowercase_ : Dict = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : Optional[Any] = attn_pdrop lowercase_ : List[Any] = layer_norm_epsilon lowercase_ : Optional[int] = initializer_range lowercase_ : List[Any] = scale_attn_weights lowercase_ : Any = use_cache lowercase_ : List[str] = attention_softmax_in_fpaa lowercase_ : Any = scale_attention_softmax_in_fpaa lowercase_ : Optional[Any] = multi_query lowercase_ : Optional[Any] = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__(bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
7
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def lowercase__ ( A_: Optional[Any] ) -> int: """simple docstring""" __UpperCAmelCase =DPTConfig() if "large" in checkpoint_url: __UpperCAmelCase =1024 __UpperCAmelCase =4096 __UpperCAmelCase =24 __UpperCAmelCase =16 __UpperCAmelCase =[5, 11, 17, 23] __UpperCAmelCase =[256, 512, 1024, 1024] __UpperCAmelCase =(1, 384, 384) if "ade" in checkpoint_url: __UpperCAmelCase =True __UpperCAmelCase =150 __UpperCAmelCase ="""huggingface/label-files""" __UpperCAmelCase ="""ade20k-id2label.json""" __UpperCAmelCase =json.load(open(cached_download(hf_hub_url(snake_case__ , snake_case__ , repo_type="""dataset""" ) ) , """r""" ) ) __UpperCAmelCase ={int(snake_case__ ): v for k, v in idalabel.items()} __UpperCAmelCase =idalabel __UpperCAmelCase ={v: k for k, v in idalabel.items()} __UpperCAmelCase =[1, 150, 480, 480] return config, expected_shape def lowercase__ ( A_: List[Any] ) -> List[str]: """simple docstring""" __UpperCAmelCase =["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def lowercase__ ( A_: Any ) -> Optional[int]: """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __UpperCAmelCase =name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: __UpperCAmelCase =name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: __UpperCAmelCase =name.replace("""patch_embed""" , """patch_embeddings""" ) if "pos_embed" in name: __UpperCAmelCase =name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: __UpperCAmelCase =name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: __UpperCAmelCase =name.replace("""proj""" , """projection""" ) if "blocks" in name: __UpperCAmelCase =name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: __UpperCAmelCase =name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __UpperCAmelCase =name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name: __UpperCAmelCase =name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __UpperCAmelCase =name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: __UpperCAmelCase =name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: __UpperCAmelCase =name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: __UpperCAmelCase =name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: __UpperCAmelCase =name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: __UpperCAmelCase =name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: __UpperCAmelCase =name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: __UpperCAmelCase =int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __UpperCAmelCase =name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: __UpperCAmelCase =name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: __UpperCAmelCase =name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: __UpperCAmelCase =name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: __UpperCAmelCase =name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: __UpperCAmelCase =name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __UpperCAmelCase =name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: __UpperCAmelCase =name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: __UpperCAmelCase =name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: __UpperCAmelCase =name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: __UpperCAmelCase =name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: __UpperCAmelCase =name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: __UpperCAmelCase =name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: __UpperCAmelCase =name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: __UpperCAmelCase =name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: __UpperCAmelCase =name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: __UpperCAmelCase =name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: __UpperCAmelCase =name.replace("""pretrained""" , """dpt""" ) if "bn" in name: __UpperCAmelCase =name.replace("""bn""" , """batch_norm""" ) if "head" in name: __UpperCAmelCase =name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: __UpperCAmelCase =name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: __UpperCAmelCase =name.replace("""auxlayer""" , """auxiliary_head.head""" ) return name def lowercase__ ( A_: Union[str, Any] , A_: str ) -> List[str]: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __UpperCAmelCase =state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) __UpperCAmelCase =state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __UpperCAmelCase =in_proj_weight[: config.hidden_size, :] __UpperCAmelCase =in_proj_bias[: config.hidden_size] __UpperCAmelCase =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __UpperCAmelCase =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __UpperCAmelCase =in_proj_weight[ -config.hidden_size :, : ] __UpperCAmelCase =in_proj_bias[-config.hidden_size :] def lowercase__ ( ) -> Tuple: """simple docstring""" __UpperCAmelCase ="""http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase =Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def lowercase__ ( A_: Dict , A_: Optional[Any] , A_: List[Any] , A_: List[Any] ) -> List[Any]: """simple docstring""" __UpperCAmelCase =get_dpt_config(snake_case__ ) # load original state_dict from URL __UpperCAmelCase =torch.hub.load_state_dict_from_url(snake_case__ , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(snake_case__ ) # rename keys for key in state_dict.copy().keys(): __UpperCAmelCase =state_dict.pop(snake_case__ ) __UpperCAmelCase =val # read in qkv matrices read_in_q_k_v(snake_case__ , snake_case__ ) # load HuggingFace model __UpperCAmelCase =DPTForSemanticSegmentation(snake_case__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # Check outputs on an image __UpperCAmelCase =480 if """ade""" in checkpoint_url else 384 __UpperCAmelCase =DPTImageProcessor(size=snake_case__ ) __UpperCAmelCase =prepare_img() __UpperCAmelCase =image_processor(snake_case__ , return_tensors="""pt""" ) # forward pass __UpperCAmelCase =model(**snake_case__ ).logits if """ade""" in checkpoint_url else model(**snake_case__ ).predicted_depth # Assert logits __UpperCAmelCase =torch.tensor([[6.3_1_9_9, 6.3_6_2_9, 6.4_1_4_8], [6.3_8_5_0, 6.3_6_1_5, 6.4_1_6_6], [6.3_5_1_9, 6.3_1_7_6, 6.3_5_7_5]] ) if "ade" in checkpoint_url: __UpperCAmelCase =torch.tensor([[4.0_4_8_0, 4.2_4_2_0, 4.4_3_6_0], [4.3_1_2_4, 4.5_6_9_3, 4.8_2_6_1], [4.5_7_6_8, 4.8_9_6_5, 5.2_1_6_3]] ) assert outputs.shape == torch.Size(snake_case__ ) assert ( torch.allclose(outputs[0, 0, :3, :3] , snake_case__ , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , snake_case__ ) ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=snake_case__ , ) image_processor.push_to_hub( repo_path_or_name=Path(snake_case__ , snake_case__ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=snake_case__ , ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) __A = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
68
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__(self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=64 , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=512 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=None , ): A_ : Optional[Any] = parent A_ : List[str] = batch_size A_ : List[str] = seq_length A_ : List[str] = is_training A_ : Optional[Any] = use_input_mask A_ : Dict = use_token_type_ids A_ : Any = use_labels A_ : Tuple = vocab_size A_ : Optional[Any] = hidden_size A_ : Tuple = embedding_size A_ : Tuple = num_hidden_layers A_ : Any = num_attention_heads A_ : Optional[int] = intermediate_size A_ : Union[str, Any] = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : Optional[Any] = attention_probs_dropout_prob A_ : str = max_position_embeddings A_ : str = type_vocab_size A_ : Optional[Any] = type_sequence_label_size A_ : List[str] = initializer_range A_ : str = num_labels A_ : Dict = num_choices A_ : Any = scope def lowerCamelCase(self ): A_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Optional[int] = None if self.use_input_mask: A_ : str = random_attention_mask([self.batch_size, self.seq_length] ) A_ : int = None if self.use_token_type_ids: A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Union[str, Any] = None A_ : Union[str, Any] = None A_ : List[str] = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : Dict = ids_tensor([self.batch_size] , self.num_choices ) A_ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase(self ): return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : str = MobileBertModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A_ : Optional[int] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) A_ : Union[str, Any] = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) A_ : int = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : Optional[int] = MobileBertForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A_ : List[Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : Optional[int] = MobileBertForNextSentencePrediction(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A_ : Tuple = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : int = MobileBertForPreTraining(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A_ : Union[str, Any] = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , next_sentence_label=lowerCAmelCase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : Union[str, Any] = MobileBertForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A_ : Tuple = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : int = self.num_labels A_ : Optional[int] = MobileBertForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A_ : int = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : str = self.num_labels A_ : int = MobileBertForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A_ : str = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : str = self.num_choices A_ : int = MobileBertForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A_ : Tuple = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : Union[str, Any] = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase(self ): A_ : Optional[Any] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Dict = config_and_inputs A_ : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _A : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _A : Union[str, Any] = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _A : Union[str, Any] = True def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ): A_ : Optional[int] = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class in get_values(lowerCAmelCase_ ): A_ : List[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase_ ) A_ : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def lowerCamelCase(self ): A_ : Optional[int] = MobileBertModelTester(self ) A_ : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def lowerCamelCase(self ): self.config_tester.run_common_tests() def lowerCamelCase(self ): A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCAmelCase_ ) def lowerCamelCase(self ): A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCAmelCase_ ) def lowerCamelCase(self ): A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCAmelCase_ ) def lowerCamelCase(self ): A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCAmelCase_ ) def lowerCamelCase(self ): A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCAmelCase_ ) def lowerCamelCase(self ): A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCAmelCase_ ) def lowerCamelCase(self ): A_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCAmelCase_ ) def lowerCamelCase(self ): A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCAmelCase_ ) def __UpperCamelCase ( snake_case__ ): return torch.tensor( snake_case__ , dtype=torch.long , device=snake_case__ , ) _lowerCAmelCase = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase(self ): A_ : Union[str, Any] = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(lowerCAmelCase_ ) A_ : Any = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): A_ : Dict = model(lowerCAmelCase_ )[0] A_ : Any = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , lowerCAmelCase_ ) A_ : Optional[int] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6e0_7, 8.2_6_9_1_6_5_6e0_4, 1.6_5_2_1_8_3_8e0_5], [-5.7_5_4_1_7_0_4e-0_1, 3.9_0_5_6_0_2_2e0_0, 4.4_0_1_1_5_0_7e0_0], [2.6_0_4_7_3_5_9e0_0, 1.5_6_7_7_6_5_2e0_0, -1.7_3_2_4_1_8_8e-0_1], ] ] , device=lowerCAmelCase_ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE A_ : List[str] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) A_ : Any = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
180
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase_ ( _a): '''simple docstring''' def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : str = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) UpperCamelCase : Optional[int] = input_file.read() UpperCamelCase : Union[str, Any] = regexp.search(__SCREAMING_SNAKE_CASE ) return match def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : Optional[int] = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) UpperCamelCase : Tuple = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase : Dict = regexp.finditer(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
643
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : Optional[int] = True __UpperCamelCase : Optional[int] = DebertaTokenizerFast def _lowercase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] UpperCamelCase : Tuple = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase : Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCamelCase : List[Any] = {'''unk_token''': '''[UNK]'''} UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = '''lower newer''' return input_text, output_text def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.get_tokenizer() UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCamelCase : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = tokens + [tokenizer.unk_token] UpperCamelCase : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : Optional[Any] = tokenizer('''Hello''' , '''World''' ) UpperCamelCase : List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCamelCase : Optional[int] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : str = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] UpperCamelCase : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = [tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) for seq in encoding['''input_ids''']] # fmt: off UpperCamelCase : int = { '''input_ids''': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCamelCase : List[str] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __SCREAMING_SNAKE_CASE ) for expected, decoded in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
643
1
'''simple docstring''' def __snake_case ( SCREAMING_SNAKE_CASE_ : Any ) -> str: """simple docstring""" UpperCAmelCase = [0] * len(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = [] UpperCAmelCase = [] UpperCAmelCase = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): if indegree[i] == 0: queue.append(SCREAMING_SNAKE_CASE_ ) while queue: UpperCAmelCase = queue.pop(0 ) cnt += 1 topo.append(SCREAMING_SNAKE_CASE_ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(SCREAMING_SNAKE_CASE_ ) if cnt != len(SCREAMING_SNAKE_CASE_ ): print('''Cycle exists''' ) else: print(SCREAMING_SNAKE_CASE_ ) # Adjacency List of Graph a__ : Optional[int] = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
51
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( __UpperCamelCase ): __a = (PNDMScheduler,) __a = (("""num_inference_steps""", 50),) def lowercase_ ( self , **SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : Any = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**SCREAMING_SNAKE_CASE__ ) return config def lowercase_ ( self , SCREAMING_SNAKE_CASE__=0 , **SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : List[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase__ : List[str] = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Union[str, Any] = self.dummy_sample lowerCAmelCase__ : List[str] = 0.1 * sample lowerCAmelCase__ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase__ : Dict = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Union[str, Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals lowerCAmelCase__ : int = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Optional[int] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals lowerCAmelCase__ : Union[str, Any] = dummy_past_residuals[:] lowerCAmelCase__ : Optional[Any] = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ : Optional[Any] = new_scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase__ : Optional[int] = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ : Any = new_scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase_ ( self ): """simple docstring""" pass def lowercase_ ( self , SCREAMING_SNAKE_CASE__=0 , **SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : Any = dict(self.forward_default_kwargs ) lowerCAmelCase__ : str = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Optional[Any] = self.dummy_sample lowerCAmelCase__ : int = 0.1 * sample lowerCAmelCase__ : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase__ : int = self.get_scheduler_config() lowerCAmelCase__ : Union[str, Any] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase__ : int = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Union[str, Any] = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase__ : Optional[Any] = dummy_past_residuals[:] lowerCAmelCase__ : str = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ : List[str] = new_scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase__ : Optional[Any] = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ : str = new_scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowercase_ ( self , **SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : Any = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Dict = scheduler_class(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Union[str, Any] = 10 lowerCAmelCase__ : List[str] = self.dummy_model() lowerCAmelCase__ : str = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.prk_timesteps ): lowerCAmelCase__ : List[Any] = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Optional[int] = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowerCAmelCase__ : List[Any] = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : List[Any] = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample return sample def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : List[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase__ : Tuple = kwargs.pop('''num_inference_steps''' , SCREAMING_SNAKE_CASE__ ) for scheduler_class in self.scheduler_classes: lowerCAmelCase__ : Optional[Any] = self.get_scheduler_config() lowerCAmelCase__ : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : str = self.dummy_sample lowerCAmelCase__ : Dict = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE__ , '''set_timesteps''' ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE__ , '''set_timesteps''' ): lowerCAmelCase__ : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase__ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowerCAmelCase__ : int = dummy_past_residuals[:] lowerCAmelCase__ : Union[str, Any] = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ : Any = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , 1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowerCAmelCase__ : List[Any] = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ : Any = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , 1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase_ ( self ): """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def lowercase_ ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : Union[str, Any] = self.get_scheduler_config(steps_offset=1 ) lowerCAmelCase__ : Tuple = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def lowercase_ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ ) def lowercase_ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ ) def lowercase_ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def lowercase_ ( self ): """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ ) def lowercase_ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE__ ) def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Dict = 27 for scheduler_class in self.scheduler_classes: lowerCAmelCase__ : Optional[Any] = self.dummy_sample lowerCAmelCase__ : Optional[int] = 0.1 * sample lowerCAmelCase__ : Any = self.get_scheduler_config() lowerCAmelCase__ : Optional[int] = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowerCAmelCase__ : Tuple = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample def lowercase_ ( self ): """simple docstring""" with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ : Dict = self.scheduler_classes[0] lowerCAmelCase__ : Optional[Any] = self.get_scheduler_config() lowerCAmelCase__ : str = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : List[str] = self.full_loop() lowerCAmelCase__ : Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ : Dict = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 198.1_318 ) < 1E-2 assert abs(result_mean.item() - 0.2_580 ) < 1E-3 def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Any = self.full_loop(prediction_type='''v_prediction''' ) lowerCAmelCase__ : Optional[int] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ : Optional[Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 67.3_986 ) < 1E-2 assert abs(result_mean.item() - 0.0_878 ) < 1E-3 def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 ) lowerCAmelCase__ : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ : Optional[int] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 230.0_399 ) < 1E-2 assert abs(result_mean.item() - 0.2_995 ) < 1E-3 def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Tuple = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 ) lowerCAmelCase__ : str = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ : Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 186.9_482 ) < 1E-2 assert abs(result_mean.item() - 0.2_434 ) < 1E-3
233
0
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig SCREAMING_SNAKE_CASE__ = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class snake_case (UpperCamelCase ): lowerCAmelCase__ :Dict = "ernie_m" lowerCAmelCase__ :Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self ,UpperCAmelCase_ = 250_002 ,UpperCAmelCase_ = 768 ,UpperCAmelCase_ = 12 ,UpperCAmelCase_ = 12 ,UpperCAmelCase_ = 3_072 ,UpperCAmelCase_ = "gelu" ,UpperCAmelCase_ = 0.1 ,UpperCAmelCase_ = 0.1 ,UpperCAmelCase_ = 514 ,UpperCAmelCase_ = 0.02 ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = 1E-0_5 ,UpperCAmelCase_=None ,UpperCAmelCase_=False ,UpperCAmelCase_=0.0 ,**UpperCAmelCase_ ,) -> str: super().__init__(pad_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = classifier_dropout lowercase__ = is_decoder lowercase__ = act_dropout
539
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) SCREAMING_SNAKE_CASE__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowerCamelCase ( _snake_case : str ): '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowercase__ = model_type_to_module_name(_snake_case ) lowercase__ = importlib.import_module(f'''.{module_name}''' ,"transformers.models" ) try: return getattr(_snake_case ,_snake_case ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_snake_case ,"__name__" ,_snake_case ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowercase__ = importlib.import_module("transformers" ) if hasattr(_snake_case ,_snake_case ): return getattr(_snake_case ,_snake_case ) return None def lowerCamelCase ( _snake_case : Union[str, os.PathLike] ,_snake_case : Optional[Union[str, os.PathLike]] = None ,_snake_case : bool = False ,_snake_case : bool = False ,_snake_case : Optional[Dict[str, str]] = None ,_snake_case : Optional[Union[bool, str]] = None ,_snake_case : Optional[str] = None ,_snake_case : bool = False ,**_snake_case : Union[str, Any] ,): '''simple docstring''' lowercase__ = get_file_from_repo( _snake_case ,_snake_case ,cache_dir=_snake_case ,force_download=_snake_case ,resume_download=_snake_case ,proxies=_snake_case ,use_auth_token=_snake_case ,revision=_snake_case ,local_files_only=_snake_case ,) if resolved_config_file is None: logger.info( "Could not locate the feature extractor configuration file, will try to use the model config instead." ) return {} with open(_snake_case ,encoding="utf-8" ) as reader: return json.load(_snake_case ) class snake_case : def __init__( self ) -> List[str]: raise EnvironmentError( "AutoFeatureExtractor is designed to be instantiated " "using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(UpperCAmelCase_ ) def _a ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ) -> Tuple: lowercase__ = kwargs.pop("config" ,UpperCAmelCase_ ) lowercase__ = kwargs.pop("trust_remote_code" ,UpperCAmelCase_ ) lowercase__ = True lowercase__ , lowercase__ = FeatureExtractionMixin.get_feature_extractor_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) lowercase__ = config_dict.get("feature_extractor_type" ,UpperCAmelCase_ ) lowercase__ = None if "AutoFeatureExtractor" in config_dict.get("auto_map" ,{} ): lowercase__ = config_dict["auto_map"]["AutoFeatureExtractor"] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): lowercase__ = AutoConfig.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) # It could be in `config.feature_extractor_type`` lowercase__ = getattr(UpperCAmelCase_ ,"feature_extractor_type" ,UpperCAmelCase_ ) if hasattr(UpperCAmelCase_ ,"auto_map" ) and "AutoFeatureExtractor" in config.auto_map: lowercase__ = config.auto_map["AutoFeatureExtractor"] if feature_extractor_class is not None: lowercase__ = feature_extractor_class_from_name(UpperCAmelCase_ ) lowercase__ = feature_extractor_auto_map is not None lowercase__ = feature_extractor_class is not None or type(UpperCAmelCase_ ) in FEATURE_EXTRACTOR_MAPPING lowercase__ = resolve_trust_remote_code( UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) if has_remote_code and trust_remote_code: lowercase__ = get_class_from_dynamic_module( UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ) lowercase__ = kwargs.pop("code_revision" ,UpperCAmelCase_ ) if os.path.isdir(UpperCAmelCase_ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(UpperCAmelCase_ ) in FEATURE_EXTRACTOR_MAPPING: lowercase__ = FEATURE_EXTRACTOR_MAPPING[type(UpperCAmelCase_ )] return feature_extractor_class.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def _a ( UpperCAmelCase_ ,UpperCAmelCase_ ) -> Any: FEATURE_EXTRACTOR_MAPPING.register(UpperCAmelCase_ ,UpperCAmelCase_ )
539
1
'''simple docstring''' from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A__ : Dict = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]=None ) -> List[Any]: require_version(deps[pkg] , UpperCAmelCase_ )
13
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex UpperCAmelCase_ : List[str] = logging.getLogger(__name__) class UpperCamelCase : def __init__( self ): A__ = False def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): if not self.initialized: A__ = RagRetriever( UpperCAmelCase__ , question_encoder_tokenizer=UpperCAmelCase__ , generator_tokenizer=UpperCAmelCase__ , index=UpperCAmelCase__ , init_retrieval=UpperCAmelCase__ , ) A__ = True def __A ( self ): self.retriever.index.init_index() def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): A__ , A__ = self.retriever._main_retrieve(UpperCAmelCase__ , UpperCAmelCase__ ) return doc_ids, retrieved_doc_embeds class UpperCamelCase ( _UpperCAmelCase ): def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None ): if index is not None and index.is_initialized() and len(UpperCAmelCase__ ) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you'll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py " ) super().__init__( UpperCAmelCase__ , question_encoder_tokenizer=UpperCAmelCase__ , generator_tokenizer=UpperCAmelCase__ , index=UpperCAmelCase__ , init_retrieval=UpperCAmelCase__ , ) A__ = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) for worker in self.retrieval_workers ] ) def __A ( self ): logger.info("initializing retrieval" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. A__ = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] A__ , A__ = ray.get(random_worker.retrieve.remote(UpperCAmelCase__ , UpperCAmelCase__ ) ) else: A__ , A__ = self._main_retrieve(UpperCAmelCase__ , UpperCAmelCase__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCAmelCase__ ) @classmethod def __A ( cls , UpperCAmelCase__ , UpperCAmelCase__=None , **UpperCAmelCase__ ): return super(UpperCAmelCase__ , cls ).get_tokenizers(UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ) @classmethod def __A ( cls , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , **UpperCAmelCase__ ): A__ = kwargs.pop("config" , UpperCAmelCase__ ) or RagConfig.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) A__ = RagTokenizer.from_pretrained(UpperCAmelCase__ , config=UpperCAmelCase__ ) A__ = rag_tokenizer.question_encoder A__ = rag_tokenizer.generator if indexed_dataset is not None: A__ = "custom" A__ = CustomHFIndex(config.retrieval_vector_size , UpperCAmelCase__ ) else: A__ = cls._build_index(UpperCAmelCase__ ) return cls( UpperCAmelCase__ , question_encoder_tokenizer=UpperCAmelCase__ , generator_tokenizer=UpperCAmelCase__ , retrieval_workers=UpperCAmelCase__ , index=UpperCAmelCase__ , )
491
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) SCREAMING_SNAKE_CASE__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def lowerCamelCase ( _snake_case : List[str] ,_snake_case : str ,_snake_case : int ): '''simple docstring''' lowercase__ = state_dict.pop(_snake_case ) lowercase__ = val def lowerCamelCase ( _snake_case : List[Any] ): '''simple docstring''' lowercase__ = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: lowercase__ = key.replace("backbone.0.body" ,"backbone.conv_encoder.model" ) lowercase__ = value else: lowercase__ = value return new_state_dict def lowerCamelCase ( _snake_case : List[str] ): '''simple docstring''' lowercase__ = "" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowercase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:256, :] lowercase__ = in_proj_bias[:256] lowercase__ = in_proj_weight[256:512, :] lowercase__ = in_proj_bias[256:512] lowercase__ = in_proj_weight[-256:, :] lowercase__ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:256, :] lowercase__ = in_proj_bias[:256] lowercase__ = in_proj_weight[256:512, :] lowercase__ = in_proj_bias[256:512] lowercase__ = in_proj_weight[-256:, :] lowercase__ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention lowercase__ = state_dict.pop( f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) lowercase__ = state_dict.pop(f'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowercase__ = in_proj_weight_cross_attn[:256, :] lowercase__ = in_proj_bias_cross_attn[:256] lowercase__ = in_proj_weight_cross_attn[256:512, :] lowercase__ = in_proj_bias_cross_attn[256:512] lowercase__ = in_proj_weight_cross_attn[-256:, :] lowercase__ = in_proj_bias_cross_attn[-256:] def lowerCamelCase ( _snake_case : str ,_snake_case : Optional[int] ): '''simple docstring''' lowercase__ , lowercase__ = image.size lowercase__ = max(_snake_case ,_snake_case ) lowercase__ = 800 if "detection" in checkpoint_url else 1_000 lowercase__ = target_max_size / current_max_size lowercase__ = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def lowerCamelCase ( _snake_case : Union[str, Any] ): '''simple docstring''' lowercase__ = F.to_tensor(_snake_case ) lowercase__ = F.normalize(_snake_case ,mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def lowerCamelCase ( _snake_case : List[Any] ,_snake_case : Optional[Any] ,_snake_case : Tuple ): '''simple docstring''' logger.info("Converting model..." ) # load original state dict lowercase__ = torch.hub.load_state_dict_from_url(_snake_case ,map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(_snake_case ,_snake_case ,_snake_case ) lowercase__ = rename_backbone_keys(_snake_case ) # query, key and value matrices need special treatment read_in_q_k_v(_snake_case ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowercase__ = "model." for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): lowercase__ = state_dict.pop(_snake_case ) lowercase__ = val # create HuggingFace model and load state dict lowercase__ = TableTransformerConfig( backbone="resnet18" ,mask_loss_coefficient=1 ,dice_loss_coefficient=1 ,ce_loss_coefficient=1 ,bbox_loss_coefficient=5 ,giou_loss_coefficient=2 ,eos_coefficient=0.4 ,class_cost=1 ,bbox_cost=5 ,giou_cost=2 ,) if "detection" in checkpoint_url: lowercase__ = 15 lowercase__ = 2 lowercase__ = {0: "table", 1: "table rotated"} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} else: lowercase__ = 125 lowercase__ = 6 lowercase__ = { 0: "table", 1: "table column", 2: "table row", 3: "table column header", 4: "table projected row header", 5: "table spanning cell", } lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = DetrImageProcessor( format="coco_detection" ,max_size=800 if "detection" in checkpoint_url else 1_000 ) lowercase__ = TableTransformerForObjectDetection(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # verify our conversion lowercase__ = "example_pdf.png" if "detection" in checkpoint_url else "example_table.png" lowercase__ = hf_hub_download(repo_id="nielsr/example-pdf" ,repo_type="dataset" ,filename=_snake_case ) lowercase__ = Image.open(_snake_case ).convert("RGB" ) lowercase__ = normalize(resize(_snake_case ,_snake_case ) ).unsqueeze(0 ) lowercase__ = model(_snake_case ) if "detection" in checkpoint_url: lowercase__ = (1, 15, 3) lowercase__ = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) lowercase__ = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: lowercase__ = (1, 125, 7) lowercase__ = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) lowercase__ = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] ,_snake_case ,atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] ,_snake_case ,atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) image_processor.save_pretrained(_snake_case ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) lowercase__ = ( "microsoft/table-transformer-detection" if "detection" in checkpoint_url else "microsoft/table-transformer-structure-recognition" ) model.push_to_hub(_snake_case ) image_processor.push_to_hub(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
711
'''simple docstring''' import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", } class snake_case (UpperCamelCase ): lowerCAmelCase__ :Optional[int] = "align_text_model" def __init__( self ,UpperCAmelCase_=30_522 ,UpperCAmelCase_=768 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=3_072 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=512 ,UpperCAmelCase_=2 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-1_2 ,UpperCAmelCase_=0 ,UpperCAmelCase_="absolute" ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,) -> List[str]: super().__init__(**UpperCAmelCase_ ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = pad_token_id @classmethod def _a ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCAmelCase_ ) lowercase__ , lowercase__ = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": lowercase__ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls ,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class snake_case (UpperCamelCase ): lowerCAmelCase__ :Tuple = "align_vision_model" def __init__( self ,UpperCAmelCase_ = 3 ,UpperCAmelCase_ = 600 ,UpperCAmelCase_ = 2.0 ,UpperCAmelCase_ = 3.1 ,UpperCAmelCase_ = 8 ,UpperCAmelCase_ = [3, 3, 5, 3, 5, 5, 3] ,UpperCAmelCase_ = [32, 16, 24, 40, 80, 112, 192] ,UpperCAmelCase_ = [16, 24, 40, 80, 112, 192, 320] ,UpperCAmelCase_ = [] ,UpperCAmelCase_ = [1, 2, 2, 2, 1, 2, 1] ,UpperCAmelCase_ = [1, 2, 2, 3, 3, 4, 1] ,UpperCAmelCase_ = [1, 6, 6, 6, 6, 6, 6] ,UpperCAmelCase_ = 0.25 ,UpperCAmelCase_ = "swish" ,UpperCAmelCase_ = 2_560 ,UpperCAmelCase_ = "mean" ,UpperCAmelCase_ = 0.02 ,UpperCAmelCase_ = 0.0_01 ,UpperCAmelCase_ = 0.99 ,UpperCAmelCase_ = 0.2 ,**UpperCAmelCase_ ,) -> Union[str, Any]: super().__init__(**UpperCAmelCase_ ) lowercase__ = num_channels lowercase__ = image_size lowercase__ = width_coefficient lowercase__ = depth_coefficient lowercase__ = depth_divisor lowercase__ = kernel_sizes lowercase__ = in_channels lowercase__ = out_channels lowercase__ = depthwise_padding lowercase__ = strides lowercase__ = num_block_repeats lowercase__ = expand_ratios lowercase__ = squeeze_expansion_ratio lowercase__ = hidden_act lowercase__ = hidden_dim lowercase__ = pooling_type lowercase__ = initializer_range lowercase__ = batch_norm_eps lowercase__ = batch_norm_momentum lowercase__ = drop_connect_rate lowercase__ = sum(UpperCAmelCase_ ) * 4 @classmethod def _a ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCAmelCase_ ) lowercase__ , lowercase__ = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": lowercase__ = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls ,"model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class snake_case (UpperCamelCase ): lowerCAmelCase__ :Union[str, Any] = "align" lowerCAmelCase__ :Tuple = True def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=640 ,UpperCAmelCase_=1.0 ,UpperCAmelCase_=0.02 ,**UpperCAmelCase_ ,) -> Union[str, Any]: super().__init__(**UpperCAmelCase_ ) if text_config is None: lowercase__ = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: lowercase__ = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) lowercase__ = AlignTextConfig(**UpperCAmelCase_ ) lowercase__ = AlignVisionConfig(**UpperCAmelCase_ ) lowercase__ = projection_dim lowercase__ = temperature_init_value lowercase__ = initializer_range @classmethod def _a ( cls ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ) -> List[str]: return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**UpperCAmelCase_ ) def _a ( self ) -> List[Any]: lowercase__ = copy.deepcopy(self.__dict__ ) lowercase__ = self.text_config.to_dict() lowercase__ = self.vision_config.to_dict() lowercase__ = self.__class__.model_type return output
539
0