File size: 12,061 Bytes
cd917e2 0dc5539 6031cf5 313c29d 6031cf5 313c29d 6031cf5 cd917e2 313c29d 74d07cc 313c29d 6031cf5 313c29d 6031cf5 313c29d 6031cf5 313c29d 6031cf5 313c29d 6031cf5 313c29d 7a6945d 313c29d 6031cf5 313c29d 6031cf5 313c29d 6031cf5 313c29d 6031cf5 313c29d 6031cf5 313c29d 6031cf5 313c29d 6031cf5 313c29d 6031cf5 313c29d 6031cf5 313c29d 6031cf5 313c29d 6031cf5 313c29d 6031cf5 313c29d 7a6945d 313c29d 6031cf5 313c29d 6031cf5 313c29d 6031cf5 313c29d 6031cf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
---
license: mit
dataset_info:
- config_name: classification
features:
- name: img_path
dtype: string
- name: bowel
dtype:
class_label:
names:
"0": healthy
"1": injury
- name: extravasation
dtype:
class_label:
names:
"0": healthy
"1": injury
- name: kidney
dtype:
class_label:
names:
"0": healthy
"1": low
"2": high
- name: liver
dtype:
class_label:
names:
"0": healthy
"1": low
"2": high
- name: spleen
dtype:
class_label:
names:
"0": healthy
"1": low
"2": high
- name: any_injury
dtype: bool
- name: metadata
struct:
- name: series_id
dtype: int32
- name: patient_id
dtype: int32
- name: incomplete_organ
dtype: bool
- name: aortic_hu
dtype: float32
- name: pixel_representation
dtype: int32
- name: bits_allocated
dtype: int32
- name: bits_stored
dtype: int32
splits:
- name: train
num_bytes: 802231
num_examples: 4239
- name: test
num_bytes: 89326
num_examples: 472
download_size: 96729254048
dataset_size: 891557
- config_name: classification-with-mask
features:
- name: img_path
dtype: string
- name: seg_path
dtype: string
- name: bowel
dtype:
class_label:
names:
"0": healthy
"1": injury
- name: extravasation
dtype:
class_label:
names:
"0": healthy
"1": injury
- name: kidney
dtype:
class_label:
names:
"0": healthy
"1": low
"2": high
- name: liver
dtype:
class_label:
names:
"0": healthy
"1": low
"2": high
- name: spleen
dtype:
class_label:
names:
"0": healthy
"1": low
"2": high
- name: any_injury
dtype: bool
- name: metadata
struct:
- name: series_id
dtype: int32
- name: patient_id
dtype: int32
- name: incomplete_organ
dtype: bool
- name: aortic_hu
dtype: float32
- name: pixel_representation
dtype: int32
- name: bits_allocated
dtype: int32
- name: bits_stored
dtype: int32
splits:
- name: train
num_bytes: 58138
num_examples: 185
- name: test
num_bytes: 6600
num_examples: 21
download_size: 4196738529
dataset_size: 64738
- config_name: segmentation
features:
- name: img_path
dtype: string
- name: seg_path
dtype: string
- name: metadata
struct:
- name: series_id
dtype: int32
- name: patient_id
dtype: int32
- name: incomplete_organ
dtype: bool
- name: aortic_hu
dtype: float32
- name: pixel_representation
dtype: int32
- name: bits_allocated
dtype: int32
- name: bits_stored
dtype: int32
splits:
- name: train
num_bytes: 50714
num_examples: 185
- name: test
num_bytes: 5757
num_examples: 21
download_size: 4196631843
dataset_size: 56471
task_categories:
- image-classification
- image-segmentation
pretty_name: RSNA 2023 Abdominal Trauma Detection (Preprocessed)
size_categories:
- 1K<n<10K
---
# Dataset Card for RSNA 2023 Abdominal Trauma Detection (Preprocessed)
## Dataset Description
- **Homepage:** [https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection](https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection)
- **Source:** [https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/data](https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/data)
### Dataset Summary
This dataset is the preprocessed version of the dataset from [RSNA 2023 Abdominal Trauma Detection Kaggle Competition](https://www.kaggle.com/competitions/rsna-2023-abdominal-trauma-detection/data).
It is tailored for segmentation and classification tasks. It contains 3 different configs as described below:
- **classification**:
- 4711 instances where each instance includes a CT scan in NIfTI format, target labels, and its relevant metadata.
- **segmentation**:
- 206 instances where each instance includes a CT scan in NIfTI format, a segmentation mask in NIfTI format, and its relevant metadata.
- **classification-with-mask**:
- 206 instances where each instance includes a CT scan in NIfTI format, a segmentation mask in NIfTI format, target labels, and its relevant metadata.
All CT scans and segmentation masks had already been resampled with voxel spacing (2.0, 2.0, 3.0) and thus its reduced file size.
### Usage
```python
from datasets import load_dataset
# Classification dataset
rsna_cls_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", streaming=True) # "classification" is the default configuration
rsna_cls_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification", streaming=True) # download dataset on-demand and in-memory (no caching)
rsna_cls_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification", streaming=False) # download dataset and cache locally (~90.09 GiB)
rsna_cls_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification", streaming=True, test_size=0.05, random_state=42) # specify split size for train-test split
# Classification dataset with segmentation masks
rsna_clsmask_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification-with-mask", streaming=True) # download dataset on-demand and in-memory (no caching)
rsna_clsmask_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification-with-mask", streaming=False) # download dataset and cache locally (~3.91 GiB)
rsna_clsmask_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification-with-mask", streaming=False, test_size=0.05, random_state=42) # specify split size for train-test split
# Segmentation dataset
rsna_seg_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "segmentation", streaming=True) # download dataset on-demand and in-memory (no caching)
rsna_seg_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "segmentation", streaming=False) # download dataset and cache locally (~3.91 GiB)
rsna_seg_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "segmentation", streaming=True, test_size=0.1, random_state=42) # specify split size for train-test split
# Get the dataset splits
train_rsna_cls_ds = rsna_cls_ds["train"]; test_rsna_cls_ds = rsna_cls_ds["test"]
train_rsna_clsmask_ds = rsna_clsmask_ds["train"]; test_rsna_clsmask_ds = rsna_clsmask_ds["test"]
train_rsna_seg_ds = rsna_seg_ds["train"]; test_rsna_seg_ds = rsna_seg_ds["test"]
# Tip: Download speed up with multiprocessing
rsna_cls_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", streaming=False, num_proc=8) # num_proc: num of cpu core used for loading the dataset
```
## Dataset Structure
### Data Instances
#### Configuration 1: classification
- **Size of downloaded dataset files:** 90.09 GiB
An example of an instance in the 'classification' configuration looks as follows:
```json
{
"img_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/train_images/25899/21872.nii.gz",
"bowel": 0,
"extravasation": 0,
"kidney": 0,
"liver": 0,
"spleen": 0,
"any_injury": false,
"metadata": {
"series_id": 21872,
"patient_id": 25899,
"incomplete_organ": false,
"aortic_hu": 113.0,
"pixel_representation": 0,
"bits_allocated": 16,
"bits_stored": 12
}
}
```
#### Configuration 2: segmentation
- **Size of downloaded dataset files:** 3.91 GiB
An example of an instance in the 'segmentation' configuration looks as follows:
```json
{
"img_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/train_images/4791/4622.nii.gz",
"seg_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/segmentations/4622.nii.gz",
"metadata": {
"series_id": 4622,
"patient_id": 4791,
"incomplete_organ": false,
"aortic_hu": 223.0,
"pixel_representation": 1,
"bits_allocated": 16,
"bits_stored": 16
}
}
```
#### Configuration 3: classification-with-mask
- **Size of downloaded dataset files:** 3.91 GiB
An example of an instance in the 'classification-with-mask' configuration looks as follows:
```json
{
"img_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/train_images/4791/4622.nii.gz",
"seg_path": "https://huggingface.co/datasets/jherng/rsna-2023-abdominal-trauma-detection/resolve/main/segmentations/4622.nii.gz",
"bowel": 0,
"extravasation": 0,
"kidney": 0,
"liver": 1,
"spleen": 1,
"any_injury": true,
"metadata": {
"series_id": 4622,
"patient_id": 4791,
"incomplete_organ": false,
"aortic_hu": 223.0,
"pixel_representation": 1,
"bits_allocated": 16,
"bits_stored": 16
}
}
```
### Data Fields
The data fields for all configurations are as follows:
- `img_path`: a `string` feature representing the path to the CT scan in NIfTI format.
- `seg_path`: a `string` feature representing the path to the segmentation mask in NIfTI format (only for 'segmentation' and 'classification-with-mask' configurations).
- `bowel`, `extravasation`, `kidney`, `liver`, `spleen`: Class label features indicating the condition of respective organs.
- `any_injury`: a `bool` feature indicating the presence of any injury.
- `metadata`: a dictionary feature containing metadata information with the following fields:
- `series_id`: an `int32` feature.
- `patient_id`: an `int32` feature.
- `incomplete_organ`: a `bool` feature.
- `aortic_hu`: a `float32` feature.
- `pixel_representation`: an `int32` feature.
- `bits_allocated`: an `int32` feature.
- `bits_stored`: an `int32` feature.
### Data Splits
Default split:
- 0.9:0.1 with random_state = 42
| Configuration Name | Train (n_samples) | Test (n_samples) |
| ------------------------ | ----------------: | ---------------: |
| classification | 4239 | 472 |
| segmentation | 185 | 21 |
| classification-with-mask | 185 | 21 |
Modify the split proportion:
```python
rsna_ds = load_dataset("jherng/rsna-2023-abdominal-trauma-detection", "classification", test_size=0.05, random_state=42)
```
## Additional Information
### Citation Information
- Preprocessed dataset:
```
@InProceedings{huggingface:dataset,
title = {RSNA 2023 Abdominal Trauma Detection Dataset (Preprocessed)},
author={Hong Jia Herng},
year={2023}
}
```
- Original dataset:
```
@misc{rsna-2023-abdominal-trauma-detection,
author = {Errol Colak, Hui-Ming Lin, Robyn Ball, Melissa Davis, Adam Flanders, Sabeena Jalal, Kirti Magudia, Brett Marinelli, Savvas Nicolaou, Luciano Prevedello, Jeff Rudie, George Shih, Maryam Vazirabad, John Mongan},
title = {RSNA 2023 Abdominal Trauma Detection},
publisher = {Kaggle},
year = {2023},
url = {https://kaggle.com/competitions/rsna-2023-abdominal-trauma-detection}
}
```
|