File size: 7,260 Bytes
f04268a 1baae2e a4ee508 6344f8a f04268a 6344f8a ad76541 a4ee508 f04268a a4ee508 ad76541 6344f8a 17c8294 6344f8a 17c8294 62be3ab ad76541 f04268a 6344f8a 62be3ab 6344f8a 62be3ab ad76541 f04268a ad76541 11bd71b ad76541 f04268a ad76541 a4ee508 ad76541 11bd71b 62be3ab 6344f8a f04268a 62be3ab a4ee508 30ca378 f04268a c06e3bd a4ee508 f04268a 30ca378 c06e3bd 30ca378 f04268a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import json
import os
import zipfile
from typing import List
import datasets
import pandas as pd
from datasets import ClassLabel, Value
_URLS = {
"go_emotions": {
"urls": [
"https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_1.csv",
"https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_2.csv",
"https://storage.googleapis.com/gresearch/goemotions/data/full_dataset/goemotions_3.csv",
],
"license": "apache license 2.0"
},
"daily_dialog": {
"urls": ["http://yanran.li/files/ijcnlp_dailydialog.zip"],
"license": "CC BY-NC-SA 4.0"
},
"emotion": {
"data": ["data/data.jsonl.gz"],
"license": "educational/research"
}
}
_CLASS_NAMES = [
"no emotion",
"happiness",
"admiration",
"amusement",
"anger",
"annoyance",
"approval",
"caring",
"confusion",
"curiosity",
"desire",
"disappointment",
"disapproval",
"disgust",
"embarrassment",
"excitement",
"fear",
"gratitude",
"grief",
"joy",
"love",
"nervousness",
"optimism",
"pride",
"realization",
"relief",
"remorse",
"sadness",
"surprise",
"neutral",
]
class EmotionsDatasetConfig(datasets.BuilderConfig):
def __init__(self, features, label_classes, **kwargs):
super().__init__(**kwargs)
self.features = features
self.label_classes = label_classes
class EmotionsDataset(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
EmotionsDatasetConfig(
name="all",
label_classes=_CLASS_NAMES,
features=["text", "label", "dataset", "license"]
),
EmotionsDatasetConfig(
name="go_emotions",
label_classes=_CLASS_NAMES,
features=["text", "label", "dataset", "license"]
),
EmotionsDatasetConfig(
name="daily_dialog",
label_classes=_CLASS_NAMES,
features=["text", "label", "dataset", "license"]
),
EmotionsDatasetConfig(
name="emotion",
label_classes=_CLASS_NAMES,
features=["text", "label", "dataset", "license"]
)
]
DEFAULT_CONFIG_NAME = "all"
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features(
{
"id": datasets.Value("string"),
'text': Value(dtype='string', id=None),
'label': ClassLabel(names=_CLASS_NAMES, id=None),
'dataset': Value(dtype='string', id=None),
'license': Value(dtype='string', id=None)
}
)
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
splits = []
if self.config.name == "all":
for k, v in _URLS.items():
downloaded_files = dl_manager.download_and_extract(v.get("urls", v.get("data")))
splits.append(datasets.SplitGenerator(name=k,
gen_kwargs={"filepaths": downloaded_files,
"dataset": k,
"license": v.get("license")}))
else:
k = self.config.name
v = _URLS.get(k)
downloaded_files = dl_manager.download_and_extract(v.get("urls", v.get("data")))
splits.append(datasets.SplitGenerator(name=k,
gen_kwargs={"filepaths": downloaded_files,
"dataset": k,
"license": v.get("license")}))
return splits
def process_daily_dialog(self, filepaths, dataset):
# TODO move outside
emo_mapping = {0: "no emotion", 1: "anger", 2: "disgust",
3: "fear", 4: "happiness", 5: "sadness", 6: "surprise"}
for i, filepath in enumerate(filepaths):
if os.path.isdir(filepath):
emotions = open(os.path.join(filepath, "ijcnlp_dailydialog/dialogues_emotion.txt"), "r").read()
text = open(os.path.join(filepath, "ijcnlp_dailydialog/dialogues_text.txt"), "r").read()
else:
# TODO check if this can be removed
archive = zipfile.ZipFile(filepath, 'r')
emotions = archive.open("ijcnlp_dailydialog/dialogues_emotion.txt", "r").read().decode()
text = archive.open("ijcnlp_dailydialog/dialogues_text.txt", "r").read().decode()
emotions = emotions.split("\n")
text = text.split("\n")
for idx_out, (e, t) in enumerate(zip(emotions, text)):
if len(t.strip()) > 0:
cast_emotions = [int(j) for j in e.strip().split(" ")]
cast_dialog = [d.strip() for d in t.split("__eou__") if len(d)]
for idx_in, (ce, ct) in enumerate(zip(cast_emotions, cast_dialog)):
uid = f"daily_dialog_{i}_{idx_out}_{idx_in}"
yield uid, {"text": ct,
"id": uid,
"dataset": dataset,
"license": license,
"label": emo_mapping[ce]}
def _generate_examples(self, filepaths, dataset, license):
if dataset == "go_emotions":
for i, filepath in enumerate(filepaths):
df = pd.read_csv(filepath)
current_classes = list(set(df.columns).intersection(set(_CLASS_NAMES)))
df = df[["text"] + current_classes]
df = df[df[current_classes].sum(axis=1) == 1].reset_index(drop=True)
for row_idx, row in df.iterrows():
uid = f"go_emotions_{i}_{row_idx}"
yield uid, {"text": row["text"],
"id": uid,
"dataset": dataset,
"license": license,
"label": row[current_classes][row == 1].index.item()}
elif dataset == "daily_dialog":
for d in self.process_daily_dialog(filepaths, dataset):
yield d
elif dataset == "emotion":
emo_mapping = {0: "sadness", 1: "joy", 2: "love",
3: "anger", 4: "fear", 5: "surprise"}
for i, filepath in enumerate(filepaths):
with open(filepath, encoding="utf-8") as f:
for idx, line in enumerate(f):
uid = f"{dataset}_{idx}"
example = json.loads(line)
example.update({
"id": uid,
"dataset": dataset,
"license": license,
"label": emo_mapping[example["label"]]
})
yield uid, example
|