File size: 10,868 Bytes
8b8ed7d 2905dfe 48c5fb0 3dc5893 60f8433 02342db 8b8ed7d 3a44a8f 8b8ed7d 3dc5893 02342db 65408f0 08904b5 2905dfe f0830d9 2905dfe 08904b5 a6ab2dc 37f1ab4 496e800 4578bb4 a6ab2dc 8b8ed7d 08904b5 8b8ed7d 719f4db 8b8ed7d 08904b5 8b8ed7d 719f4db 8b8ed7d 08904b5 8b8ed7d 719f4db 8b8ed7d 08904b5 8b8ed7d 719f4db 8b8ed7d 2bca97a 8b8ed7d 2905dfe 1410ca4 1f87786 1410ca4 3fd11f7 1410ca4 1f87786 1410ca4 73e2a36 3fd11f7 1410ca4 1f87786 1410ca4 73e2a36 3fd11f7 1410ca4 1f87786 1410ca4 7e535bc f982edd 7f7a29a 3838254 1189a30 1f55b95 3838254 a456741 2bca97a 8b8ed7d 9ce76f5 422f6f1 3dc5893 3a44a8f 65408f0 1d2022c 65408f0 a96906c f042773 02342db 417795a 65408f0 8b8ed7d 3a44a8f 8b8ed7d 3a44a8f 8a08aed a456741 7e535bc eb8a83e 4ad564e a456741 0767865 1f55b95 daf5242 1f55b95 daf5242 3838254 1410ca4 daf5242 1410ca4 daf5242 1410ca4 daf5242 1410ca4 daf5242 3fd11f7 1410ca4 3fd11f7 46b051d 1410ca4 8a08aed 1410ca4 7e535bc 3838254 a456741 1410ca4 8a08aed 1189a30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import csv
import json
import os
import pandas as pd
import datasets
import pickle
from .cohort import task_cohort
import subprocess
import shutil
from urllib.request import urlretrieve
_DESCRIPTION = """\
Dataset for mimic4 data, by default for the Mortality task.
Available tasks are: Mortality, Length of Stay, Readmission, Phenotype.
The data is extracted from the mimic4 database using this pipeline: 'https://github.com/healthylaife/MIMIC-IV-Data-Pipeline/tree/main'
mimic path should have this form : "absolute/path/to/mimic4data/mimiciv/2.2"
"""
_HOMEPAGE = "https://huggingface.co/datasets/thbndi/Mimic4Dataset"
_CITATION = "https://proceedings.mlr.press/v193/gupta22a.html"
_URL = "https://github.com/healthylaife/MIMIC-IV-Data-Pipeline"
_DATA_GEN = 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/blob/main/data_generation_icu_modify.py'
_CONFIG_URLS = {'los' : 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/blob/main/config/los.config',
'mortality' : 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/blob/main/config/mortality.config',
'phenotype' : 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/blob/main/config/phenotype.config',
'readmission' : 'https://huggingface.co/datasets/thbndi/Mimic4Dataset/blob/main/config/readmission.config'
}
class Mimic4DatasetConfig(datasets.BuilderConfig):
"""BuilderConfig for Mimic4Dataset."""
def __init__(
self,
**kwargs,
):
super().__init__(**kwargs)
class Mimic4Dataset(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
def __init__(self, **kwargs):
self.mimic_path = kwargs.pop("mimic_path", None)
if self.mimic_path is None:
raise ValueError("You must specify the path of the mimic4 data")
if not os.path.exists(self.mimic_path):
raise ValueError("The path of the mimic4 data does not exist")
self.config_path = kwargs.pop("config_path",None)
super().__init__(**kwargs)
BUILDER_CONFIGS = [
Mimic4DatasetConfig(
name="Phenotype",
version=VERSION,
description="Dataset for mimic4 Phenotype task"
),
Mimic4DatasetConfig(
name="Readmission",
version=VERSION,
description="Dataset for mimic4 Readmission task"
),
Mimic4DatasetConfig(
name="Length of Stay",
version=VERSION,
description="Dataset for mimic4 Length of Stay task"
),
Mimic4DatasetConfig(
name="Mortality",
version=VERSION,
description="Dataset for mimic4 Mortality task"
),
]
DEFAULT_CONFIG_NAME = "Mortality"
def _info(self):
features = datasets.Features(
{
"label": datasets.ClassLabel(names=["0", "1"]),
"gender": datasets.Value("string"),
"ethnicity": datasets.Value("string"),
"age": datasets.Value("int32"),
"COND": datasets.Sequence(datasets.Value("string")),
"MEDS": {
"signal":
{
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
}
,
"rate":
{
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
}
,
"amount":
{
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
}
},
"PROC": {
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
},
"CHART":
{
"signal" : {
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
},
"val" : {
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
},
},
"OUT": {
"id": datasets.Sequence(datasets.Value("int32")),
"value": datasets.Sequence(datasets.Sequence(datasets.Value("float32")))
},
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager()):
if self.config.name == 'Phenotype' and self.config_path is None : self.config_path = _CONFIG_URLS['phenotype']
if self.config.name == 'Readmission' and self.config_path is None : self.config_path = _CONFIG_URLS['readmission']
if self.config.name == 'Length of Stay' and self.config_path is None : self.config_path = _CONFIG_URLS['los']
if self.config.name == 'Mortality' and self.config_path is None : self.config_path = _CONFIG_URLS['mortality']
print(self.config_path)
repo_url='https://github.com/healthylaife/MIMIC-IV-Data-Pipeline'
if os.path.exists(os.path.dirname(os.path.abspath('MIMIC-IV-Data-Pipeline-main'))):
path_bench = os.path.dirname(os.path.abspath('MIMIC-IV-Data-Pipeline-main'))+'/MIMIC-IV-Data-Pipeline-main'
else:
repodir = os.getcwd()
path_bench = repodir+'/MIMIC-IV-Data-Pipeline-main'
subprocess.run(["git", "clone", repo_url, path_bench])
if not os.path.exists(path_bench+'/config'):
os.makedirs(path_bench+'/config')
if self.config_path[0:4] == 'http':
file_path, head = urlretrieve(self.config_path)
else :
print(self.config_path)
#shutil.move(file_path, path_bench+'/config')
file_path, head = urlretrieve(_DATA_GEN, "data_generation_icu_modify.py")
shutil.move(file_path, path_bench+'/model')
data_dir = path_bench + "/data/dataDic"
task_cohort(self.name,self.mimic_path, path_bench, self.config_path)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir}),
]
def _generate_examples(self, filepath):
with open(filepath, 'rb') as fp:
dataDic = pickle.load(fp)
for hid, data in dataDic.items():
proc_features = data['Proc']
chart_features = data['Chart']
meds_features = data['Med']
out_features = data['Out']
cond_features = data['Cond']['fids']
eth= data['ethnicity']
age = data['age']
gender = data['gender']
label = data['label']
items = list(proc_features.keys())
values =[proc_features[i] for i in items ]
procs = {"id" : items,
"value": values}
items_outs = list(out_features.keys())
values_outs =[out_features[i] for i in items_outs ]
outs = {"id" : items_outs,
"value": values_outs}
#chart signal
if ('signal' in chart_features):
items_chart_sig = list(chart_features['signal'].keys())
values_chart_sig =[chart_features['signal'][i] for i in items_chart_sig ]
chart_sig = {"id" : items_chart_sig,
"value": values_chart_sig}
else:
chart_sig = {"id" : [],
"value": []}
#chart val
if ('val' in chart_features):
items_chart_val = list(chart_features['val'].keys())
values_chart_val =[chart_features['val'][i] for i in items_chart_val ]
chart_val = {"id" : items_chart_val,
"value": values_chart_val}
else:
chart_val = {"id" : [],
"value": []}
charts = {"signal" : chart_sig,
"val" : chart_val}
#meds signal
if ('signal' in meds_features):
items_meds_sig = list(meds_features['signal'].keys())
values_meds_sig =[meds_features['signal'][i] for i in items_meds_sig ]
meds_sig = {"id" : items_meds_sig,
"value": values_meds_sig}
else:
meds_sig = {"id" : [],
"value": []}
#meds rate
if ('rate' in meds_features):
items_meds_rate = list(meds_features['rate'].keys())
values_meds_rate =[meds_features['rate'][i] for i in items_meds_rate ]
meds_rate = {"id" : items_meds_rate,
"value": values_meds_rate}
else:
meds_rate = {"id" : [],
"value": []}
#meds amount
if ('amount' in meds_features):
items_meds_amount = list(meds_features['amount'].keys())
values_meds_amount =[meds_features['amount'][i] for i in items_meds_amount ]
meds_amount = {"id" : items_meds_amount,
"value": values_meds_amount}
else:
meds_amount = {"id" : [],
"value": []}
meds = {"signal" : meds_sig,
"rate" : meds_rate,
"amount" : meds_amount}
yield int(hid), {
"label" : label,
"gender" : gender,
"ethnicity" : eth,
"age" : age,
"COND" : cond_features,
"PROC" : procs,
"CHART" : charts,
"OUT" : outs,
"MEDS" : meds
}
|