|
--- |
|
license: apache-2.0 |
|
base_model: openai/whisper-tiny |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- PolyAI/minds14 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-tiny-finetuned-minds14-enUS_2 |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: PolyAI/minds14 |
|
type: PolyAI/minds14 |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.33943329397874855 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-tiny-finetuned-minds14-enUS_2 |
|
|
|
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the PolyAI/minds14 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7508 |
|
- Wer Ortho: 0.3356 |
|
- Wer: 0.3394 |
|
- Cer: 0.2613 |
|
- Cer Ortho: 0.2623 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 50 |
|
- training_steps: 1000 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | Cer | Cer Ortho | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:---------:| |
|
| 0.0136 | 7.14 | 100 | 0.6142 | 0.3362 | 0.3388 | 0.2587 | 0.2614 | |
|
| 0.0009 | 14.29 | 200 | 0.6704 | 0.3288 | 0.3300 | 0.2515 | 0.2534 | |
|
| 0.0011 | 21.43 | 300 | 0.6858 | 0.3054 | 0.3093 | 0.2363 | 0.2374 | |
|
| 0.0005 | 28.57 | 400 | 0.7081 | 0.3455 | 0.3477 | 0.2699 | 0.2711 | |
|
| 0.0004 | 35.71 | 500 | 0.7191 | 0.3467 | 0.3501 | 0.2727 | 0.2736 | |
|
| 0.0001 | 42.86 | 600 | 0.7337 | 0.3405 | 0.3447 | 0.2652 | 0.2662 | |
|
| 0.0001 | 50.0 | 700 | 0.7418 | 0.3393 | 0.3430 | 0.2636 | 0.2645 | |
|
| 0.0001 | 57.14 | 800 | 0.7466 | 0.3387 | 0.3424 | 0.2634 | 0.2644 | |
|
| 0.0001 | 64.29 | 900 | 0.7496 | 0.3350 | 0.3388 | 0.2604 | 0.2614 | |
|
| 0.0001 | 71.43 | 1000 | 0.7508 | 0.3356 | 0.3394 | 0.2613 | 0.2623 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.13.3 |
|
|