|
--- |
|
license: other |
|
base_model: "black-forest-labs/FLUX.1-dev" |
|
tags: |
|
- flux |
|
- flux-diffusers |
|
- text-to-image |
|
- diffusers |
|
- simpletuner |
|
- safe-for-work |
|
- lora |
|
- template:sd-lora |
|
- lycoris |
|
inference: true |
|
widget: |
|
- text: 'unconditional (blank prompt)' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_0_0.png |
|
- text: 'In the style of a Leon Spilliaert luminous lithograph, A solitary figure in a long black coat stands at the edge of a pier, their back to the viewer. The dark water stretches out as a vast empty space below, while a pale moon hangs suspended in the grainy night sky.' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_1_0.png |
|
- text: 'In the style of a Leon Spilliaert luminous lithograph, Two tall windows in a dimly lit room cast rectangles of pale light across an empty floor. A single wooden chair sits between them, its shadow elongated and distorted.' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_2_0.png |
|
- text: 'In the style of a Leon Spilliaert luminous lithograph, A winding path through winter-bare trees leads to a small chapel with a pointed spire. The ground and sky merge in shades of grey, broken only by the stark silhouettes of branches.' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_3_0.png |
|
- text: 'In the style of a Leon Spilliaert luminous lithograph, A hamster stands upright on its hind legs against an empty background, its shadow stretching impossibly long behind it. A single sunflower seed lies untouched before it.' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_4_0.png |
|
- text: 'In the style of a Leon Spilliaert luminous lithograph, A Range Rover sits abandoned in deep snow, its angular form a dark mass against the white landscape. Long shadows from unseen trees stripe across its surface.' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_5_0.png |
|
- text: 'In the style of a Leon Spilliaert luminous lithograph, A glass Coca-Cola bottle stands alone on a window sill, silhouetted against a pale sky. Its distinctive shape casts a elongated shadow across the bare wooden surface.' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_6_0.png |
|
- text: 'In the style of a Leon Spilliaert luminous lithograph, A grandfather clock stands impossibly tall in an empty room, its pendulum frozen mid-swing. The room''s corners fade into deep shadow while pale light filters through unseen windows.' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_7_0.png |
|
- text: 'In the style of a Leon Spilliaert luminous lithograph, An empty rocking chair moves by itself on a wooden porch, its curved runners leaving traces in thick dust. The surrounding space is rendered in grainy, textured darkness.' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_8_0.png |
|
--- |
|
|
|
# LeonSpilliaert-Flux-LoKr |
|
|
|
This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev). |
|
|
|
|
|
No validation prompt was used during training. |
|
|
|
None |
|
|
|
|
|
|
|
## Validation settings |
|
- CFG: `3.0` |
|
- CFG Rescale: `0.0` |
|
- Steps: `20` |
|
- Sampler: `FlowMatchEulerDiscreteScheduler` |
|
- Seed: `42` |
|
- Resolution: `896x1280` |
|
- Skip-layer guidance: |
|
|
|
Note: The validation settings are not necessarily the same as the [training settings](#training-settings). |
|
|
|
You can find some example images in the following gallery: |
|
|
|
|
|
<Gallery /> |
|
|
|
The text encoder **was not** trained. |
|
You may reuse the base model text encoder for inference. |
|
|
|
|
|
## Training settings |
|
|
|
- Training epochs: 33 |
|
- Training steps: 11000 |
|
- Learning rate: 8e-05 |
|
- Learning rate schedule: constant |
|
- Warmup steps: 100 |
|
- Max grad norm: 0.1 |
|
- Effective batch size: 3 |
|
- Micro-batch size: 3 |
|
- Gradient accumulation steps: 1 |
|
- Number of GPUs: 1 |
|
- Gradient checkpointing: True |
|
- Prediction type: flow-matching (extra parameters=['flux_schedule_auto_shift', 'shift=0.0', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flux_beta_schedule_alpha=8.0', 'flux_beta_schedule_beta=2.0', 'flow_matching_loss=compatible']) |
|
- Optimizer: adamw_bf16 |
|
- Trainable parameter precision: Pure BF16 |
|
- Caption dropout probability: 10.0% |
|
|
|
- SageAttention: Enabled inference |
|
### LyCORIS Config: |
|
```json |
|
{ |
|
"algo": "lokr", |
|
"multiplier": 1.0, |
|
"linear_dim": 10000, |
|
"linear_alpha": 1, |
|
"factor": 16, |
|
"apply_preset": { |
|
"target_module": [ |
|
"Attention", |
|
"FeedForward" |
|
], |
|
"module_algo_map": { |
|
"Attention": { |
|
"factor": 16 |
|
}, |
|
"FeedForward": { |
|
"factor": 8 |
|
} |
|
} |
|
} |
|
} |
|
``` |
|
|
|
## Datasets |
|
|
|
### leonspilliaert-512 |
|
- Repeats: 11 |
|
- Total number of images: 17 |
|
- Total number of aspect buckets: 2 |
|
- Resolution: 0.262144 megapixels |
|
- Cropped: False |
|
- Crop style: None |
|
- Crop aspect: None |
|
- Used for regularisation data: No |
|
### leonspilliaert-768 |
|
- Repeats: 11 |
|
- Total number of images: 17 |
|
- Total number of aspect buckets: 4 |
|
- Resolution: 0.589824 megapixels |
|
- Cropped: False |
|
- Crop style: None |
|
- Crop aspect: None |
|
- Used for regularisation data: No |
|
### leonspilliaert-1024 |
|
- Repeats: 5 |
|
- Total number of images: 17 |
|
- Total number of aspect buckets: 3 |
|
- Resolution: 1.048576 megapixels |
|
- Cropped: False |
|
- Crop style: None |
|
- Crop aspect: None |
|
- Used for regularisation data: No |
|
### leonspilliaert-1536 |
|
- Repeats: 2 |
|
- Total number of images: 17 |
|
- Total number of aspect buckets: 3 |
|
- Resolution: 2.359296 megapixels |
|
- Cropped: False |
|
- Crop style: None |
|
- Crop aspect: None |
|
- Used for regularisation data: No |
|
### leonspilliaert-crops-512 |
|
- Repeats: 11 |
|
- Total number of images: 17 |
|
- Total number of aspect buckets: 1 |
|
- Resolution: 0.262144 megapixels |
|
- Cropped: True |
|
- Crop style: random |
|
- Crop aspect: square |
|
- Used for regularisation data: No |
|
### leonspilliaert-crops-1024 |
|
- Repeats: 5 |
|
- Total number of images: 17 |
|
- Total number of aspect buckets: 1 |
|
- Resolution: 1.048576 megapixels |
|
- Cropped: True |
|
- Crop style: random |
|
- Crop aspect: square |
|
- Used for regularisation data: No |
|
|
|
|
|
## Inference |
|
|
|
|
|
```python |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
from lycoris import create_lycoris_from_weights |
|
|
|
|
|
def download_adapter(repo_id: str): |
|
import os |
|
from huggingface_hub import hf_hub_download |
|
adapter_filename = "pytorch_lora_weights.safetensors" |
|
cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models')) |
|
cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_") |
|
path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path) |
|
path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename) |
|
os.makedirs(path_to_adapter, exist_ok=True) |
|
hf_hub_download( |
|
repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter |
|
) |
|
|
|
return path_to_adapter_file |
|
|
|
model_id = 'black-forest-labs/FLUX.1-dev' |
|
adapter_repo_id = 'davidrd123/LeonSpilliaert-Flux-LoKr' |
|
adapter_filename = 'pytorch_lora_weights.safetensors' |
|
adapter_file_path = download_adapter(repo_id=adapter_repo_id) |
|
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16 |
|
lora_scale = 1.0 |
|
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer) |
|
wrapper.merge_to() |
|
|
|
prompt = "An astronaut is riding a horse through the jungles of Thailand." |
|
|
|
|
|
## Optional: quantise the model to save on vram. |
|
## Note: The model was quantised during training, and so it is recommended to do the same during inference time. |
|
from optimum.quanto import quantize, freeze, qint8 |
|
quantize(pipeline.transformer, weights=qint8) |
|
freeze(pipeline.transformer) |
|
|
|
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level |
|
image = pipeline( |
|
prompt=prompt, |
|
num_inference_steps=20, |
|
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42), |
|
width=896, |
|
height=1280, |
|
guidance_scale=3.0, |
|
).images[0] |
|
image.save("output.png", format="PNG") |
|
``` |
|
|
|
|
|
|
|
|