dfurman's picture
End of training
e863b56 verified
|
raw
history blame
2.44 kB
metadata
license: mit
base_model: microsoft/deberta-v2-xxlarge
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: deberta-v2-xxl-imdb-v0.1
    results: []

deberta-v2-xxl-imdb-v0.1

This model is a fine-tuned version of microsoft/deberta-v2-xxlarge on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1684
  • Accuracy: 0.9708
  • F1: 0.9710
  • Precision: 0.9669
  • Recall: 0.9750

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.0607 1.0 6250 0.2211 0.9616 0.9611 0.9738 0.9487
0.3056 2.0 12500 0.1855 0.9662 0.9658 0.9770 0.9548
0.0502 3.0 18750 0.1790 0.9696 0.9697 0.9668 0.9726
0.2397 4.0 25000 0.1741 0.9705 0.9707 0.9634 0.9782
0.1207 5.0 31250 0.1662 0.9708 0.9708 0.9713 0.9702
0.0637 6.0 37500 0.1718 0.9707 0.9707 0.9710 0.9703
0.3034 7.0 43750 0.1687 0.9706 0.9707 0.9670 0.9745
0.0013 8.0 50000 0.1683 0.9708 0.9709 0.9668 0.9751
0.0543 9.0 56250 0.1683 0.9707 0.9708 0.9667 0.9750
0.1015 10.0 62500 0.1684 0.9708 0.9710 0.9669 0.9750

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2