patentbert-cased-2b / README.md
dheerajpai's picture
dheerajpai/patentbert-cased-2b
0ed138f verified
|
raw
history blame
14.5 kB
metadata
license: mit
base_model: dheerajpai/patentbert
tags:
  - generated_from_trainer
model-index:
  - name: patentbert-cased-2b
    results: []

patentbert-cased-2b

This model is a fine-tuned version of dheerajpai/patentbert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6765

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
No log 0.0 500 9.7138
No log 0.01 1000 8.8994
No log 0.01 1500 8.0568
No log 0.02 2000 7.1249
No log 0.02 2500 6.7644
No log 0.02 3000 6.6609
No log 0.03 3500 6.4539
No log 0.03 4000 6.4159
No log 0.04 4500 6.2912
7.4382 0.04 5000 6.2655
7.4382 0.04 5500 6.1653
7.4382 0.05 6000 6.0521
7.4382 0.05 6500 6.0127
7.4382 0.06 7000 5.9010
7.4382 0.06 7500 5.6470
7.4382 0.06 8000 5.9284
7.4382 0.07 8500 5.8607
7.4382 0.07 9000 5.6770
7.4382 0.08 9500 5.6702
5.909 0.08 10000 5.7809
5.909 0.08 10500 5.6887
5.909 0.09 11000 5.5835
5.909 0.09 11500 5.4876
5.909 0.1 12000 5.3873
5.909 0.1 12500 5.3155
5.909 0.1 13000 5.4199
5.909 0.11 13500 5.4683
5.909 0.11 14000 5.5431
5.909 0.12 14500 5.2682
5.452 0.12 15000 5.3033
5.452 0.12 15500 5.1011
5.452 0.13 16000 5.0596
5.452 0.13 16500 5.2932
5.452 0.14 17000 5.1327
5.452 0.14 17500 5.1718
5.452 0.14 18000 5.0993
5.452 0.15 18500 5.0052
5.452 0.15 19000 5.1058
5.452 0.16 19500 5.1275
5.1622 0.16 20000 4.9027
5.1622 0.16 20500 4.9368
5.1622 0.17 21000 5.0207
5.1622 0.17 21500 5.0132
5.1622 0.18 22000 4.8983
5.1622 0.18 22500 5.0904
5.1622 0.18 23000 4.9643
5.1622 0.19 23500 4.8202
5.1622 0.19 24000 4.9618
5.1622 0.2 24500 4.8981
4.9639 0.2 25000 4.9170
4.9639 0.2 25500 4.8487
4.9639 0.21 26000 4.9493
4.9639 0.21 26500 4.7741
4.9639 0.22 27000 4.6247
4.9639 0.22 27500 4.8149
4.9639 0.22 28000 4.7340
4.9639 0.23 28500 4.6638
4.9639 0.23 29000 4.4906
4.9639 0.24 29500 4.4666
4.7493 0.24 30000 4.3591
4.7493 0.24 30500 4.3064
4.7493 0.25 31000 4.1517
4.7493 0.25 31500 4.2189
4.7493 0.26 32000 3.9452
4.7493 0.26 32500 4.2082
4.7493 0.26 33000 4.1326
4.7493 0.27 33500 3.9694
4.7493 0.27 34000 4.0213
4.7493 0.28 34500 3.7256
4.2572 0.28 35000 3.9048
4.2572 0.28 35500 3.7937
4.2572 0.29 36000 3.5790
4.2572 0.29 36500 3.7600
4.2572 0.29 37000 3.5873
4.2572 0.3 37500 3.4409
4.2572 0.3 38000 3.4437
4.2572 0.31 38500 3.2380
4.2572 0.31 39000 3.1350
4.2572 0.31 39500 3.2821
3.7 0.32 40000 3.1141
3.7 0.32 40500 2.8792
3.7 0.33 41000 2.9130
3.7 0.33 41500 2.7695
3.7 0.33 42000 2.7399
3.7 0.34 42500 3.0070
3.7 0.34 43000 2.7522
3.7 0.35 43500 2.7255
3.7 0.35 44000 2.3562
3.7 0.35 44500 2.7340
3.0512 0.36 45000 2.5456
3.0512 0.36 45500 2.6832
3.0512 0.37 46000 2.5833
3.0512 0.37 46500 2.5323
3.0512 0.37 47000 2.4608
3.0512 0.38 47500 2.5094
3.0512 0.38 48000 2.2950
3.0512 0.39 48500 2.3787
3.0512 0.39 49000 2.3364
3.0512 0.39 49500 2.2081
2.7005 0.4 50000 2.4490
2.7005 0.4 50500 2.5215
2.7005 0.41 51000 2.2109
2.7005 0.41 51500 2.0476
2.7005 0.41 52000 2.5112
2.7005 0.42 52500 2.3243
2.7005 0.42 53000 2.1928
2.7005 0.43 53500 2.2190
2.7005 0.43 54000 2.2165
2.7005 0.43 54500 2.1837
2.4756 0.44 55000 2.1097
2.4756 0.44 55500 2.1694
2.4756 0.45 56000 2.0265
2.4756 0.45 56500 2.0210
2.4756 0.45 57000 1.9137
2.4756 0.46 57500 2.0189
2.4756 0.46 58000 2.1363
2.4756 0.47 58500 2.0439
2.4756 0.47 59000 2.1116
2.4756 0.47 59500 2.0844
2.3096 0.48 60000 2.0552
2.3096 0.48 60500 1.9667
2.3096 0.49 61000 1.8774
2.3096 0.49 61500 2.0857
2.3096 0.49 62000 2.2166
2.3096 0.5 62500 1.9270
2.3096 0.5 63000 1.9487
2.3096 0.51 63500 1.9888
2.3096 0.51 64000 2.0290
2.3096 0.51 64500 2.0329
2.2043 0.52 65000 2.1624
2.2043 0.52 65500 1.7746
2.2043 0.53 66000 2.2028
2.2043 0.53 66500 2.0827
2.2043 0.53 67000 1.9982
2.2043 0.54 67500 2.0323
2.2043 0.54 68000 2.0935
2.2043 0.55 68500 1.8756
2.2043 0.55 69000 2.0685
2.2043 0.55 69500 1.7008
2.1246 0.56 70000 1.8077
2.1246 0.56 70500 1.6410
2.1246 0.57 71000 2.1809
2.1246 0.57 71500 1.9749
2.1246 0.57 72000 2.0454
2.1246 0.58 72500 1.8338
2.1246 0.58 73000 2.0519
2.1246 0.59 73500 1.8969
2.1246 0.59 74000 1.9628
2.1246 0.59 74500 1.8511
2.0501 0.6 75000 1.7241
2.0501 0.6 75500 1.9739
2.0501 0.61 76000 1.7898
2.0501 0.61 76500 1.8359
2.0501 0.61 77000 1.6916
2.0501 0.62 77500 1.8907
2.0501 0.62 78000 1.8675
2.0501 0.63 78500 1.6473
2.0501 0.63 79000 2.0039
2.0501 0.63 79500 1.7961
2.0036 0.64 80000 1.9772
2.0036 0.64 80500 1.9374
2.0036 0.65 81000 1.9039
2.0036 0.65 81500 1.7710
2.0036 0.65 82000 1.7382
2.0036 0.66 82500 1.9952
2.0036 0.66 83000 1.6185
2.0036 0.67 83500 1.8987
2.0036 0.67 84000 1.7178
2.0036 0.67 84500 1.8065
1.9663 0.68 85000 1.6718
1.9663 0.68 85500 1.7911
1.9663 0.69 86000 1.8223
1.9663 0.69 86500 1.7343
1.9663 0.69 87000 1.8141
1.9663 0.7 87500 1.6959
1.9663 0.7 88000 1.7000
1.9663 0.71 88500 1.8956
1.9663 0.71 89000 1.7486
1.9663 0.71 89500 1.7521
1.9217 0.72 90000 1.7994
1.9217 0.72 90500 1.6972
1.9217 0.73 91000 1.7402
1.9217 0.73 91500 2.0969
1.9217 0.73 92000 1.9346
1.9217 0.74 92500 1.7400
1.9217 0.74 93000 1.6087
1.9217 0.75 93500 1.9118
1.9217 0.75 94000 1.5671
1.9217 0.75 94500 1.8391
1.8971 0.76 95000 1.5498
1.8971 0.76 95500 1.8260
1.8971 0.77 96000 1.9168
1.8971 0.77 96500 1.6989
1.8971 0.77 97000 1.6661
1.8971 0.78 97500 1.6856
1.8971 0.78 98000 1.7222
1.8971 0.79 98500 1.6734
1.8971 0.79 99000 1.7253
1.8971 0.79 99500 1.5505
1.8712 0.8 100000 1.6383
1.8712 0.8 100500 1.8282
1.8712 0.81 101000 1.6067
1.8712 0.81 101500 1.7311
1.8712 0.81 102000 1.6562
1.8712 0.82 102500 1.5626
1.8712 0.82 103000 1.7117
1.8712 0.83 103500 1.6085
1.8712 0.83 104000 1.6914
1.8712 0.83 104500 1.7433
1.8537 0.84 105000 1.5394
1.8537 0.84 105500 1.6920
1.8537 0.85 106000 1.8206
1.8537 0.85 106500 1.7831
1.8537 0.85 107000 1.7058
1.8537 0.86 107500 1.6986
1.8537 0.86 108000 1.5653
1.8537 0.86 108500 1.8101
1.8537 0.87 109000 1.6472
1.8537 0.87 109500 1.7624
1.8317 0.88 110000 1.7655
1.8317 0.88 110500 1.6391
1.8317 0.88 111000 1.6167
1.8317 0.89 111500 1.6827
1.8317 0.89 112000 1.6433
1.8317 0.9 112500 1.7570
1.8317 0.9 113000 1.6109
1.8317 0.9 113500 1.5238
1.8317 0.91 114000 1.6575
1.8317 0.91 114500 1.6388
1.8231 0.92 115000 1.7069
1.8231 0.92 115500 1.5599
1.8231 0.92 116000 1.5553
1.8231 0.93 116500 1.7457
1.8231 0.93 117000 1.5716
1.8231 0.94 117500 1.7186
1.8231 0.94 118000 1.6921
1.8231 0.94 118500 1.5303
1.8231 0.95 119000 1.6168
1.8231 0.95 119500 1.6569
1.8113 0.96 120000 1.7487
1.8113 0.96 120500 1.7703
1.8113 0.96 121000 1.5803
1.8113 0.97 121500 1.7256
1.8113 0.97 122000 1.5522
1.8113 0.98 122500 1.8039
1.8113 0.98 123000 1.6774
1.8113 0.98 123500 1.8046
1.8113 0.99 124000 1.6236
1.8113 0.99 124500 1.7422
1.8063 1.0 125000 1.6765

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1