metadata
license: mit
base_model: dheerajpai/patentbert
tags:
- generated_from_trainer
model-index:
- name: patentbert-cased-2b
results: []
patentbert-cased-2b
This model is a fine-tuned version of dheerajpai/patentbert on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6765
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0 | 500 | 9.7138 |
No log | 0.01 | 1000 | 8.8994 |
No log | 0.01 | 1500 | 8.0568 |
No log | 0.02 | 2000 | 7.1249 |
No log | 0.02 | 2500 | 6.7644 |
No log | 0.02 | 3000 | 6.6609 |
No log | 0.03 | 3500 | 6.4539 |
No log | 0.03 | 4000 | 6.4159 |
No log | 0.04 | 4500 | 6.2912 |
7.4382 | 0.04 | 5000 | 6.2655 |
7.4382 | 0.04 | 5500 | 6.1653 |
7.4382 | 0.05 | 6000 | 6.0521 |
7.4382 | 0.05 | 6500 | 6.0127 |
7.4382 | 0.06 | 7000 | 5.9010 |
7.4382 | 0.06 | 7500 | 5.6470 |
7.4382 | 0.06 | 8000 | 5.9284 |
7.4382 | 0.07 | 8500 | 5.8607 |
7.4382 | 0.07 | 9000 | 5.6770 |
7.4382 | 0.08 | 9500 | 5.6702 |
5.909 | 0.08 | 10000 | 5.7809 |
5.909 | 0.08 | 10500 | 5.6887 |
5.909 | 0.09 | 11000 | 5.5835 |
5.909 | 0.09 | 11500 | 5.4876 |
5.909 | 0.1 | 12000 | 5.3873 |
5.909 | 0.1 | 12500 | 5.3155 |
5.909 | 0.1 | 13000 | 5.4199 |
5.909 | 0.11 | 13500 | 5.4683 |
5.909 | 0.11 | 14000 | 5.5431 |
5.909 | 0.12 | 14500 | 5.2682 |
5.452 | 0.12 | 15000 | 5.3033 |
5.452 | 0.12 | 15500 | 5.1011 |
5.452 | 0.13 | 16000 | 5.0596 |
5.452 | 0.13 | 16500 | 5.2932 |
5.452 | 0.14 | 17000 | 5.1327 |
5.452 | 0.14 | 17500 | 5.1718 |
5.452 | 0.14 | 18000 | 5.0993 |
5.452 | 0.15 | 18500 | 5.0052 |
5.452 | 0.15 | 19000 | 5.1058 |
5.452 | 0.16 | 19500 | 5.1275 |
5.1622 | 0.16 | 20000 | 4.9027 |
5.1622 | 0.16 | 20500 | 4.9368 |
5.1622 | 0.17 | 21000 | 5.0207 |
5.1622 | 0.17 | 21500 | 5.0132 |
5.1622 | 0.18 | 22000 | 4.8983 |
5.1622 | 0.18 | 22500 | 5.0904 |
5.1622 | 0.18 | 23000 | 4.9643 |
5.1622 | 0.19 | 23500 | 4.8202 |
5.1622 | 0.19 | 24000 | 4.9618 |
5.1622 | 0.2 | 24500 | 4.8981 |
4.9639 | 0.2 | 25000 | 4.9170 |
4.9639 | 0.2 | 25500 | 4.8487 |
4.9639 | 0.21 | 26000 | 4.9493 |
4.9639 | 0.21 | 26500 | 4.7741 |
4.9639 | 0.22 | 27000 | 4.6247 |
4.9639 | 0.22 | 27500 | 4.8149 |
4.9639 | 0.22 | 28000 | 4.7340 |
4.9639 | 0.23 | 28500 | 4.6638 |
4.9639 | 0.23 | 29000 | 4.4906 |
4.9639 | 0.24 | 29500 | 4.4666 |
4.7493 | 0.24 | 30000 | 4.3591 |
4.7493 | 0.24 | 30500 | 4.3064 |
4.7493 | 0.25 | 31000 | 4.1517 |
4.7493 | 0.25 | 31500 | 4.2189 |
4.7493 | 0.26 | 32000 | 3.9452 |
4.7493 | 0.26 | 32500 | 4.2082 |
4.7493 | 0.26 | 33000 | 4.1326 |
4.7493 | 0.27 | 33500 | 3.9694 |
4.7493 | 0.27 | 34000 | 4.0213 |
4.7493 | 0.28 | 34500 | 3.7256 |
4.2572 | 0.28 | 35000 | 3.9048 |
4.2572 | 0.28 | 35500 | 3.7937 |
4.2572 | 0.29 | 36000 | 3.5790 |
4.2572 | 0.29 | 36500 | 3.7600 |
4.2572 | 0.29 | 37000 | 3.5873 |
4.2572 | 0.3 | 37500 | 3.4409 |
4.2572 | 0.3 | 38000 | 3.4437 |
4.2572 | 0.31 | 38500 | 3.2380 |
4.2572 | 0.31 | 39000 | 3.1350 |
4.2572 | 0.31 | 39500 | 3.2821 |
3.7 | 0.32 | 40000 | 3.1141 |
3.7 | 0.32 | 40500 | 2.8792 |
3.7 | 0.33 | 41000 | 2.9130 |
3.7 | 0.33 | 41500 | 2.7695 |
3.7 | 0.33 | 42000 | 2.7399 |
3.7 | 0.34 | 42500 | 3.0070 |
3.7 | 0.34 | 43000 | 2.7522 |
3.7 | 0.35 | 43500 | 2.7255 |
3.7 | 0.35 | 44000 | 2.3562 |
3.7 | 0.35 | 44500 | 2.7340 |
3.0512 | 0.36 | 45000 | 2.5456 |
3.0512 | 0.36 | 45500 | 2.6832 |
3.0512 | 0.37 | 46000 | 2.5833 |
3.0512 | 0.37 | 46500 | 2.5323 |
3.0512 | 0.37 | 47000 | 2.4608 |
3.0512 | 0.38 | 47500 | 2.5094 |
3.0512 | 0.38 | 48000 | 2.2950 |
3.0512 | 0.39 | 48500 | 2.3787 |
3.0512 | 0.39 | 49000 | 2.3364 |
3.0512 | 0.39 | 49500 | 2.2081 |
2.7005 | 0.4 | 50000 | 2.4490 |
2.7005 | 0.4 | 50500 | 2.5215 |
2.7005 | 0.41 | 51000 | 2.2109 |
2.7005 | 0.41 | 51500 | 2.0476 |
2.7005 | 0.41 | 52000 | 2.5112 |
2.7005 | 0.42 | 52500 | 2.3243 |
2.7005 | 0.42 | 53000 | 2.1928 |
2.7005 | 0.43 | 53500 | 2.2190 |
2.7005 | 0.43 | 54000 | 2.2165 |
2.7005 | 0.43 | 54500 | 2.1837 |
2.4756 | 0.44 | 55000 | 2.1097 |
2.4756 | 0.44 | 55500 | 2.1694 |
2.4756 | 0.45 | 56000 | 2.0265 |
2.4756 | 0.45 | 56500 | 2.0210 |
2.4756 | 0.45 | 57000 | 1.9137 |
2.4756 | 0.46 | 57500 | 2.0189 |
2.4756 | 0.46 | 58000 | 2.1363 |
2.4756 | 0.47 | 58500 | 2.0439 |
2.4756 | 0.47 | 59000 | 2.1116 |
2.4756 | 0.47 | 59500 | 2.0844 |
2.3096 | 0.48 | 60000 | 2.0552 |
2.3096 | 0.48 | 60500 | 1.9667 |
2.3096 | 0.49 | 61000 | 1.8774 |
2.3096 | 0.49 | 61500 | 2.0857 |
2.3096 | 0.49 | 62000 | 2.2166 |
2.3096 | 0.5 | 62500 | 1.9270 |
2.3096 | 0.5 | 63000 | 1.9487 |
2.3096 | 0.51 | 63500 | 1.9888 |
2.3096 | 0.51 | 64000 | 2.0290 |
2.3096 | 0.51 | 64500 | 2.0329 |
2.2043 | 0.52 | 65000 | 2.1624 |
2.2043 | 0.52 | 65500 | 1.7746 |
2.2043 | 0.53 | 66000 | 2.2028 |
2.2043 | 0.53 | 66500 | 2.0827 |
2.2043 | 0.53 | 67000 | 1.9982 |
2.2043 | 0.54 | 67500 | 2.0323 |
2.2043 | 0.54 | 68000 | 2.0935 |
2.2043 | 0.55 | 68500 | 1.8756 |
2.2043 | 0.55 | 69000 | 2.0685 |
2.2043 | 0.55 | 69500 | 1.7008 |
2.1246 | 0.56 | 70000 | 1.8077 |
2.1246 | 0.56 | 70500 | 1.6410 |
2.1246 | 0.57 | 71000 | 2.1809 |
2.1246 | 0.57 | 71500 | 1.9749 |
2.1246 | 0.57 | 72000 | 2.0454 |
2.1246 | 0.58 | 72500 | 1.8338 |
2.1246 | 0.58 | 73000 | 2.0519 |
2.1246 | 0.59 | 73500 | 1.8969 |
2.1246 | 0.59 | 74000 | 1.9628 |
2.1246 | 0.59 | 74500 | 1.8511 |
2.0501 | 0.6 | 75000 | 1.7241 |
2.0501 | 0.6 | 75500 | 1.9739 |
2.0501 | 0.61 | 76000 | 1.7898 |
2.0501 | 0.61 | 76500 | 1.8359 |
2.0501 | 0.61 | 77000 | 1.6916 |
2.0501 | 0.62 | 77500 | 1.8907 |
2.0501 | 0.62 | 78000 | 1.8675 |
2.0501 | 0.63 | 78500 | 1.6473 |
2.0501 | 0.63 | 79000 | 2.0039 |
2.0501 | 0.63 | 79500 | 1.7961 |
2.0036 | 0.64 | 80000 | 1.9772 |
2.0036 | 0.64 | 80500 | 1.9374 |
2.0036 | 0.65 | 81000 | 1.9039 |
2.0036 | 0.65 | 81500 | 1.7710 |
2.0036 | 0.65 | 82000 | 1.7382 |
2.0036 | 0.66 | 82500 | 1.9952 |
2.0036 | 0.66 | 83000 | 1.6185 |
2.0036 | 0.67 | 83500 | 1.8987 |
2.0036 | 0.67 | 84000 | 1.7178 |
2.0036 | 0.67 | 84500 | 1.8065 |
1.9663 | 0.68 | 85000 | 1.6718 |
1.9663 | 0.68 | 85500 | 1.7911 |
1.9663 | 0.69 | 86000 | 1.8223 |
1.9663 | 0.69 | 86500 | 1.7343 |
1.9663 | 0.69 | 87000 | 1.8141 |
1.9663 | 0.7 | 87500 | 1.6959 |
1.9663 | 0.7 | 88000 | 1.7000 |
1.9663 | 0.71 | 88500 | 1.8956 |
1.9663 | 0.71 | 89000 | 1.7486 |
1.9663 | 0.71 | 89500 | 1.7521 |
1.9217 | 0.72 | 90000 | 1.7994 |
1.9217 | 0.72 | 90500 | 1.6972 |
1.9217 | 0.73 | 91000 | 1.7402 |
1.9217 | 0.73 | 91500 | 2.0969 |
1.9217 | 0.73 | 92000 | 1.9346 |
1.9217 | 0.74 | 92500 | 1.7400 |
1.9217 | 0.74 | 93000 | 1.6087 |
1.9217 | 0.75 | 93500 | 1.9118 |
1.9217 | 0.75 | 94000 | 1.5671 |
1.9217 | 0.75 | 94500 | 1.8391 |
1.8971 | 0.76 | 95000 | 1.5498 |
1.8971 | 0.76 | 95500 | 1.8260 |
1.8971 | 0.77 | 96000 | 1.9168 |
1.8971 | 0.77 | 96500 | 1.6989 |
1.8971 | 0.77 | 97000 | 1.6661 |
1.8971 | 0.78 | 97500 | 1.6856 |
1.8971 | 0.78 | 98000 | 1.7222 |
1.8971 | 0.79 | 98500 | 1.6734 |
1.8971 | 0.79 | 99000 | 1.7253 |
1.8971 | 0.79 | 99500 | 1.5505 |
1.8712 | 0.8 | 100000 | 1.6383 |
1.8712 | 0.8 | 100500 | 1.8282 |
1.8712 | 0.81 | 101000 | 1.6067 |
1.8712 | 0.81 | 101500 | 1.7311 |
1.8712 | 0.81 | 102000 | 1.6562 |
1.8712 | 0.82 | 102500 | 1.5626 |
1.8712 | 0.82 | 103000 | 1.7117 |
1.8712 | 0.83 | 103500 | 1.6085 |
1.8712 | 0.83 | 104000 | 1.6914 |
1.8712 | 0.83 | 104500 | 1.7433 |
1.8537 | 0.84 | 105000 | 1.5394 |
1.8537 | 0.84 | 105500 | 1.6920 |
1.8537 | 0.85 | 106000 | 1.8206 |
1.8537 | 0.85 | 106500 | 1.7831 |
1.8537 | 0.85 | 107000 | 1.7058 |
1.8537 | 0.86 | 107500 | 1.6986 |
1.8537 | 0.86 | 108000 | 1.5653 |
1.8537 | 0.86 | 108500 | 1.8101 |
1.8537 | 0.87 | 109000 | 1.6472 |
1.8537 | 0.87 | 109500 | 1.7624 |
1.8317 | 0.88 | 110000 | 1.7655 |
1.8317 | 0.88 | 110500 | 1.6391 |
1.8317 | 0.88 | 111000 | 1.6167 |
1.8317 | 0.89 | 111500 | 1.6827 |
1.8317 | 0.89 | 112000 | 1.6433 |
1.8317 | 0.9 | 112500 | 1.7570 |
1.8317 | 0.9 | 113000 | 1.6109 |
1.8317 | 0.9 | 113500 | 1.5238 |
1.8317 | 0.91 | 114000 | 1.6575 |
1.8317 | 0.91 | 114500 | 1.6388 |
1.8231 | 0.92 | 115000 | 1.7069 |
1.8231 | 0.92 | 115500 | 1.5599 |
1.8231 | 0.92 | 116000 | 1.5553 |
1.8231 | 0.93 | 116500 | 1.7457 |
1.8231 | 0.93 | 117000 | 1.5716 |
1.8231 | 0.94 | 117500 | 1.7186 |
1.8231 | 0.94 | 118000 | 1.6921 |
1.8231 | 0.94 | 118500 | 1.5303 |
1.8231 | 0.95 | 119000 | 1.6168 |
1.8231 | 0.95 | 119500 | 1.6569 |
1.8113 | 0.96 | 120000 | 1.7487 |
1.8113 | 0.96 | 120500 | 1.7703 |
1.8113 | 0.96 | 121000 | 1.5803 |
1.8113 | 0.97 | 121500 | 1.7256 |
1.8113 | 0.97 | 122000 | 1.5522 |
1.8113 | 0.98 | 122500 | 1.8039 |
1.8113 | 0.98 | 123000 | 1.6774 |
1.8113 | 0.98 | 123500 | 1.8046 |
1.8113 | 0.99 | 124000 | 1.6236 |
1.8113 | 0.99 | 124500 | 1.7422 |
1.8063 | 1.0 | 125000 | 1.6765 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1