my_awesome_model / README.md
diiiii's picture
Model save
dd97cc1 verified
---
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: my_awesome_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/ivkovicdanica555-Student/huggingface/runs/4649rwz9)
# my_awesome_model
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4386
- Accuracy: 0.8569
- Precision: 0.8576
- Recall: 0.8571
- F1: 0.8559
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.5211 | 1.0 | 5000 | 0.5037 | 0.8327 | 0.8408 | 0.8331 | 0.8294 |
| 0.4159 | 2.0 | 10000 | 0.4410 | 0.8517 | 0.8546 | 0.8520 | 0.8519 |
| 0.3468 | 3.0 | 15000 | 0.4386 | 0.8569 | 0.8576 | 0.8571 | 0.8559 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1