|
--- |
|
inference: false |
|
license: apache-2.0 |
|
--- |
|
|
|
<br> |
|
<br> |
|
|
|
# LLaVA Model Card |
|
|
|
## SGLang |
|
This contains the necessary files to run LLaVA-1.6 34B on SGLang. You can run the server with the following command: |
|
|
|
`python -m sglang.launch_server --model-path dillonlaird/hf-llava-v1.6-34b --port 30000` |
|
|
|
There seems to be issues with the chat formatting when using the sglang interface so I recommend querying the server directly and formatting the string yourself: |
|
|
|
```python |
|
import requests |
|
from transformers import AutoTokenizer |
|
|
|
|
|
def generate(image_path: str, prompt: str, tokenizer): |
|
chat = [ |
|
{"role": "system", "content": "Answer the question."}, |
|
{"role": "user", "content": "<image>\n" + prompt}, |
|
] |
|
chat_str = tokenizer.apply_chat_template(chat, tokenize=False) |
|
chat_str += "<|img_start|>assistant\n" |
|
sampling_params = {"temperature": 0.2, "max_new_tokens": 1536} |
|
res = requests.post( |
|
"http://localhost:30000/generate", |
|
json={ |
|
"text": chat_str, |
|
"image_data": image_path, |
|
"sampling_params": sampling_params, |
|
}, |
|
) |
|
return res.json()["text"] |
|
|
|
|
|
if __name__ == "__main__": |
|
tokenizer = AutoTokenizer.from_pretrained("liuhaotian/llava-v1.6-34b") |
|
image_path = "path/to/image.jpg" |
|
prompt = "What is the name of the mountain?" |
|
desc = generate(image_path, prompt, tokenizer) |
|
``` |
|
|
|
## Model details |
|
|
|
**Model type:** |
|
LLaVA is an open-source chatbot trained by fine-tuning LLM on multimodal instruction-following data. |
|
It is an auto-regressive language model, based on the transformer architecture. |
|
Base LLM: [NousResearch/Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B) |
|
|
|
**Model date:** |
|
LLaVA-v1.6-34B was trained in December 2023. |
|
|
|
**Paper or resources for more information:** |
|
https://llava-vl.github.io/ |
|
|
|
## License |
|
[NousResearch/Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B) license. |
|
|
|
**Where to send questions or comments about the model:** |
|
https://github.com/haotian-liu/LLaVA/issues |
|
|
|
## Intended use |
|
**Primary intended uses:** |
|
The primary use of LLaVA is research on large multimodal models and chatbots. |
|
|
|
**Primary intended users:** |
|
The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence. |
|
|
|
## Training dataset |
|
- 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP. |
|
- 158K GPT-generated multimodal instruction-following data. |
|
- 500K academic-task-oriented VQA data mixture. |
|
- 50K GPT-4V data mixture. |
|
- 40K ShareGPT data. |
|
|
|
## Evaluation dataset |
|
A collection of 12 benchmarks, including 5 academic VQA benchmarks and 7 recent benchmarks specifically proposed for instruction-following LMMs. |
|
|