|
--- |
|
license: mit |
|
base_model: |
|
- timm/eva02_large_patch14_448.mim_m38m_ft_in22k_in1k |
|
pipeline_tag: image-classification |
|
--- |
|
|
|
![PyTorch to ONNX-TensorRT](https://dicksonneoh.com/images/portfolio/supercharge_your_pytorch_image_models/post_image.png) |
|
|
|
This repository contains code to optimize PyTorch image models using ONNX Runtime and TensorRT, achieving up to 8x faster inference speeds. Read the full blog post [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models/). |
|
|
|
## Installation |
|
Create and activate a conda environment: |
|
|
|
```bash |
|
conda create -n supercharge_timm_tensorrt python=3.11 |
|
conda activate supercharge_timm_tensorrt |
|
``` |
|
Install required packages: |
|
|
|
|
|
```bash |
|
pip install timm |
|
pip install onnx |
|
pip install onnxruntime-gpu==1.19.2 |
|
pip install cupy-cuda12x |
|
pip install tensorrt==10.1.0 tensorrt-cu12==10.1.0 tensorrt-cu12-bindings==10.1.0 tensorrt-cu12-libs==10.1.0 |
|
``` |
|
|
|
Install CUDA dependencies: |
|
```bash |
|
conda install -c nvidia cuda=12.2.2 cuda-tools=12.2.2 cuda-toolkit=12.2.2 cuda-version=12.2 cuda-command-line-tools=12.2.2 cuda-compiler=12.2.2 cuda-runtime=12.2.2 |
|
``` |
|
|
|
Install cuDNN: |
|
```bash |
|
conda install cudnn==9.2.1.18 |
|
``` |
|
|
|
Set up library paths: |
|
```bash |
|
export LD_LIBRARY_PATH="/home/dnth/mambaforge-pypy3/envs/supercharge_timm_tensorrt/lib:$LD_LIBRARY_PATH" |
|
export LD_LIBRARY_PATH="/home/dnth/mambaforge-pypy3/envs/supercharge_timm_tensorrt/lib/python3.11/site-packages/tensorrt_libs:$LD_LIBRARY_PATH" |
|
``` |
|
|
|
## Running the code |
|
|
|
The following codes correspond to the steps in the blog post. |
|
|
|
### PyTorch latency benchmark: |
|
```bash |
|
python 01_pytorch_latency_benchmark.py |
|
``` |
|
Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-baseline-latency) |
|
|
|
### Convert model to ONNX: |
|
```bash |
|
python 02_convert_to_onnx.py |
|
``` |
|
Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-convert-to-onnx) |
|
|
|
### ONNX Runtime CPU inference: |
|
```bash |
|
python 03_onnx_cpu_inference.py |
|
``` |
|
Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-onnx-runtime-on-cpu) |
|
|
|
### ONNX Runtime CUDA inference: |
|
```bash |
|
python 04_onnx_cuda_inference.py |
|
``` |
|
Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-onnx-runtime-on-cuda) |
|
|
|
### ONNX Runtime TensorRT inference: |
|
```bash |
|
python 05_onnx_trt_inference.py |
|
``` |
|
Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-onnx-runtime-on-tensorrt) |
|
|
|
### Export preprocessing to ONNX: |
|
```bash |
|
python 06_export_preprocessing_onnx.py |
|
``` |
|
Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-bake-pre-processing-into-onnx) |
|
|
|
### Merge preprocessing and model ONNX: |
|
```bash |
|
python 07_onnx_compose_merge.py |
|
``` |
|
Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-bake-pre-processing-into-onnx) |
|
|
|
### Run inference on merged model: |
|
```bash |
|
python 08_inference_merged_model.py |
|
``` |
|
Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-bake-pre-processing-into-onnx) |
|
|
|
### Run inference on video: |
|
```bash |
|
python 09_video_inference.py sample.mp4 output.mp4 --live |
|
``` |
|
|
|
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/6195f404c07573b03c61702c/lOmu7KaqrihRDVcQVJDi0.mp4"></video> |
|
|
|
To run on a webcam as input source |
|
``` |
|
python 09_video_inference.py --webcam --live |
|
``` |