dnth's picture
Update README.md
e994b15 verified
---
license: mit
base_model:
- timm/eva02_large_patch14_448.mim_m38m_ft_in22k_in1k
pipeline_tag: image-classification
---
![PyTorch to ONNX-TensorRT](https://dicksonneoh.com/images/portfolio/supercharge_your_pytorch_image_models/post_image.png)
This repository contains code to optimize PyTorch image models using ONNX Runtime and TensorRT, achieving up to 8x faster inference speeds. Read the full blog post [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models/).
## Installation
Create and activate a conda environment:
```bash
conda create -n supercharge_timm_tensorrt python=3.11
conda activate supercharge_timm_tensorrt
```
Install required packages:
```bash
pip install timm
pip install onnx
pip install onnxruntime-gpu==1.19.2
pip install cupy-cuda12x
pip install tensorrt==10.1.0 tensorrt-cu12==10.1.0 tensorrt-cu12-bindings==10.1.0 tensorrt-cu12-libs==10.1.0
```
Install CUDA dependencies:
```bash
conda install -c nvidia cuda=12.2.2 cuda-tools=12.2.2 cuda-toolkit=12.2.2 cuda-version=12.2 cuda-command-line-tools=12.2.2 cuda-compiler=12.2.2 cuda-runtime=12.2.2
```
Install cuDNN:
```bash
conda install cudnn==9.2.1.18
```
Set up library paths:
```bash
export LD_LIBRARY_PATH="/home/dnth/mambaforge-pypy3/envs/supercharge_timm_tensorrt/lib:$LD_LIBRARY_PATH"
export LD_LIBRARY_PATH="/home/dnth/mambaforge-pypy3/envs/supercharge_timm_tensorrt/lib/python3.11/site-packages/tensorrt_libs:$LD_LIBRARY_PATH"
```
## Running the code
The following codes correspond to the steps in the blog post.
### PyTorch latency benchmark:
```bash
python 01_pytorch_latency_benchmark.py
```
Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-baseline-latency)
### Convert model to ONNX:
```bash
python 02_convert_to_onnx.py
```
Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-convert-to-onnx)
### ONNX Runtime CPU inference:
```bash
python 03_onnx_cpu_inference.py
```
Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-onnx-runtime-on-cpu)
### ONNX Runtime CUDA inference:
```bash
python 04_onnx_cuda_inference.py
```
Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-onnx-runtime-on-cuda)
### ONNX Runtime TensorRT inference:
```bash
python 05_onnx_trt_inference.py
```
Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-onnx-runtime-on-tensorrt)
### Export preprocessing to ONNX:
```bash
python 06_export_preprocessing_onnx.py
```
Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-bake-pre-processing-into-onnx)
### Merge preprocessing and model ONNX:
```bash
python 07_onnx_compose_merge.py
```
Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-bake-pre-processing-into-onnx)
### Run inference on merged model:
```bash
python 08_inference_merged_model.py
```
Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-bake-pre-processing-into-onnx)
### Run inference on video:
```bash
python 09_video_inference.py sample.mp4 output.mp4 --live
```
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/6195f404c07573b03c61702c/lOmu7KaqrihRDVcQVJDi0.mp4"></video>
To run on a webcam as input source
```
python 09_video_inference.py --webcam --live
```