nor-sum

This model is a fine-tuned version of sshleifer/distilbart-cnn-6-6 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1812
  • Rouge1: 0.2552
  • Rouge2: 0.0679
  • Rougel: 0.1884
  • Rougelsum: 0.1886
  • Gen Len: 65.3086

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.6231 1.0 3188 2.4652 0.2359 0.0563 0.1732 0.1733 66.1928
2.3062 2.0 6377 2.2798 0.2524 0.0653 0.1864 0.1864 66.3107
2.0817 3.0 9565 2.1973 0.2529 0.0675 0.189 0.1893 65.077
1.9776 4.0 12752 2.1812 0.2552 0.0679 0.1884 0.1886 65.3086

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.1
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for donadelicc/nor-sum

Finetuned
(10)
this model

Spaces using donadelicc/nor-sum 2