|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
- lewtun/dog_food |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: resnet-18-finetuned-dogfood |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: lewtun/dog_food |
|
type: lewtun/dog_food |
|
args: lewtun--dog_food |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.896 |
|
- task: |
|
type: image-classification |
|
name: Image Classification |
|
dataset: |
|
name: lewtun/dog_food |
|
type: lewtun/dog_food |
|
config: lewtun--dog_food |
|
split: test |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8466666666666667 |
|
verified: true |
|
- name: Precision Macro |
|
type: precision |
|
value: 0.8850127293141284 |
|
verified: true |
|
- name: Precision Micro |
|
type: precision |
|
value: 0.8466666666666667 |
|
verified: true |
|
- name: Precision Weighted |
|
type: precision |
|
value: 0.8939157698241645 |
|
verified: true |
|
- name: Recall Macro |
|
type: recall |
|
value: 0.8555113273379528 |
|
verified: true |
|
- name: Recall Micro |
|
type: recall |
|
value: 0.8466666666666667 |
|
verified: true |
|
- name: Recall Weighted |
|
type: recall |
|
value: 0.8466666666666667 |
|
verified: true |
|
- name: F1 Macro |
|
type: f1 |
|
value: 0.8431399312051647 |
|
verified: true |
|
- name: F1 Micro |
|
type: f1 |
|
value: 0.8466666666666667 |
|
verified: true |
|
- name: F1 Weighted |
|
type: f1 |
|
value: 0.8430272582865614 |
|
verified: true |
|
- name: loss |
|
type: loss |
|
value: 0.3633290231227875 |
|
verified: true |
|
- name: matthews_correlation |
|
type: matthews_correlation |
|
value: 0.7973101366252381 |
|
verified: true |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# resnet-18-finetuned-dogfood |
|
|
|
This model is a fine-tuned version of [microsoft/resnet-18](https://huggingface.co/microsoft/resnet-18) on the lewtun/dog_food dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2991 |
|
- Accuracy: 0.896 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.846 | 1.0 | 16 | 0.2662 | 0.9156 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.3.2 |
|
- Tokenizers 0.12.1 |
|
|