|
--- |
|
license: other |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: google/gemma-7b |
|
model-index: |
|
- name: gemma-python |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
# use google/gemma-7b if you have access |
|
base_model: google/gemma-7b |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
|
|
load_in_8bit: false |
|
load_in_4bit: true |
|
strict: false |
|
|
|
# huggingface repo |
|
datasets: |
|
- path: ./dataset/data1.jsonl |
|
type: input_output |
|
val_set_size: 0.1 |
|
output_dir: ./gemma-python |
|
|
|
adapter: qlora |
|
lora_r: 32 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
|
|
sequence_len: 4096 |
|
sample_packing: false |
|
pad_to_sequence_len: true |
|
|
|
wandb_project: |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
|
|
gradient_accumulation_steps: 3 |
|
micro_batch_size: 2 |
|
num_epochs: 10 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
|
|
train_on_inputs: false |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_ratio: 0.1 |
|
evals_per_epoch: 4 |
|
eval_table_size: |
|
eval_max_new_tokens: 128 |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: deepspeed_configs/zero1.json |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# gemma-python |
|
|
|
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.1143 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 3 |
|
- total_train_batch_size: 24 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 2 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 19.0016 | 0.12 | 1 | 18.6992 | |
|
| 19.4686 | 0.25 | 2 | 16.2578 | |
|
| 11.468 | 0.5 | 4 | 8.2891 | |
|
| 7.5305 | 0.75 | 6 | 5.8847 | |
|
| 5.7572 | 1.0 | 8 | 4.3635 | |
|
| 4.3903 | 1.25 | 10 | 3.2849 | |
|
| 2.9497 | 1.5 | 12 | 2.8539 | |
|
| 2.8738 | 1.75 | 14 | 2.6203 | |
|
| 2.7298 | 2.0 | 16 | 2.4534 | |
|
| 2.4284 | 2.25 | 18 | 2.3077 | |
|
| 2.394 | 2.5 | 20 | 2.1876 | |
|
| 2.069 | 2.75 | 22 | 2.1294 | |
|
| 1.9355 | 3.0 | 24 | 2.1048 | |
|
| 1.9635 | 3.25 | 26 | 2.0707 | |
|
| 2.092 | 3.5 | 28 | 2.0596 | |
|
| 1.9675 | 3.75 | 30 | 2.0287 | |
|
| 1.9693 | 4.0 | 32 | 2.0220 | |
|
| 2.0198 | 4.25 | 34 | 2.0124 | |
|
| 1.9357 | 4.5 | 36 | 1.9946 | |
|
| 1.8147 | 4.75 | 38 | 1.9979 | |
|
| 1.9084 | 5.0 | 40 | 1.9751 | |
|
| 1.6678 | 5.25 | 42 | 2.0049 | |
|
| 1.7639 | 5.5 | 44 | 1.9885 | |
|
| 1.7475 | 5.75 | 46 | 1.9777 | |
|
| 1.4848 | 6.0 | 48 | 1.9939 | |
|
| 1.3065 | 6.25 | 50 | 2.0264 | |
|
| 1.4792 | 6.5 | 52 | 2.0125 | |
|
| 1.4233 | 6.75 | 54 | 2.0204 | |
|
| 1.2534 | 7.0 | 56 | 2.0318 | |
|
| 1.2409 | 7.25 | 58 | 2.0445 | |
|
| 1.4309 | 7.5 | 60 | 2.0641 | |
|
| 1.1622 | 7.75 | 62 | 2.0633 | |
|
| 1.228 | 8.0 | 64 | 2.0930 | |
|
| 1.3076 | 8.25 | 66 | 2.1077 | |
|
| 1.2323 | 8.5 | 68 | 2.1060 | |
|
| 1.1635 | 8.75 | 70 | 2.1039 | |
|
| 1.261 | 9.0 | 72 | 2.1068 | |
|
| 1.0122 | 9.25 | 74 | 2.1110 | |
|
| 1.218 | 9.5 | 76 | 2.1180 | |
|
| 1.1022 | 9.75 | 78 | 2.1226 | |
|
| 1.2072 | 10.0 | 80 | 2.1143 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.9.0 |
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.0 |