Object Detection
TensorBoard
PyTorch
English
ultralytics
v8
ultralyticsplus
yolov8
yolo
vision
table detection
table extraction
table classification
document analysis
unstructured document
unstructured table extraction
structured table extraction
unstructured table detection
structured table detection
Eval Results
tags: | |
- ultralyticsplus | |
- yolov8 | |
- ultralytics | |
- yolo | |
- vision | |
- object-detection | |
- pytorch | |
library_name: ultralytics | |
library_version: 8.0.43 | |
inference: false | |
model-index: | |
- name: foduucom/table-detection-and-extraction | |
results: | |
- task: | |
type: object-detection | |
metrics: | |
- type: precision # since [email protected] is not available on hf.co/metrics | |
value: 0.96196 # min: 0.0 - max: 1.0 | |
name: [email protected](box) | |
<div align="center"> | |
<img width="640" alt="foduucom/table-detection-and-extraction" src="https://huggingface.co/foduucom/table-detection-and-extraction/resolve/main/thumbnail.jpg"> | |
</div> | |
### Supported Labels | |
``` | |
['bordered', 'borderless'] | |
``` | |
### How to use | |
- Install [ultralyticsplus](https://github.com/fcakyon/ultralyticsplus): | |
```bash | |
pip install ultralyticsplus==0.0.28 ultralytics==8.0.43 | |
``` | |
- Load model and perform prediction: | |
```python | |
from ultralyticsplus import YOLO, render_result | |
# load model | |
model = YOLO('foduucom/table-detection-and-extraction') | |
# set model parameters | |
model.overrides['conf'] = 0.25 # NMS confidence threshold | |
model.overrides['iou'] = 0.45 # NMS IoU threshold | |
model.overrides['agnostic_nms'] = False # NMS class-agnostic | |
model.overrides['max_det'] = 1000 # maximum number of detections per image | |
# set image | |
image = 'https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg' | |
# perform inference | |
results = model.predict(image) | |
# observe results | |
print(results[0].boxes) | |
render = render_result(model=model, image=image, result=results[0]) | |
render.show() | |
``` | |