metadata
base_model: gokuls/HBERTv1_48_L4_H64_A2
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
model-index:
- name: HBERTv1_48_L4_H64_A2_emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
config: split
split: validation
args: split
metrics:
- name: Accuracy
type: accuracy
value: 0.7725
HBERTv1_48_L4_H64_A2_emotion
This model is a fine-tuned version of gokuls/HBERTv1_48_L4_H64_A2 on the emotion dataset. It achieves the following results on the evaluation set:
- Loss: 0.7101
- Accuracy: 0.7725
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 33
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.6141 | 1.0 | 250 | 1.5167 | 0.4625 |
1.4469 | 2.0 | 500 | 1.3688 | 0.492 |
1.2843 | 3.0 | 750 | 1.1952 | 0.5785 |
1.1128 | 4.0 | 1000 | 1.0349 | 0.6375 |
0.9601 | 5.0 | 1250 | 0.9099 | 0.6835 |
0.8528 | 6.0 | 1500 | 0.8403 | 0.726 |
0.7793 | 7.0 | 1750 | 0.7835 | 0.74 |
0.7291 | 8.0 | 2000 | 0.7433 | 0.7635 |
0.6851 | 9.0 | 2250 | 0.7165 | 0.77 |
0.6717 | 10.0 | 2500 | 0.7101 | 0.7725 |
Framework versions
- Transformers 4.34.0
- Pytorch 1.14.0a0+410ce96
- Datasets 2.14.5
- Tokenizers 0.14.0