gokuls's picture
End of training
b1d2935
metadata
base_model: gokuls/HBERTv1_48_L4_H64_A2
tags:
  - generated_from_trainer
datasets:
  - massive
metrics:
  - accuracy
model-index:
  - name: HBERTv1_48_L4_H64_A2_massive
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: massive
          type: massive
          config: en-US
          split: validation
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.32611903590752583

HBERTv1_48_L4_H64_A2_massive

This model is a fine-tuned version of gokuls/HBERTv1_48_L4_H64_A2 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3014
  • Accuracy: 0.3261

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
4.0 1.0 180 3.8278 0.0723
3.6366 2.0 360 3.4279 0.1117
3.3385 3.0 540 3.1935 0.1638
3.1113 4.0 720 2.9828 0.1909
2.9324 5.0 900 2.8344 0.2130
2.7882 6.0 1080 2.7100 0.2523
2.6832 7.0 1260 2.6215 0.2774
2.5965 8.0 1440 2.5459 0.2887
2.5244 9.0 1620 2.4872 0.2966
2.4603 10.0 1800 2.4261 0.3010
2.3987 11.0 1980 2.3758 0.3153
2.3615 12.0 2160 2.3469 0.3217
2.3292 13.0 2340 2.3241 0.3212
2.3071 14.0 2520 2.3100 0.3212
2.288 15.0 2700 2.3014 0.3261

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.0