|
--- |
|
library_name: transformers |
|
language: |
|
- en |
|
base_model: gokulsrinivasagan/bert_tiny_lda_100_v1_book |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- glue |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: bert_tiny_lda_100_v1_book_mrpc |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: GLUE MRPC |
|
type: glue |
|
args: mrpc |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7475490196078431 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8303130148270182 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert_tiny_lda_100_v1_book_mrpc |
|
|
|
This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_100_v1_book](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_100_v1_book) on the GLUE MRPC dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5396 |
|
- Accuracy: 0.7475 |
|
- F1: 0.8303 |
|
- Combined Score: 0.7889 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 256 |
|
- eval_batch_size: 256 |
|
- seed: 10 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| |
|
| 0.62 | 1.0 | 15 | 0.5966 | 0.6740 | 0.7892 | 0.7316 | |
|
| 0.5856 | 2.0 | 30 | 0.5702 | 0.7010 | 0.8129 | 0.7569 | |
|
| 0.5467 | 3.0 | 45 | 0.5471 | 0.7279 | 0.8195 | 0.7737 | |
|
| 0.4866 | 4.0 | 60 | 0.5721 | 0.7426 | 0.8331 | 0.7879 | |
|
| 0.4174 | 5.0 | 75 | 0.5396 | 0.7475 | 0.8303 | 0.7889 | |
|
| 0.3418 | 6.0 | 90 | 0.5986 | 0.75 | 0.8211 | 0.7855 | |
|
| 0.2528 | 7.0 | 105 | 0.6746 | 0.6985 | 0.7593 | 0.7289 | |
|
| 0.1784 | 8.0 | 120 | 0.6922 | 0.7304 | 0.7925 | 0.7614 | |
|
| 0.1522 | 9.0 | 135 | 0.7651 | 0.7574 | 0.8395 | 0.7984 | |
|
| 0.1123 | 10.0 | 150 | 0.7805 | 0.7574 | 0.8308 | 0.7941 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.3 |
|
- Pytorch 2.2.1+cu118 |
|
- Datasets 2.17.0 |
|
- Tokenizers 0.20.3 |
|
|