gokulsrinivasagan's picture
End of training
b5c6a4b verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: google/bert_uncased_L-4_H-256_A-4
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: bert_uncased_L-4_H-256_A-4_rte
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE RTE
          type: glue
          args: rte
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.631768953068592

bert_uncased_L-4_H-256_A-4_rte

This model is a fine-tuned version of google/bert_uncased_L-4_H-256_A-4 on the GLUE RTE dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6545
  • Accuracy: 0.6318

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 10
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6982 1.0 10 0.6899 0.5451
0.6864 2.0 20 0.6845 0.5523
0.6733 3.0 30 0.6737 0.5884
0.6495 4.0 40 0.6554 0.5884
0.61 5.0 50 0.6573 0.6101
0.5697 6.0 60 0.6545 0.6318
0.5279 7.0 70 0.6648 0.6354
0.4859 8.0 80 0.6778 0.6173
0.4524 9.0 90 0.6933 0.6137
0.4126 10.0 100 0.6992 0.6245
0.386 11.0 110 0.7181 0.6426

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.0
  • Tokenizers 0.20.3