greenw0lf's picture
update model card README.md
b1563e1
|
raw
history blame
3.16 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - common_voice_12_0
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xls-r-1b-frisian
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_12_0
          type: common_voice_12_0
          config: fy-NL
          split: validation
          args: fy-NL
        metrics:
          - name: Wer
            type: wer
            value: 0.15977951760699363

wav2vec2-large-xls-r-1b-frisian

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the common_voice_12_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2634
  • Wer: 0.1598

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.7284 2.1 250 2.9453 1.0
1.7496 4.2 500 0.5141 0.4771
0.8168 6.3 750 0.3220 0.3148
0.7403 8.4 1000 0.2988 0.2573
0.7298 10.5 1250 0.2794 0.2347
0.6303 12.61 1500 0.2577 0.2164
0.5201 14.71 1750 0.2746 0.2162
0.5189 16.81 2000 0.2543 0.2034
0.5054 18.91 2250 0.2847 0.2071
0.5112 21.01 2500 0.2772 0.1979
0.5105 23.11 2750 0.2633 0.1920
0.5032 25.21 3000 0.2667 0.1856
0.46 27.31 3250 0.2730 0.1852
0.4992 29.41 3500 0.2626 0.1782
0.4535 31.51 3750 0.2778 0.1749
0.4036 33.61 4000 0.2825 0.1747
0.3347 35.71 4250 0.2797 0.1708
0.2708 37.82 4500 0.2662 0.1712
0.1825 39.92 4750 0.2652 0.1648
0.1654 42.02 5000 0.2719 0.1628
0.1387 44.12 5250 0.2552 0.1607
0.1367 46.22 5500 0.2641 0.1591
0.1218 48.32 5750 0.2634 0.1598

Framework versions

  • Transformers 4.27.3
  • Pytorch 2.0.0+cu117
  • Datasets 2.10.1
  • Tokenizers 0.13.2