|
--- |
|
license: other |
|
base_model: "black-forest-labs/FLUX.1-dev" |
|
tags: |
|
- flux |
|
- flux-diffusers |
|
- text-to-image |
|
- diffusers |
|
- simpletuner |
|
- not-for-all-audiences |
|
- lora |
|
- template:sd-lora |
|
- lycoris |
|
inference: true |
|
widget: |
|
- text: 'unconditional (blank prompt)' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_0_0.png |
|
- text: 'dsndsn robe, light-skinned man with long brown hair, green and white stripes with orange and purple accents, white background' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_1_0.png |
|
- text: 'dsndsn robe, half blue and white and red and white stripes with green teal and red mint green and yellow white accents, light-skinned man with long blonde hair, beige and eggshell curtains in background' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_2_0.png |
|
- text: 'dsndsn robe, green and white pseudo-tile pattern, red and cream polka-dot pattern, light-skinned man with curly brown hair and light-skinned asian man, giving the peace sign with his fingers, light-skinned asian man leaning against light-skinned man with curly brown hair, white background' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_3_0.png |
|
- text: 'dsndsn pattern, green and yellow apron, on a fuzzy beige carpet' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_4_0.png |
|
- text: 'a photo of a daisy' |
|
parameters: |
|
negative_prompt: 'blurry, cropped, ugly' |
|
output: |
|
url: ./assets/image_5_0.png |
|
--- |
|
|
|
# growwithdaisy/glssrxdsndsn_flat_20241209_212811 |
|
|
|
This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev). |
|
|
|
|
|
The main validation prompt used during training was: |
|
``` |
|
a photo of a daisy |
|
``` |
|
|
|
|
|
## Validation settings |
|
- CFG: `3.5` |
|
- CFG Rescale: `0.0` |
|
- Steps: `20` |
|
- Sampler: `FlowMatchEulerDiscreteScheduler` |
|
- Seed: `69` |
|
- Resolution: `1024x1024` |
|
- Skip-layer guidance: |
|
|
|
Note: The validation settings are not necessarily the same as the [training settings](#training-settings). |
|
|
|
You can find some example images in the following gallery: |
|
|
|
|
|
<Gallery /> |
|
|
|
The text encoder **was not** trained. |
|
You may reuse the base model text encoder for inference. |
|
|
|
|
|
## Training settings |
|
|
|
- Training epochs: 17 |
|
- Training steps: 2500 |
|
- Learning rate: 0.0001 |
|
- Learning rate schedule: constant |
|
- Warmup steps: 0 |
|
- Max grad norm: 2.0 |
|
- Effective batch size: 8 |
|
- Micro-batch size: 2 |
|
- Gradient accumulation steps: 1 |
|
- Number of GPUs: 4 |
|
- Gradient checkpointing: True |
|
- Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible']) |
|
- Optimizer: optimi-stableadamwweight_decay=1e-3 |
|
- Trainable parameter precision: Pure BF16 |
|
- Caption dropout probability: 5.0% |
|
|
|
|
|
### LyCORIS Config: |
|
```json |
|
{ |
|
"algo": "lokr", |
|
"multiplier": 1, |
|
"linear_dim": 1000000, |
|
"linear_alpha": 1, |
|
"factor": 16, |
|
"init_lokr_norm": 0.001, |
|
"apply_preset": { |
|
"target_module": [ |
|
"FluxTransformerBlock", |
|
"FluxSingleTransformerBlock" |
|
], |
|
"module_algo_map": { |
|
"Attention": { |
|
"factor": 16 |
|
}, |
|
"FeedForward": { |
|
"factor": 8 |
|
} |
|
} |
|
} |
|
} |
|
``` |
|
|
|
## Datasets |
|
|
|
### glssrxdsndsn_flat-512 |
|
- Repeats: 0 |
|
- Total number of images: ~320 |
|
- Total number of aspect buckets: 2 |
|
- Resolution: 0.262144 megapixels |
|
- Cropped: False |
|
- Crop style: None |
|
- Crop aspect: None |
|
- Used for regularisation data: No |
|
### glssrxdsndsn_flat-768 |
|
- Repeats: 0 |
|
- Total number of images: ~280 |
|
- Total number of aspect buckets: 2 |
|
- Resolution: 0.589824 megapixels |
|
- Cropped: False |
|
- Crop style: None |
|
- Crop aspect: None |
|
- Used for regularisation data: No |
|
### glssrxdsndsn_flat-1024 |
|
- Repeats: 1 |
|
- Total number of images: ~204 |
|
- Total number of aspect buckets: 7 |
|
- Resolution: 1.048576 megapixels |
|
- Cropped: False |
|
- Crop style: None |
|
- Crop aspect: None |
|
- Used for regularisation data: No |
|
|
|
|
|
## Inference |
|
|
|
|
|
```python |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
from lycoris import create_lycoris_from_weights |
|
|
|
|
|
def download_adapter(repo_id: str): |
|
import os |
|
from huggingface_hub import hf_hub_download |
|
adapter_filename = "pytorch_lora_weights.safetensors" |
|
cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models')) |
|
cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_") |
|
path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path) |
|
path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename) |
|
os.makedirs(path_to_adapter, exist_ok=True) |
|
hf_hub_download( |
|
repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter |
|
) |
|
|
|
return path_to_adapter_file |
|
|
|
model_id = 'black-forest-labs/FLUX.1-dev' |
|
adapter_repo_id = 'playerzer0x/growwithdaisy/glssrxdsndsn_flat_20241209_212811' |
|
adapter_filename = 'pytorch_lora_weights.safetensors' |
|
adapter_file_path = download_adapter(repo_id=adapter_repo_id) |
|
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16 |
|
lora_scale = 1.0 |
|
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer) |
|
wrapper.merge_to() |
|
|
|
prompt = "a photo of a daisy" |
|
|
|
|
|
## Optional: quantise the model to save on vram. |
|
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time. |
|
#from optimum.quanto import quantize, freeze, qint8 |
|
#quantize(pipeline.transformer, weights=qint8) |
|
#freeze(pipeline.transformer) |
|
|
|
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level |
|
image = pipeline( |
|
prompt=prompt, |
|
num_inference_steps=20, |
|
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(69), |
|
width=1024, |
|
height=1024, |
|
guidance_scale=3.5, |
|
).images[0] |
|
image.save("output.png", format="PNG") |
|
``` |
|
|
|
|
|
|
|
|