|
---
|
|
base_model: google-bert/bert-base-uncased
|
|
datasets:
|
|
- stanfordnlp/snli
|
|
language:
|
|
- en
|
|
library_name: sentence-transformers
|
|
pipeline_tag: sentence-similarity
|
|
tags:
|
|
- sentence-transformers
|
|
- sentence-similarity
|
|
- feature-extraction
|
|
- generated_from_trainer
|
|
- dataset_size:494430
|
|
- loss:SoftmaxLoss
|
|
widget:
|
|
- source_sentence: A person out front of a business with a woman statue holding a
|
|
bottle.
|
|
sentences:
|
|
- A couple holds hands.
|
|
- The young boy is upside down.
|
|
- the man is baking some bread
|
|
- source_sentence: A person is dressed up in a weird costume with a red tongue sticking
|
|
out.
|
|
sentences:
|
|
- thhe man plays a tuba
|
|
- Four siblings are climbing on a fake black bear.
|
|
- the tongue is blue
|
|
- source_sentence: A man on a train is talking on a cellphone.
|
|
sentences:
|
|
- A man is playing a flute on a bus.
|
|
- The woman is sexy.
|
|
- two cyclists racing
|
|
- source_sentence: An elderly woman giving her daughter a hug.
|
|
sentences:
|
|
- There are two women hugging.
|
|
- A man holds a flag on the street.
|
|
- people are sitting on a red roofed bus going to a museum
|
|
- source_sentence: A pilot dressed in a dark-colored sweater is sitting in the cock-pit
|
|
of a plane with his hands crossed.
|
|
sentences:
|
|
- A pilot is sitting in his plain with his hands crossed
|
|
- The boys are playing outside on a log.
|
|
- Two men discuss their love lives.
|
|
---
|
|
|
|
# SentenceTransformer based on google-bert/bert-base-uncased
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** Sentence Transformer
|
|
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
|
|
- **Maximum Sequence Length:** 512 tokens
|
|
- **Output Dimensionality:** 768 tokens
|
|
- **Similarity Function:** Cosine Similarity
|
|
- **Training Dataset:**
|
|
- [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli)
|
|
- **Language:** en
|
|
<!-- - **License:** Unknown -->
|
|
|
|
### Model Sources
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
|
|
|
### Full Model Architecture
|
|
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
```bash
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SentenceTransformer("hcy5561/distilroberta-base-sentence-transformer-snli")
|
|
# Run inference
|
|
sentences = [
|
|
'A pilot dressed in a dark-colored sweater is sitting in the cock-pit of a plane with his hands crossed.',
|
|
'A pilot is sitting in his plain with his hands crossed',
|
|
'The boys are playing outside on a log.',
|
|
]
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings.shape)
|
|
# [3, 768]
|
|
|
|
# Get the similarity scores for the embeddings
|
|
similarities = model.similarity(embeddings, embeddings)
|
|
print(similarities.shape)
|
|
# [3, 3]
|
|
```
|
|
|
|
<!--
|
|
### Direct Usage (Transformers)
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Dataset
|
|
|
|
#### stanfordnlp/snli
|
|
|
|
* Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
|
|
* Size: 494,430 training samples
|
|
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | premise | hypothesis | label |
|
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
|
|
| type | string | string | int |
|
|
| details | <ul><li>min: 6 tokens</li><li>mean: 16.24 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.55 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>0: ~31.10%</li><li>1: ~33.40%</li><li>2: ~35.50%</li></ul> |
|
|
* Samples:
|
|
| premise | hypothesis | label |
|
|
|:------------------------------------------------------------------------------|:---------------------------------------|:---------------|
|
|
| <code>Two men, one in yellow, are on a wooden boat.</code> | <code>Two men swimming in water</code> | <code>2</code> |
|
|
| <code>Two people sleep on a couch.</code> | <code>Two people are asleep.</code> | <code>0</code> |
|
|
| <code>a little boy is learning to swim with the help of a float board.</code> | <code>The boy is crawling.</code> | <code>2</code> |
|
|
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
|
|
|
|
### Evaluation Dataset
|
|
|
|
#### stanfordnlp/snli
|
|
|
|
* Dataset: [stanfordnlp/snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
|
|
* Size: 27,468 evaluation samples
|
|
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | premise | hypothesis | label |
|
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
|
|
| type | string | string | int |
|
|
| details | <ul><li>min: 6 tokens</li><li>mean: 16.66 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.48 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>0: ~36.10%</li><li>1: ~31.80%</li><li>2: ~32.10%</li></ul> |
|
|
* Samples:
|
|
| premise | hypothesis | label |
|
|
|:---------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------|:---------------|
|
|
| <code>A taxi cab driver looks stressed out in his car.</code> | <code>a taxi driver is stressed</code> | <code>0</code> |
|
|
| <code>Two men do trick in a park.</code> | <code>The men only sat on the bench in the park, doing nothing.</code> | <code>2</code> |
|
|
| <code>Two woman walking, the blond is looking at the camera wearing sunglasses making an oh face.</code> | <code>One lady makes a shocked face at the camera as the photographer tells the women they are lost.</code> | <code>1</code> |
|
|
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
|
|
|
|
### Training Hyperparameters
|
|
#### Non-Default Hyperparameters
|
|
|
|
- `per_device_train_batch_size`: 64
|
|
- `per_device_eval_batch_size`: 64
|
|
- `num_train_epochs`: 4
|
|
- `warmup_ratio`: 0.1
|
|
- `batch_sampler`: no_duplicates
|
|
|
|
#### All Hyperparameters
|
|
<details><summary>Click to expand</summary>
|
|
|
|
- `overwrite_output_dir`: False
|
|
- `do_predict`: False
|
|
- `prediction_loss_only`: True
|
|
- `per_device_train_batch_size`: 64
|
|
- `per_device_eval_batch_size`: 64
|
|
- `per_gpu_train_batch_size`: None
|
|
- `per_gpu_eval_batch_size`: None
|
|
- `gradient_accumulation_steps`: 1
|
|
- `eval_accumulation_steps`: None
|
|
- `learning_rate`: 5e-05
|
|
- `weight_decay`: 0.0
|
|
- `adam_beta1`: 0.9
|
|
- `adam_beta2`: 0.999
|
|
- `adam_epsilon`: 1e-08
|
|
- `max_grad_norm`: 1.0
|
|
- `num_train_epochs`: 4
|
|
- `max_steps`: -1
|
|
- `lr_scheduler_type`: linear
|
|
- `lr_scheduler_kwargs`: {}
|
|
- `warmup_ratio`: 0.1
|
|
- `warmup_steps`: 0
|
|
- `log_level`: passive
|
|
- `log_level_replica`: warning
|
|
- `log_on_each_node`: True
|
|
- `logging_nan_inf_filter`: True
|
|
- `save_safetensors`: True
|
|
- `save_on_each_node`: False
|
|
- `save_only_model`: False
|
|
- `no_cuda`: False
|
|
- `use_cpu`: False
|
|
- `use_mps_device`: False
|
|
- `seed`: 42
|
|
- `data_seed`: None
|
|
- `jit_mode_eval`: False
|
|
- `use_ipex`: False
|
|
- `bf16`: False
|
|
- `fp16`: False
|
|
- `fp16_opt_level`: O1
|
|
- `half_precision_backend`: auto
|
|
- `bf16_full_eval`: False
|
|
- `fp16_full_eval`: False
|
|
- `tf32`: None
|
|
- `local_rank`: 0
|
|
- `ddp_backend`: None
|
|
- `tpu_num_cores`: None
|
|
- `tpu_metrics_debug`: False
|
|
- `debug`: []
|
|
- `dataloader_drop_last`: False
|
|
- `dataloader_num_workers`: 0
|
|
- `dataloader_prefetch_factor`: None
|
|
- `past_index`: -1
|
|
- `disable_tqdm`: False
|
|
- `remove_unused_columns`: True
|
|
- `label_names`: None
|
|
- `load_best_model_at_end`: False
|
|
- `ignore_data_skip`: False
|
|
- `fsdp`: []
|
|
- `fsdp_min_num_params`: 0
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
|
|
- `deepspeed`: None
|
|
- `label_smoothing_factor`: 0.0
|
|
- `optim`: adamw_torch
|
|
- `optim_args`: None
|
|
- `adafactor`: False
|
|
- `group_by_length`: False
|
|
- `length_column_name`: length
|
|
- `ddp_find_unused_parameters`: None
|
|
- `ddp_bucket_cap_mb`: None
|
|
- `ddp_broadcast_buffers`: False
|
|
- `dataloader_pin_memory`: True
|
|
- `dataloader_persistent_workers`: False
|
|
- `skip_memory_metrics`: True
|
|
- `use_legacy_prediction_loop`: False
|
|
- `push_to_hub`: False
|
|
- `resume_from_checkpoint`: None
|
|
- `hub_model_id`: None
|
|
- `hub_strategy`: every_save
|
|
- `hub_private_repo`: False
|
|
- `hub_always_push`: False
|
|
- `gradient_checkpointing`: False
|
|
- `gradient_checkpointing_kwargs`: None
|
|
- `include_inputs_for_metrics`: False
|
|
- `fp16_backend`: auto
|
|
- `push_to_hub_model_id`: None
|
|
- `push_to_hub_organization`: None
|
|
- `mp_parameters`:
|
|
- `auto_find_batch_size`: False
|
|
- `full_determinism`: False
|
|
- `torchdynamo`: None
|
|
- `ray_scope`: last
|
|
- `ddp_timeout`: 1800
|
|
- `torch_compile`: False
|
|
- `torch_compile_backend`: None
|
|
- `torch_compile_mode`: None
|
|
- `dispatch_batches`: None
|
|
- `split_batches`: None
|
|
- `include_tokens_per_second`: False
|
|
- `include_num_input_tokens_seen`: False
|
|
- `neftune_noise_alpha`: None
|
|
- `optim_target_modules`: None
|
|
- `batch_sampler`: no_duplicates
|
|
- `multi_dataset_batch_sampler`: proportional
|
|
|
|
</details>
|
|
|
|
### Training Logs
|
|
| Epoch | Step | Training Loss | loss |
|
|
|:------:|:-----:|:-------------:|:------:|
|
|
| 0.1294 | 1000 | 0.9208 | 0.7448 |
|
|
| 0.2589 | 2000 | 0.7095 | 0.6462 |
|
|
| 0.3883 | 3000 | 0.6415 | 0.6199 |
|
|
| 0.5177 | 4000 | 0.6125 | 0.5940 |
|
|
| 0.6472 | 5000 | 0.5935 | 0.5672 |
|
|
| 0.7766 | 6000 | 0.5748 | 0.5550 |
|
|
| 0.9060 | 7000 | 0.5654 | 0.5506 |
|
|
| 1.0355 | 8000 | 0.5524 | 0.5376 |
|
|
| 1.1649 | 9000 | 0.5386 | 0.5319 |
|
|
| 1.2943 | 10000 | 0.5192 | 0.5361 |
|
|
| 1.4238 | 11000 | 0.4863 | 0.5304 |
|
|
| 1.5532 | 12000 | 0.4687 | 0.5278 |
|
|
| 1.6826 | 13000 | 0.4586 | 0.5305 |
|
|
| 1.8121 | 14000 | 0.4474 | 0.5222 |
|
|
| 1.9415 | 15000 | 0.4447 | 0.5237 |
|
|
| 2.0709 | 16000 | 0.434 | 0.5172 |
|
|
| 2.2004 | 17000 | 0.4243 | 0.5235 |
|
|
| 2.3298 | 18000 | 0.398 | 0.5224 |
|
|
| 2.4592 | 19000 | 0.3747 | 0.5344 |
|
|
| 2.5887 | 20000 | 0.3669 | 0.5301 |
|
|
| 2.7181 | 21000 | 0.3583 | 0.5406 |
|
|
| 2.8475 | 22000 | 0.3496 | 0.5354 |
|
|
| 2.9770 | 23000 | 0.3527 | 0.5324 |
|
|
| 3.1064 | 24000 | 0.3419 | 0.5299 |
|
|
| 3.2358 | 25000 | 0.3358 | 0.5456 |
|
|
| 3.3653 | 26000 | 0.3096 | 0.5562 |
|
|
| 3.4947 | 27000 | 0.2964 | 0.5644 |
|
|
| 3.6241 | 28000 | 0.2998 | 0.5565 |
|
|
| 3.7536 | 29000 | 0.2906 | 0.5590 |
|
|
| 3.8830 | 30000 | 0.2923 | 0.5564 |
|
|
|
|
|
|
### Framework Versions
|
|
- Python: 3.10.6
|
|
- Sentence Transformers: 3.0.1
|
|
- Transformers: 4.39.3
|
|
- PyTorch: 2.2.2+cu118
|
|
- Accelerate: 0.28.0
|
|
- Datasets: 2.20.0
|
|
- Tokenizers: 0.15.2
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers and SoftmaxLoss
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |