metadata
library_name: peft
license: apache-2.0
datasets:
- Abirate/english_quotes
language:
- en
pipeline_tag: text-generation
tags:
- text-generation-inference
hipnologo/GPT-Neox-20b-QLoRA-FineTune-english_quotes_dataset
Training procedure
The following bitsandbytes
quantization config was used during training:
- load_in_8bit: False
- load_in-4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Model description
This model is a fine-tuned version of the EleutherAI/gpt-neox-20b
model using the QLoRa library and the PEFT library.
How to use
The code below performs the following steps:
- Imports the necessary libraries:
torch
and classes from thetransformers
library. - Specifies the
model_id
as "hipnologo/GPT-Neox-20b-QLoRA-FineTune-english_quotes_dataset". - Defines a
BitsAndBytesConfig
object namedbnb_config
with the following configuration:load_in_4bit
set toTrue
bnb_4bit_use_double_quant
set toTrue
bnb_4bit_quant_type
set to "nf4"bnb_4bit_compute_dtype
set totorch.bfloat16
- Initializes an
AutoTokenizer
object namedtokenizer
by loading the tokenizer for the specifiedmodel_id
. - Initializes an
AutoModelForCausalLM
object namedmodel
by loading the pre-trained model for the specifiedmodel_id
and providing thequantization_config
asbnb_config
. The model is loaded on devicecuda:0
. - Defines a variable
text
with the value "Twenty years from now". - Defines a variable
device
with the value "cuda:0", representing the device on which the model will be executed. - Encodes the
text
using thetokenizer
and converts it to a PyTorch tensor, assigning it to theinputs
variable. The tensor is moved to the specifieddevice
. - Generates text using the
model.generate
method by passing theinputs
tensor and setting themax_new_tokens
parameter to 20. The generated output is assigned to theoutputs
variable. - Decodes the
outputs
tensor using thetokenizer
to obtain the generated text without special tokens, and assigns it to thegenerated_text
variable. - Prints the
generated_text
.
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
model_id = "hipnologo/GPT-Neox-20b-QLoRA-FineTune-english_quotes_dataset"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map={"":0})
text = "Twenty years from now"
device = "cuda:0"
inputs = tokenizer(text, return_tensors="pt").to(device)
outputs = model.generate(**inputs, max_new_tokens=20)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)
Framework versions
- PEFT 0.4.0.dev0
Training procedure
- Trainable params: 8650752
- all params: 10597552128
- trainable%: 0.08162971878329976
License
This model is licensed under Apache 2.0. Please see the LICENSE for more information.