hkivancoral's picture
End of training
6206098
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_1x_deit_small_sgd_001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.3170731707317073

hushem_1x_deit_small_sgd_001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2874
  • Accuracy: 0.3171

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 6 1.4789 0.2683
1.5098 2.0 12 1.4475 0.2927
1.5098 3.0 18 1.4244 0.2683
1.4415 4.0 24 1.4086 0.2683
1.4228 5.0 30 1.3943 0.2927
1.4228 6.0 36 1.3837 0.2683
1.3818 7.0 42 1.3755 0.2439
1.3818 8.0 48 1.3687 0.2195
1.3662 9.0 54 1.3625 0.2439
1.3382 10.0 60 1.3567 0.2439
1.3382 11.0 66 1.3518 0.2439
1.3324 12.0 72 1.3466 0.2439
1.3324 13.0 78 1.3420 0.2439
1.3002 14.0 84 1.3382 0.2439
1.2845 15.0 90 1.3339 0.2683
1.2845 16.0 96 1.3305 0.2683
1.2783 17.0 102 1.3271 0.2927
1.2783 18.0 108 1.3237 0.3171
1.2896 19.0 114 1.3207 0.3171
1.2581 20.0 120 1.3176 0.3171
1.2581 21.0 126 1.3151 0.3415
1.2555 22.0 132 1.3123 0.3415
1.2555 23.0 138 1.3099 0.3415
1.2563 24.0 144 1.3076 0.3415
1.2461 25.0 150 1.3050 0.3415
1.2461 26.0 156 1.3029 0.3171
1.2294 27.0 162 1.3009 0.3171
1.2294 28.0 168 1.2991 0.3171
1.2223 29.0 174 1.2975 0.3171
1.2396 30.0 180 1.2961 0.3171
1.2396 31.0 186 1.2948 0.3171
1.2235 32.0 192 1.2934 0.3171
1.2235 33.0 198 1.2923 0.3171
1.2018 34.0 204 1.2911 0.3171
1.2131 35.0 210 1.2902 0.3171
1.2131 36.0 216 1.2895 0.3171
1.2105 37.0 222 1.2888 0.3171
1.2105 38.0 228 1.2883 0.3171
1.1724 39.0 234 1.2879 0.3171
1.2168 40.0 240 1.2876 0.3171
1.2168 41.0 246 1.2875 0.3171
1.1977 42.0 252 1.2874 0.3171
1.1977 43.0 258 1.2874 0.3171
1.1916 44.0 264 1.2874 0.3171
1.21 45.0 270 1.2874 0.3171
1.21 46.0 276 1.2874 0.3171
1.1885 47.0 282 1.2874 0.3171
1.1885 48.0 288 1.2874 0.3171
1.2083 49.0 294 1.2874 0.3171
1.2106 50.0 300 1.2874 0.3171

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1