hkivancoral's picture
End of training
33fd534
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_small_adamax_0001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9024390243902439

hushem_5x_deit_small_adamax_0001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5287
  • Accuracy: 0.9024

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.662 1.0 28 0.4044 0.8537
0.1186 2.0 56 0.4284 0.8049
0.014 3.0 84 0.4888 0.9024
0.0339 4.0 112 0.4623 0.8780
0.0015 5.0 140 0.4160 0.8537
0.0005 6.0 168 0.4980 0.8537
0.0004 7.0 196 0.4944 0.9024
0.0002 8.0 224 0.4584 0.9024
0.0002 9.0 252 0.4587 0.9024
0.0002 10.0 280 0.4614 0.9024
0.0002 11.0 308 0.4658 0.9024
0.0001 12.0 336 0.4673 0.9024
0.0001 13.0 364 0.4741 0.9024
0.0001 14.0 392 0.4749 0.9024
0.0001 15.0 420 0.4791 0.9024
0.0001 16.0 448 0.4817 0.9024
0.0001 17.0 476 0.4846 0.9024
0.0001 18.0 504 0.4881 0.9024
0.0001 19.0 532 0.4907 0.9024
0.0001 20.0 560 0.4932 0.9024
0.0001 21.0 588 0.4952 0.9024
0.0001 22.0 616 0.4973 0.9024
0.0001 23.0 644 0.4995 0.9024
0.0001 24.0 672 0.5025 0.9024
0.0001 25.0 700 0.5047 0.9024
0.0001 26.0 728 0.5054 0.9024
0.0001 27.0 756 0.5078 0.9024
0.0001 28.0 784 0.5090 0.9024
0.0001 29.0 812 0.5119 0.9024
0.0001 30.0 840 0.5133 0.9024
0.0001 31.0 868 0.5148 0.9024
0.0001 32.0 896 0.5157 0.9024
0.0001 33.0 924 0.5187 0.9024
0.0001 34.0 952 0.5193 0.9024
0.0001 35.0 980 0.5205 0.9024
0.0001 36.0 1008 0.5218 0.9024
0.0 37.0 1036 0.5225 0.9024
0.0 38.0 1064 0.5237 0.9024
0.0 39.0 1092 0.5248 0.9024
0.0 40.0 1120 0.5253 0.9024
0.0 41.0 1148 0.5262 0.9024
0.0 42.0 1176 0.5266 0.9024
0.0 43.0 1204 0.5275 0.9024
0.0 44.0 1232 0.5280 0.9024
0.0 45.0 1260 0.5281 0.9024
0.0 46.0 1288 0.5285 0.9024
0.0 47.0 1316 0.5286 0.9024
0.0 48.0 1344 0.5287 0.9024
0.0 49.0 1372 0.5287 0.9024
0.0 50.0 1400 0.5287 0.9024

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0