hkivancoral's picture
End of training
e59c74b
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_small_sgd_00001_fold2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.2

hushem_5x_deit_small_sgd_00001_fold2

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4921
  • Accuracy: 0.2

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5247 1.0 27 1.5122 0.1778
1.5208 2.0 54 1.5113 0.1778
1.5431 3.0 81 1.5104 0.1778
1.5874 4.0 108 1.5095 0.1778
1.5185 5.0 135 1.5086 0.1778
1.5124 6.0 162 1.5078 0.1778
1.4656 7.0 189 1.5070 0.1778
1.5113 8.0 216 1.5062 0.1778
1.5043 9.0 243 1.5054 0.1778
1.505 10.0 270 1.5047 0.1778
1.4599 11.0 297 1.5040 0.1778
1.5036 12.0 324 1.5033 0.1778
1.5237 13.0 351 1.5026 0.1778
1.511 14.0 378 1.5019 0.1778
1.5324 15.0 405 1.5013 0.1778
1.5272 16.0 432 1.5007 0.1778
1.5263 17.0 459 1.5002 0.1778
1.4937 18.0 486 1.4996 0.1778
1.5117 19.0 513 1.4991 0.1778
1.516 20.0 540 1.4985 0.1778
1.5298 21.0 567 1.4981 0.1778
1.5031 22.0 594 1.4976 0.1778
1.496 23.0 621 1.4971 0.1778
1.4984 24.0 648 1.4967 0.2
1.4849 25.0 675 1.4963 0.2
1.5277 26.0 702 1.4959 0.2
1.4813 27.0 729 1.4955 0.2
1.5008 28.0 756 1.4952 0.2
1.5143 29.0 783 1.4948 0.2
1.5063 30.0 810 1.4945 0.2
1.5197 31.0 837 1.4942 0.2
1.4689 32.0 864 1.4940 0.2
1.5261 33.0 891 1.4937 0.2
1.5047 34.0 918 1.4935 0.2
1.4608 35.0 945 1.4933 0.2
1.5134 36.0 972 1.4931 0.2
1.4999 37.0 999 1.4929 0.2
1.4901 38.0 1026 1.4928 0.2
1.4933 39.0 1053 1.4926 0.2
1.5285 40.0 1080 1.4925 0.2
1.5189 41.0 1107 1.4924 0.2
1.5357 42.0 1134 1.4923 0.2
1.5726 43.0 1161 1.4923 0.2
1.4926 44.0 1188 1.4922 0.2
1.4915 45.0 1215 1.4922 0.2
1.4934 46.0 1242 1.4921 0.2
1.5214 47.0 1269 1.4921 0.2
1.5071 48.0 1296 1.4921 0.2
1.5711 49.0 1323 1.4921 0.2
1.4665 50.0 1350 1.4921 0.2

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0