hkivancoral's picture
End of training
bc18fbd
metadata
license: apache-2.0
base_model: facebook/deit-small-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: hushem_5x_deit_small_sgd_00001_fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.24390243902439024

hushem_5x_deit_small_sgd_00001_fold5

This model is a fine-tuned version of facebook/deit-small-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4968
  • Accuracy: 0.2439

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5975 1.0 28 1.5197 0.2195
1.5191 2.0 56 1.5186 0.2195
1.5652 3.0 84 1.5176 0.2195
1.5368 4.0 112 1.5166 0.2195
1.5533 5.0 140 1.5156 0.2195
1.5934 6.0 168 1.5147 0.2195
1.5997 7.0 196 1.5138 0.2195
1.543 8.0 224 1.5129 0.2195
1.5785 9.0 252 1.5120 0.2195
1.5476 10.0 280 1.5112 0.2195
1.5374 11.0 308 1.5104 0.2195
1.5776 12.0 336 1.5096 0.2195
1.552 13.0 364 1.5088 0.2195
1.5084 14.0 392 1.5081 0.2195
1.5475 15.0 420 1.5073 0.2195
1.5527 16.0 448 1.5067 0.2195
1.5461 17.0 476 1.5060 0.2195
1.553 18.0 504 1.5054 0.2195
1.5466 19.0 532 1.5047 0.2195
1.5068 20.0 560 1.5041 0.2195
1.5792 21.0 588 1.5036 0.2195
1.5408 22.0 616 1.5030 0.2195
1.4869 23.0 644 1.5025 0.2195
1.5203 24.0 672 1.5020 0.2439
1.5205 25.0 700 1.5016 0.2439
1.5334 26.0 728 1.5011 0.2439
1.5195 27.0 756 1.5007 0.2439
1.555 28.0 784 1.5003 0.2439
1.5231 29.0 812 1.4999 0.2439
1.5521 30.0 840 1.4996 0.2439
1.5405 31.0 868 1.4992 0.2439
1.5223 32.0 896 1.4989 0.2439
1.533 33.0 924 1.4986 0.2439
1.5569 34.0 952 1.4984 0.2439
1.5415 35.0 980 1.4981 0.2439
1.5242 36.0 1008 1.4979 0.2439
1.5342 37.0 1036 1.4977 0.2439
1.51 38.0 1064 1.4975 0.2439
1.4915 39.0 1092 1.4974 0.2439
1.533 40.0 1120 1.4972 0.2439
1.559 41.0 1148 1.4971 0.2439
1.5496 42.0 1176 1.4970 0.2439
1.5368 43.0 1204 1.4969 0.2439
1.5602 44.0 1232 1.4969 0.2439
1.5291 45.0 1260 1.4968 0.2439
1.5316 46.0 1288 1.4968 0.2439
1.5518 47.0 1316 1.4968 0.2439
1.5141 48.0 1344 1.4968 0.2439
1.515 49.0 1372 1.4968 0.2439
1.544 50.0 1400 1.4968 0.2439

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0