model_stage4 / README.md
huudan123's picture
Add new SentenceTransformer model.
4b51a41 verified
---
base_model: huudan123/model_stage3_2_score
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:96895
- loss:CosineSimilarityLoss
widget:
- source_sentence: 'Gorgich và Pashtoon bị xử tử trong tù. '
sentences:
- Chỉ trích Mubarak của Ai Cập
- NKorea xử tử chú của Kim Jong Un
- 'Phiến quân thân Nga bắn rơi máy bay Malaysia: Ukraine'
- source_sentence: LHQ quan ngại về khả năng khí hóa học của Syria
sentences:
- Nhân viên bệnh viện Texas xét nghiệm dương tính với Ebola
- Mỹ Nga đạt thỏa thuận về khí hóa học của Syria
- Một nảy trên tấm bạt xo.
- source_sentence: Chủ tịch Trung Quốc đến Argentina thăm cấp nhà nước
sentences:
- Ông Hollande đến thăm cấp nhà nước Mỹ
- Bão tuyết tấn công vùng Đông Bắc nước Mỹ, năm người chết, 700.000 người mất điện
- Một con chim lớn đang bay trong không trung.
- source_sentence: Syria triển khai thêm quân bất chấp thỏa thuận hòa bình
sentences:
- Một cậu đang chơi với một.
- Cả phiến quân lực lượng chính phủ đều bị cáo buộc cướp bóc các ngôi làng
vùng nông thôn Liberia bất chấp thỏa thuận hòa bình.
- Một người đàn ông đang thổi sáo.
- source_sentence: Một người đàn ông đang lắp ráp các bộ phận loa.
sentences:
- Một người đàn ông đang đi bộ trên vỉa hè.
- Không phải một câu trả lời thực sự cho câu hỏi của bạn, nhưng lẽ sẽ giúp.
- Một người đàn ông phun nước từ vòi cho một người đàn ông khác.
model-index:
- name: SentenceTransformer based on huudan123/model_stage3_2_score
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts evaluator
type: sts-evaluator
metrics:
- type: pearson_cosine
value: 0.3815738041383691
name: Pearson Cosine
- type: spearman_cosine
value: 0.382323329830821
name: Spearman Cosine
- type: pearson_manhattan
value: 0.4198450446326336
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.4097830682280972
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.4195429740858371
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.40938489178823334
name: Spearman Euclidean
- type: pearson_dot
value: 0.2588766748845407
name: Pearson Dot
- type: spearman_dot
value: 0.26733997459061914
name: Spearman Dot
- type: pearson_max
value: 0.4198450446326336
name: Pearson Max
- type: spearman_max
value: 0.4097830682280972
name: Spearman Max
---
# SentenceTransformer based on huudan123/model_stage3_2_score
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [huudan123/model_stage3_2_score](https://huggingface.co/huudan123/model_stage3_2_score). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [huudan123/model_stage3_2_score](https://huggingface.co/huudan123/model_stage3_2_score) <!-- at revision 670784ce0e1295612bf239e706cfa9751b66ab24 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("huudan123/model_stage4")
# Run inference
sentences = [
'Một người đàn ông đang lắp ráp các bộ phận loa.',
'Một người đàn ông đang đi bộ trên vỉa hè.',
'Một người đàn ông phun nước từ vòi cho một người đàn ông khác.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-evaluator`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| pearson_cosine | 0.3816 |
| spearman_cosine | 0.3823 |
| pearson_manhattan | 0.4198 |
| spearman_manhattan | 0.4098 |
| pearson_euclidean | 0.4195 |
| spearman_euclidean | 0.4094 |
| pearson_dot | 0.2589 |
| spearman_dot | 0.2673 |
| pearson_max | 0.4198 |
| **spearman_max** | **0.4098** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Hyperparameters
#### Non-Default Hyperparameters
- `overwrite_output_dir`: True
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `learning_rate`: 1e-05
- `num_train_epochs`: 30
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `gradient_checkpointing`: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: True
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 1e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 30
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: True
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | loss | sts-evaluator_spearman_max |
|:-------:|:-------:|:-------------:|:---------:|:--------------------------:|
| 0 | 0 | - | - | 0.8441 |
| 0.6605 | 500 | 0.023 | - | - |
| **1.0** | **757** | **-** | **0.013** | **0.7165** |
| 1.3210 | 1000 | 0.0058 | - | - |
| 1.9815 | 1500 | 0.0026 | - | - |
| 2.0 | 1514 | - | 0.0319 | 0.5737 |
| 2.6420 | 2000 | 0.0016 | - | - |
| 3.0 | 2271 | - | 0.0662 | 0.5100 |
| 3.3025 | 2500 | 0.0013 | - | - |
| 3.9630 | 3000 | 0.0011 | - | - |
| 4.0 | 3028 | - | 0.0962 | 0.4147 |
| 4.6235 | 3500 | 0.001 | - | - |
| 5.0 | 3785 | - | 0.0976 | 0.4098 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->