imTak's picture
Update README.md
ac12fcf verified
metadata
library_name: transformers
language:
  - ko
license: mit
base_model: imTak/whisper_large_v3_turbo_Korean2
tags:
  - generated_from_trainer
datasets:
  - imTak/Economy
metrics:
  - wer
model-index:
  - name: Whisper large v3 turbo Korean-Economy
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Economy
          type: imTak/Economy
          args: 'config: ko, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 44.99209128911987

Whisper large v3 turbo Korean-Economy

This model is a fine-tuned version of imTak/whisper_large_v3_ko_ft_ft on the Economy dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7148
  • Wer: 44.9921

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.8263 0.4630 1000 0.8210 49.0241
0.7497 0.9259 2000 0.7351 47.6006
0.4979 1.3889 3000 0.6992 45.6375
0.5197 1.8519 4000 0.6659 44.3410
0.4264 2.3148 5000 0.7168 46.6459
0.3911 2.7778 6000 0.6988 45.0726
0.2565 3.2407 7000 0.7203 44.8000
0.2462 3.7037 8000 0.7148 44.9921

Framework versions

  • Transformers 4.45.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3