qwen_cnn_dailymail / README.md
imdatta0's picture
qwen-final-cnn_dailymail
ca17263
metadata
base_model: Qwen/Qwen-14B
tags:
  - generated_from_trainer
datasets:
  - cnn_dailymail
model-index:
  - name: final_cnn_dailymail
    results: []

final_cnn_dailymail

This model is a fine-tuned version of Qwen/Qwen-14B on the cnn_dailymail dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2127

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 0.01
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.9757 0.02 100 1.9261
1.9258 0.04 200 1.8833
1.8977 0.06 300 1.8657
1.8903 0.08 400 1.8630
1.8858 0.1 500 1.8638
1.89 0.12 600 1.8636
1.873 0.14 700 1.8637
1.8908 0.16 800 1.8637
1.8791 0.18 900 1.8626
1.8851 0.2 1000 1.8634
1.89 0.22 1100 1.8651
1.8889 0.24 1200 1.8681
1.8896 0.26 1300 1.8708
1.8817 0.28 1400 1.8739
1.9003 0.3 1500 1.8791
1.9005 0.32 1600 1.8825
1.9024 0.34 1700 1.8864
1.9204 0.36 1800 1.8929
1.9182 0.38 1900 1.8955
1.9289 0.4 2000 1.9035
1.9348 0.42 2100 1.9157
1.9453 0.44 2200 1.9277
1.9689 0.46 2300 1.9457
1.9829 0.48 2400 1.9596
1.9874 0.5 2500 1.9803
2.0148 0.52 2600 1.9991
2.0391 0.54 2700 2.0249
2.0619 0.56 2800 2.0477
2.0736 0.58 2900 2.0678
2.0957 0.6 3000 2.0825
2.1223 0.62 3100 2.1097
2.1357 0.64 3200 2.1164
2.1759 0.66 3300 2.1524
2.168 0.68 3400 2.1650
2.1842 0.7 3500 2.1637
2.1956 0.72 3600 2.1775
2.2131 0.74 3700 2.1888
2.198 0.76 3800 2.1953
2.2231 0.78 3900 2.1994
2.2292 0.8 4000 2.2080
2.2343 0.82 4100 2.2093
2.2261 0.84 4200 2.2009
2.2104 0.86 4300 2.2015
2.2255 0.88 4400 2.2077
2.2299 0.9 4500 2.2099
2.2253 0.92 4600 2.2100
2.2239 0.94 4700 2.2116
2.2322 0.96 4800 2.2122
2.2457 0.98 4900 2.2127
2.2325 1.0 5000 2.2127

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.1.0
  • Datasets 2.14.7
  • Tokenizers 0.13.3