metadata
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-multilingual-cased
tags:
- generated_from_trainer
datasets:
- conllpp
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-base-multilingual-cased-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conllpp
type: conllpp
config: conllpp
split: validation
args: conllpp
metrics:
- name: Precision
type: precision
value: 0.9282027217268888
- name: Recall
type: recall
value: 0.9339881008593823
- name: F1
type: f1
value: 0.9310864244021841
- name: Accuracy
type: accuracy
value: 0.9838898310040348
distilbert-base-multilingual-cased-finetuned-ner
This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on the conllpp dataset. It achieves the following results on the evaluation set:
- Loss: 0.0632
- Precision: 0.9282
- Recall: 0.9340
- F1: 0.9311
- Accuracy: 0.9839
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.237 | 1.0 | 878 | 0.0732 | 0.9083 | 0.9188 | 0.9135 | 0.9794 |
0.0533 | 2.0 | 1756 | 0.0648 | 0.9265 | 0.9274 | 0.9269 | 0.9827 |
0.0303 | 3.0 | 2634 | 0.0632 | 0.9282 | 0.9340 | 0.9311 | 0.9839 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3