janko's picture
End of training
d74068e verified
metadata
library_name: transformers
license: apache-2.0
base_model: distilbert/distilbert-base-multilingual-cased
tags:
  - generated_from_trainer
datasets:
  - conllpp
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: distilbert-base-multilingual-cased-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conllpp
          type: conllpp
          config: conllpp
          split: validation
          args: conllpp
        metrics:
          - name: Precision
            type: precision
            value: 0.9282027217268888
          - name: Recall
            type: recall
            value: 0.9339881008593823
          - name: F1
            type: f1
            value: 0.9310864244021841
          - name: Accuracy
            type: accuracy
            value: 0.9838898310040348

distilbert-base-multilingual-cased-finetuned-ner

This model is a fine-tuned version of distilbert/distilbert-base-multilingual-cased on the conllpp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0632
  • Precision: 0.9282
  • Recall: 0.9340
  • F1: 0.9311
  • Accuracy: 0.9839

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.237 1.0 878 0.0732 0.9083 0.9188 0.9135 0.9794
0.0533 2.0 1756 0.0648 0.9265 0.9274 0.9269 0.9827
0.0303 3.0 2634 0.0632 0.9282 0.9340 0.9311 0.9839

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3