paul
update model card README.md
7ee9c17
|
raw
history blame
3.93 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: microsoft-resnet-50-cartoon-emotion-detection
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6697247706422018
          - name: Precision
            type: precision
            value: 0.5798801171844885
          - name: Recall
            type: recall
            value: 0.6697247706422018
          - name: F1
            type: f1
            value: 0.6086361803243947

microsoft-resnet-50-cartoon-emotion-detection

This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0059
  • Accuracy: 0.6697
  • Precision: 0.5799
  • Recall: 0.6697
  • F1: 0.6086

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00012
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0.97 8 1.3833 0.2477 0.2054 0.2477 0.2042
1.4276 1.97 16 1.3711 0.3028 0.1982 0.3028 0.1932
1.4046 2.97 24 1.3550 0.3028 0.0917 0.3028 0.1407
1.3817 3.97 32 1.3375 0.3119 0.2852 0.3119 0.1592
1.3562 4.97 40 1.3179 0.3211 0.4337 0.3211 0.1785
1.3562 5.97 48 1.2991 0.3761 0.5442 0.3761 0.2741
1.3624 6.97 56 1.2751 0.4495 0.5593 0.4495 0.3659
1.2914 7.97 64 1.2494 0.4771 0.5442 0.4771 0.4094
1.2518 8.97 72 1.2279 0.5046 0.5525 0.5046 0.4430
1.2085 9.97 80 1.1905 0.5321 0.5134 0.5321 0.4579
1.2085 10.97 88 1.1602 0.5505 0.5151 0.5505 0.4872
1.1865 11.97 96 1.1307 0.5963 0.5969 0.5963 0.5416
1.122 12.97 104 1.1037 0.5872 0.5069 0.5872 0.5206
1.0812 13.97 112 1.0797 0.5688 0.4868 0.5688 0.5068
1.0449 14.97 120 1.0712 0.6239 0.5269 0.6239 0.5641
1.0449 15.97 128 1.0425 0.6239 0.5123 0.6239 0.5517
1.0458 16.97 136 1.0346 0.6239 0.6487 0.6239 0.5782
1.004 17.97 144 1.0264 0.6330 0.5472 0.6330 0.5721
0.9806 18.97 152 1.0041 0.6606 0.6334 0.6606 0.6069
0.97 19.97 160 1.0059 0.6697 0.5799 0.6697 0.6086

Framework versions

  • Transformers 4.24.0.dev0
  • Pytorch 1.11.0+cu102
  • Datasets 2.6.1
  • Tokenizers 0.13.1