paul
update model card README.md
481c7cb
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: resnet-152-fv-finetuned-memess
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.767387944358578
          - name: Precision
            type: precision
            value: 0.7651125602674349
          - name: Recall
            type: recall
            value: 0.767387944358578
          - name: F1
            type: f1
            value: 0.7646848616766787

resnet-152-fv-finetuned-memess

This model is a fine-tuned version of microsoft/resnet-152 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6281
  • Accuracy: 0.7674
  • Precision: 0.7651
  • Recall: 0.7674
  • F1: 0.7647

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00012
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.5902 0.99 20 1.5519 0.4938 0.3491 0.4938 0.3529
1.4694 1.99 40 1.3730 0.4892 0.4095 0.4892 0.3222
1.3129 2.99 60 1.2052 0.5301 0.3504 0.5301 0.4005
1.1831 3.99 80 1.1142 0.5587 0.4077 0.5587 0.4444
1.0581 4.99 100 0.9930 0.6012 0.5680 0.6012 0.5108
0.9464 5.99 120 0.9263 0.6507 0.6200 0.6507 0.6029
0.8581 6.99 140 0.8400 0.6917 0.6645 0.6917 0.6638
0.7739 7.99 160 0.7829 0.7087 0.6918 0.7087 0.6845
0.6762 8.99 180 0.7512 0.7318 0.7206 0.7318 0.7189
0.6162 9.99 200 0.7409 0.7264 0.7244 0.7264 0.7241
0.5546 10.99 220 0.6936 0.7465 0.7429 0.7465 0.7395
0.4633 11.99 240 0.6779 0.7473 0.7393 0.7473 0.7412
0.4373 12.99 260 0.6736 0.7573 0.7492 0.7573 0.7523
0.4074 13.99 280 0.6534 0.7566 0.7516 0.7566 0.7528
0.39 14.99 300 0.6521 0.7651 0.7603 0.7651 0.7608
0.3766 15.99 320 0.6499 0.7682 0.7607 0.7682 0.7630
0.3507 16.99 340 0.6497 0.7697 0.7686 0.7697 0.7686
0.3589 17.99 360 0.6519 0.7535 0.7485 0.7535 0.7502
0.3261 18.99 380 0.6449 0.7589 0.7597 0.7589 0.7585
0.3234 19.99 400 0.6281 0.7674 0.7651 0.7674 0.7647

Framework versions

  • Transformers 4.24.0.dev0
  • Pytorch 1.11.0+cu102
  • Datasets 2.6.1.dev0
  • Tokenizers 0.13.1