jfriduss's picture
Model save
30de96c
metadata
base_model: jjzha/jobbert_knowledge_extraction
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: tok_train_info
    results: []

tok_train_info

This model is a fine-tuned version of jjzha/jobbert_knowledge_extraction on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2616
  • Precision: 0.5755
  • Recall: 0.5980
  • F1: 0.5865
  • Accuracy: 0.9072

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 20 0.4390 0.3790 0.4608 0.4159 0.8845
No log 2.0 40 0.2831 0.5321 0.5686 0.5498 0.9034
No log 3.0 60 0.2616 0.5755 0.5980 0.5865 0.9072

Framework versions

  • Transformers 4.33.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3