metadata
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- image-classification
- vision
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: resnet-50
results: []
resnet-50
This model is a fine-tuned version of microsoft/resnet-50 on the cifar100 dataset. It achieves the following results on the evaluation set:
- Loss: 0.5732
- Accuracy: 0.8286
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 128
- eval_batch_size: 256
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 300
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
4.5562 | 1.0 | 333 | 4.5546 | 0.1308 |
4.4468 | 2.0 | 666 | 4.4367 | 0.145 |
4.3538 | 3.0 | 999 | 4.3131 | 0.1859 |
4.2283 | 4.0 | 1332 | 4.1398 | 0.2269 |
4.0124 | 5.0 | 1665 | 3.9074 | 0.2647 |
3.8102 | 6.0 | 1998 | 3.6060 | 0.3 |
3.5657 | 7.0 | 2331 | 3.3058 | 0.3334 |
3.3654 | 8.0 | 2664 | 3.0348 | 0.3695 |
3.1954 | 9.0 | 2997 | 2.7789 | 0.3996 |
3.0844 | 10.0 | 3330 | 2.5592 | 0.4416 |
2.9031 | 11.0 | 3663 | 2.3489 | 0.4707 |
2.7383 | 12.0 | 3996 | 2.1829 | 0.4907 |
2.6365 | 13.0 | 4329 | 2.0404 | 0.5173 |
2.4545 | 14.0 | 4662 | 1.9062 | 0.5402 |
2.3891 | 15.0 | 4995 | 1.7761 | 0.5673 |
2.2835 | 16.0 | 5328 | 1.6824 | 0.5783 |
2.3137 | 17.0 | 5661 | 1.6064 | 0.5932 |
2.1022 | 18.0 | 5994 | 1.5257 | 0.6081 |
2.0252 | 19.0 | 6327 | 1.4517 | 0.6221 |
2.2526 | 20.0 | 6660 | 1.3901 | 0.6279 |
1.963 | 21.0 | 6993 | 1.3430 | 0.6425 |
1.9656 | 22.0 | 7326 | 1.3013 | 0.6413 |
1.8864 | 23.0 | 7659 | 1.2617 | 0.6524 |
1.887 | 24.0 | 7992 | 1.2376 | 0.6584 |
1.7976 | 25.0 | 8325 | 1.1766 | 0.6717 |
1.7482 | 26.0 | 8658 | 1.1570 | 0.6758 |
1.7816 | 27.0 | 8991 | 1.1237 | 0.6834 |
1.7477 | 28.0 | 9324 | 1.1027 | 0.6878 |
1.7196 | 29.0 | 9657 | 1.0760 | 0.6899 |
1.7635 | 30.0 | 9990 | 1.0600 | 0.6934 |
1.6424 | 31.0 | 10323 | 1.0388 | 0.6975 |
1.6704 | 32.0 | 10656 | 1.0172 | 0.7053 |
1.6393 | 33.0 | 10989 | 1.0008 | 0.7106 |
1.5795 | 34.0 | 11322 | 0.9909 | 0.7126 |
1.6104 | 35.0 | 11655 | 0.9561 | 0.7199 |
1.587 | 36.0 | 11988 | 0.9593 | 0.7168 |
1.6046 | 37.0 | 12321 | 0.9299 | 0.7267 |
1.5859 | 38.0 | 12654 | 0.9168 | 0.7271 |
1.5149 | 39.0 | 12987 | 0.9122 | 0.7301 |
1.6676 | 40.0 | 13320 | 0.8964 | 0.7358 |
1.4889 | 41.0 | 13653 | 0.8964 | 0.7345 |
1.4958 | 42.0 | 13986 | 0.8821 | 0.7374 |
1.4397 | 43.0 | 14319 | 0.8733 | 0.7441 |
1.4745 | 44.0 | 14652 | 0.8683 | 0.7397 |
1.4804 | 45.0 | 14985 | 0.8614 | 0.7429 |
1.4372 | 46.0 | 15318 | 0.8450 | 0.7472 |
1.4181 | 47.0 | 15651 | 0.8381 | 0.7479 |
1.4067 | 48.0 | 15984 | 0.8238 | 0.7533 |
1.4155 | 49.0 | 16317 | 0.8283 | 0.7471 |
1.5512 | 50.0 | 16650 | 0.8113 | 0.7546 |
1.3912 | 51.0 | 16983 | 0.8014 | 0.7582 |
1.4082 | 52.0 | 17316 | 0.8070 | 0.7574 |
1.4463 | 53.0 | 17649 | 0.7986 | 0.7588 |
1.3902 | 54.0 | 17982 | 0.7865 | 0.7629 |
1.3382 | 55.0 | 18315 | 0.7810 | 0.7634 |
1.3448 | 56.0 | 18648 | 0.7727 | 0.7652 |
1.283 | 57.0 | 18981 | 0.7681 | 0.7664 |
1.2979 | 58.0 | 19314 | 0.7637 | 0.7704 |
1.3176 | 59.0 | 19647 | 0.7614 | 0.7712 |
1.4151 | 60.0 | 19980 | 0.7597 | 0.7671 |
1.3055 | 61.0 | 20313 | 0.7513 | 0.7697 |
1.3024 | 62.0 | 20646 | 0.7510 | 0.7728 |
1.3113 | 63.0 | 20979 | 0.7433 | 0.7731 |
1.2962 | 64.0 | 21312 | 0.7500 | 0.77 |
1.28 | 65.0 | 21645 | 0.7307 | 0.7781 |
1.2518 | 66.0 | 21978 | 0.7301 | 0.7773 |
1.2792 | 67.0 | 22311 | 0.7286 | 0.7762 |
1.2137 | 68.0 | 22644 | 0.7210 | 0.7781 |
1.2598 | 69.0 | 22977 | 0.7219 | 0.7784 |
1.4021 | 70.0 | 23310 | 0.7204 | 0.7803 |
1.3074 | 71.0 | 23643 | 0.7066 | 0.7822 |
1.2205 | 72.0 | 23976 | 0.7121 | 0.7808 |
1.2696 | 73.0 | 24309 | 0.7162 | 0.7799 |
1.2083 | 74.0 | 24642 | 0.7031 | 0.786 |
1.2186 | 75.0 | 24975 | 0.6934 | 0.7876 |
1.2252 | 76.0 | 25308 | 0.7062 | 0.7849 |
1.303 | 77.0 | 25641 | 0.7015 | 0.7846 |
1.2131 | 78.0 | 25974 | 0.6964 | 0.7861 |
1.1887 | 79.0 | 26307 | 0.6877 | 0.7867 |
1.6358 | 80.0 | 26640 | 0.6987 | 0.7872 |
1.1976 | 81.0 | 26973 | 0.6891 | 0.7887 |
1.1602 | 82.0 | 27306 | 0.6797 | 0.7894 |
1.2226 | 83.0 | 27639 | 0.6890 | 0.7883 |
1.2658 | 84.0 | 27972 | 0.6824 | 0.7893 |
1.0837 | 85.0 | 28305 | 0.6840 | 0.7902 |
1.112 | 86.0 | 28638 | 0.6754 | 0.7933 |
1.2667 | 87.0 | 28971 | 0.6650 | 0.7964 |
1.1847 | 88.0 | 29304 | 0.6716 | 0.7926 |
1.1431 | 89.0 | 29637 | 0.6763 | 0.7934 |
1.4006 | 90.0 | 29970 | 0.6723 | 0.7945 |
1.1093 | 91.0 | 30303 | 0.6668 | 0.7945 |
1.1468 | 92.0 | 30636 | 0.6612 | 0.7958 |
1.1783 | 93.0 | 30969 | 0.6685 | 0.795 |
1.1586 | 94.0 | 31302 | 0.6570 | 0.7964 |
1.1325 | 95.0 | 31635 | 0.6605 | 0.7946 |
1.1619 | 96.0 | 31968 | 0.6538 | 0.7963 |
1.1547 | 97.0 | 32301 | 0.6510 | 0.7992 |
1.198 | 98.0 | 32634 | 0.6495 | 0.8014 |
1.0816 | 99.0 | 32967 | 0.6501 | 0.8008 |
1.1854 | 100.0 | 33300 | 0.6525 | 0.8007 |
1.1589 | 101.0 | 33633 | 0.6484 | 0.8004 |
1.1621 | 102.0 | 33966 | 0.6456 | 0.8028 |
1.1066 | 103.0 | 34299 | 0.6549 | 0.8006 |
1.1108 | 104.0 | 34632 | 0.6475 | 0.8016 |
1.1329 | 105.0 | 34965 | 0.6420 | 0.802 |
1.084 | 106.0 | 35298 | 0.6432 | 0.8011 |
1.0535 | 107.0 | 35631 | 0.6415 | 0.8026 |
1.0708 | 108.0 | 35964 | 0.6415 | 0.8006 |
1.0657 | 109.0 | 36297 | 0.6398 | 0.8033 |
1.1575 | 110.0 | 36630 | 0.6462 | 0.802 |
1.0678 | 111.0 | 36963 | 0.6390 | 0.8028 |
1.1565 | 112.0 | 37296 | 0.6506 | 0.8012 |
1.0379 | 113.0 | 37629 | 0.6424 | 0.8023 |
1.0942 | 114.0 | 37962 | 0.6378 | 0.8032 |
1.0977 | 115.0 | 38295 | 0.6248 | 0.8069 |
1.1348 | 116.0 | 38628 | 0.6264 | 0.8082 |
1.0204 | 117.0 | 38961 | 0.6255 | 0.808 |
1.0201 | 118.0 | 39294 | 0.6240 | 0.8088 |
1.1539 | 119.0 | 39627 | 0.6252 | 0.8064 |
1.3025 | 120.0 | 39960 | 0.6305 | 0.805 |
1.0533 | 121.0 | 40293 | 0.6284 | 0.8065 |
0.9733 | 122.0 | 40626 | 0.6237 | 0.8075 |
1.0752 | 123.0 | 40959 | 0.6218 | 0.8098 |
1.1421 | 124.0 | 41292 | 0.6187 | 0.807 |
0.9842 | 125.0 | 41625 | 0.6294 | 0.8078 |
1.06 | 126.0 | 41958 | 0.6174 | 0.8094 |
1.1292 | 127.0 | 42291 | 0.6206 | 0.8084 |
1.0878 | 128.0 | 42624 | 0.6144 | 0.8103 |
1.0766 | 129.0 | 42957 | 0.6126 | 0.8104 |
1.2749 | 130.0 | 43290 | 0.6123 | 0.8106 |
1.1147 | 131.0 | 43623 | 0.6128 | 0.8105 |
1.0357 | 132.0 | 43956 | 0.6060 | 0.8138 |
1.0424 | 133.0 | 44289 | 0.6062 | 0.8146 |
1.0532 | 134.0 | 44622 | 0.6124 | 0.8121 |
1.0163 | 135.0 | 44955 | 0.6136 | 0.8123 |
1.0789 | 136.0 | 45288 | 0.6144 | 0.8122 |
0.9845 | 137.0 | 45621 | 0.6118 | 0.8114 |
1.0238 | 138.0 | 45954 | 0.6074 | 0.8123 |
1.0287 | 139.0 | 46287 | 0.6099 | 0.8135 |
1.1634 | 140.0 | 46620 | 0.6043 | 0.8151 |
1.0906 | 141.0 | 46953 | 0.6071 | 0.8134 |
1.0672 | 142.0 | 47286 | 0.6001 | 0.8168 |
1.0423 | 143.0 | 47619 | 0.6077 | 0.8144 |
1.1038 | 144.0 | 47952 | 0.6028 | 0.8155 |
0.9353 | 145.0 | 48285 | 0.6065 | 0.8117 |
1.0238 | 146.0 | 48618 | 0.5979 | 0.8151 |
1.0313 | 147.0 | 48951 | 0.6022 | 0.8149 |
1.0897 | 148.0 | 49284 | 0.6008 | 0.8179 |
0.9711 | 149.0 | 49617 | 0.6040 | 0.8148 |
1.2002 | 150.0 | 49950 | 0.6018 | 0.8162 |
1.0154 | 151.0 | 50283 | 0.6042 | 0.816 |
1.0561 | 152.0 | 50616 | 0.6042 | 0.8145 |
0.9962 | 153.0 | 50949 | 0.6011 | 0.8158 |
1.0812 | 154.0 | 51282 | 0.5961 | 0.8165 |
1.0307 | 155.0 | 51615 | 0.6054 | 0.8152 |
0.991 | 156.0 | 51948 | 0.6019 | 0.814 |
1.0396 | 157.0 | 52281 | 0.6014 | 0.815 |
1.0524 | 158.0 | 52614 | 0.6015 | 0.8164 |
0.9873 | 159.0 | 52947 | 0.6001 | 0.8152 |
1.0471 | 160.0 | 53280 | 0.5988 | 0.8165 |
0.9178 | 161.0 | 53613 | 0.5936 | 0.8185 |
0.9738 | 162.0 | 53946 | 0.5894 | 0.8205 |
1.0487 | 163.0 | 54279 | 0.5969 | 0.8161 |
1.0434 | 164.0 | 54612 | 0.5946 | 0.8173 |
0.9916 | 165.0 | 54945 | 0.5960 | 0.8194 |
0.9596 | 166.0 | 55278 | 0.5890 | 0.8194 |
1.0006 | 167.0 | 55611 | 0.5910 | 0.8176 |
0.99 | 168.0 | 55944 | 0.5901 | 0.8195 |
1.0125 | 169.0 | 56277 | 0.5949 | 0.8185 |
1.0714 | 170.0 | 56610 | 0.5907 | 0.8193 |
1.011 | 171.0 | 56943 | 0.5952 | 0.8201 |
0.9099 | 172.0 | 57276 | 0.5905 | 0.8169 |
0.9879 | 173.0 | 57609 | 0.5955 | 0.8201 |
1.0559 | 174.0 | 57942 | 0.5892 | 0.8197 |
1.0002 | 175.0 | 58275 | 0.5914 | 0.8201 |
0.9461 | 176.0 | 58608 | 0.5866 | 0.8214 |
0.9624 | 177.0 | 58941 | 0.5870 | 0.8228 |
0.9952 | 178.0 | 59274 | 0.5920 | 0.8199 |
1.0415 | 179.0 | 59607 | 0.5926 | 0.8193 |
1.0416 | 180.0 | 59940 | 0.5901 | 0.8206 |
0.9467 | 181.0 | 60273 | 0.5911 | 0.8216 |
0.9783 | 182.0 | 60606 | 0.5832 | 0.8206 |
0.9147 | 183.0 | 60939 | 0.5881 | 0.8223 |
0.9848 | 184.0 | 61272 | 0.5898 | 0.8218 |
0.9454 | 185.0 | 61605 | 0.5916 | 0.8201 |
1.0287 | 186.0 | 61938 | 0.5880 | 0.8222 |
0.9336 | 187.0 | 62271 | 0.5856 | 0.8221 |
1.0148 | 188.0 | 62604 | 0.5903 | 0.8205 |
0.9184 | 189.0 | 62937 | 0.5811 | 0.8217 |
1.2194 | 190.0 | 63270 | 0.5852 | 0.8214 |
0.9717 | 191.0 | 63603 | 0.5873 | 0.8204 |
1.0003 | 192.0 | 63936 | 0.5836 | 0.8239 |
0.9657 | 193.0 | 64269 | 0.5806 | 0.8243 |
0.9865 | 194.0 | 64602 | 0.5839 | 0.8225 |
0.9642 | 195.0 | 64935 | 0.5850 | 0.8219 |
0.9839 | 196.0 | 65268 | 0.5815 | 0.8246 |
0.999 | 197.0 | 65601 | 0.5787 | 0.8252 |
0.9957 | 198.0 | 65934 | 0.5854 | 0.821 |
0.9442 | 199.0 | 66267 | 0.5894 | 0.8189 |
1.1311 | 200.0 | 66600 | 0.5785 | 0.8235 |
0.9542 | 201.0 | 66933 | 0.5783 | 0.824 |
0.9352 | 202.0 | 67266 | 0.5811 | 0.8231 |
0.9764 | 203.0 | 67599 | 0.5898 | 0.8198 |
0.9557 | 204.0 | 67932 | 0.5757 | 0.8239 |
0.9073 | 205.0 | 68265 | 0.5838 | 0.8227 |
0.9087 | 206.0 | 68598 | 0.5784 | 0.8234 |
0.9194 | 207.0 | 68931 | 0.5789 | 0.8212 |
0.9406 | 208.0 | 69264 | 0.5724 | 0.826 |
0.8866 | 209.0 | 69597 | 0.5773 | 0.8247 |
1.0926 | 210.0 | 69930 | 0.5830 | 0.8232 |
0.9185 | 211.0 | 70263 | 0.5780 | 0.8246 |
0.9636 | 212.0 | 70596 | 0.5779 | 0.8252 |
0.9503 | 213.0 | 70929 | 0.5781 | 0.8242 |
0.9006 | 214.0 | 71262 | 0.5856 | 0.8237 |
0.9294 | 215.0 | 71595 | 0.5737 | 0.8244 |
1.0017 | 216.0 | 71928 | 0.5802 | 0.8245 |
0.9228 | 217.0 | 72261 | 0.5796 | 0.8243 |
0.9644 | 218.0 | 72594 | 0.5859 | 0.8219 |
0.8991 | 219.0 | 72927 | 0.5795 | 0.8235 |
1.1149 | 220.0 | 73260 | 0.5778 | 0.8253 |
0.9295 | 221.0 | 73593 | 0.5785 | 0.8251 |
0.9376 | 222.0 | 73926 | 0.5770 | 0.8255 |
0.8995 | 223.0 | 74259 | 0.5791 | 0.8251 |
0.8994 | 224.0 | 74592 | 0.5716 | 0.8266 |
0.908 | 225.0 | 74925 | 0.5742 | 0.825 |
0.9579 | 226.0 | 75258 | 0.5762 | 0.8234 |
0.9263 | 227.0 | 75591 | 0.5745 | 0.8247 |
0.9343 | 228.0 | 75924 | 0.5736 | 0.8273 |
0.8955 | 229.0 | 76257 | 0.5760 | 0.8248 |
1.063 | 230.0 | 76590 | 0.5766 | 0.8259 |
0.9331 | 231.0 | 76923 | 0.5766 | 0.826 |
0.9409 | 232.0 | 77256 | 0.5826 | 0.8242 |
0.9361 | 233.0 | 77589 | 0.5717 | 0.8279 |
0.922 | 234.0 | 77922 | 0.5722 | 0.8262 |
0.9189 | 235.0 | 78255 | 0.5670 | 0.8278 |
0.835 | 236.0 | 78588 | 0.5674 | 0.8274 |
1.0082 | 237.0 | 78921 | 0.5738 | 0.8256 |
0.9356 | 238.0 | 79254 | 0.5701 | 0.8277 |
0.888 | 239.0 | 79587 | 0.5701 | 0.8267 |
1.2103 | 240.0 | 79920 | 0.5770 | 0.8237 |
0.9076 | 241.0 | 80253 | 0.5892 | 0.8223 |
0.8956 | 242.0 | 80586 | 0.5717 | 0.8264 |
0.8968 | 243.0 | 80919 | 0.5747 | 0.8238 |
0.9055 | 244.0 | 81252 | 0.5746 | 0.8246 |
0.8601 | 245.0 | 81585 | 0.5729 | 0.8269 |
0.9811 | 246.0 | 81918 | 0.5691 | 0.8257 |
0.9001 | 247.0 | 82251 | 0.5832 | 0.8247 |
0.9668 | 248.0 | 82584 | 0.5769 | 0.8268 |
0.9281 | 249.0 | 82917 | 0.5740 | 0.8257 |
0.9167 | 250.0 | 83250 | 0.5753 | 0.8265 |
1.0039 | 251.0 | 83583 | 0.5730 | 0.8273 |
0.9624 | 252.0 | 83916 | 0.5667 | 0.8291 |
0.8988 | 253.0 | 84249 | 0.5751 | 0.8255 |
1.0041 | 254.0 | 84582 | 0.5718 | 0.8267 |
0.8924 | 255.0 | 84915 | 0.5741 | 0.8253 |
0.9587 | 256.0 | 85248 | 0.5665 | 0.8277 |
0.959 | 257.0 | 85581 | 0.5679 | 0.8292 |
0.8092 | 258.0 | 85914 | 0.5719 | 0.8281 |
0.9023 | 259.0 | 86247 | 0.5692 | 0.8282 |
1.0531 | 260.0 | 86580 | 0.5707 | 0.8271 |
0.9112 | 261.0 | 86913 | 0.5704 | 0.8259 |
0.8781 | 262.0 | 87246 | 0.5741 | 0.826 |
0.8708 | 263.0 | 87579 | 0.5654 | 0.829 |
0.8706 | 264.0 | 87912 | 0.5743 | 0.8259 |
0.8743 | 265.0 | 88245 | 0.5671 | 0.8283 |
0.9297 | 266.0 | 88578 | 0.5726 | 0.8294 |
0.9017 | 267.0 | 88911 | 0.5752 | 0.8282 |
0.9106 | 268.0 | 89244 | 0.5732 | 0.8268 |
0.8829 | 269.0 | 89577 | 0.5750 | 0.827 |
1.1097 | 270.0 | 89910 | 0.5733 | 0.8277 |
0.9004 | 271.0 | 90243 | 0.5688 | 0.8291 |
0.8734 | 272.0 | 90576 | 0.5707 | 0.8275 |
0.8877 | 273.0 | 90909 | 0.5711 | 0.8265 |
0.9416 | 274.0 | 91242 | 0.5672 | 0.8273 |
0.9037 | 275.0 | 91575 | 0.5689 | 0.8284 |
0.8345 | 276.0 | 91908 | 0.5695 | 0.8299 |
0.8627 | 277.0 | 92241 | 0.5740 | 0.8277 |
0.8964 | 278.0 | 92574 | 0.5756 | 0.8262 |
0.8793 | 279.0 | 92907 | 0.5728 | 0.8268 |
1.0857 | 280.0 | 93240 | 0.5671 | 0.8306 |
0.8668 | 281.0 | 93573 | 0.5685 | 0.8305 |
0.9051 | 282.0 | 93906 | 0.5751 | 0.8299 |
0.9183 | 283.0 | 94239 | 0.5746 | 0.8267 |
0.9507 | 284.0 | 94572 | 0.5699 | 0.8262 |
0.8783 | 285.0 | 94905 | 0.5745 | 0.8289 |
0.8942 | 286.0 | 95238 | 0.5745 | 0.8262 |
0.8369 | 287.0 | 95571 | 0.5688 | 0.8288 |
0.9278 | 288.0 | 95904 | 0.5660 | 0.8287 |
0.9285 | 289.0 | 96237 | 0.5707 | 0.8285 |
0.9858 | 290.0 | 96570 | 0.5668 | 0.829 |
0.8783 | 291.0 | 96903 | 0.5781 | 0.8261 |
0.9269 | 292.0 | 97236 | 0.5681 | 0.8277 |
0.9153 | 293.0 | 97569 | 0.5691 | 0.8271 |
0.8814 | 294.0 | 97902 | 0.5692 | 0.8273 |
0.915 | 295.0 | 98235 | 0.5755 | 0.8269 |
0.9032 | 296.0 | 98568 | 0.5806 | 0.8228 |
0.9006 | 297.0 | 98901 | 0.5719 | 0.8273 |
0.8629 | 298.0 | 99234 | 0.5732 | 0.8262 |
0.887 | 299.0 | 99567 | 0.5658 | 0.828 |
1.0707 | 300.0 | 99900 | 0.5732 | 0.8286 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.2.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2