You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Deadlock Players Detector

Supported Labels

['deny', 'enemy', 'hit', 'minions']

ALL my models YOLO11, YOLOv10 & YOLOv9

How to use

from ultralytics import YOLO

# Load a pretrained YOLO model
model = YOLO(r'weights\yolo11l_deadlock.pt')

# Run inference on 'image.png' with arguments
model.predict(
    'image.png',
    save=True,
    device=0
    )

Confusion matrix normalized

confusion_matrix_normalized.png

Labels

labels.jpg

Results

results.png

Predict

val_batch1_labels.jpg

YOLO11l summary (fused): 464 layers, 25,282,396 parameters, 0 gradients, 86.6 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 8/8 [00:03<00:00,  2.37it/s]
                   all        551        661      0.874      0.798      0.856      0.486
                  deny         13         14      0.748      0.857      0.819       0.48
                 enemy        197        228      0.942      0.785      0.883      0.508
                   hit         40         53      0.861      0.704      0.787      0.409
               minions        222        366      0.945      0.847      0.933      0.546

Others models Counter Strike 2 YOLOv10m Object Detection

https://huggingface.co/jparedesDS/valorant-yolov10b

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for jparedesDS/deadlock-yolo11l

Unable to build the model tree, the base model loops to the model itself. Learn more.