mobilevit-x-small / README.md
kedimestan's picture
Model save
ee96229 verified
metadata
library_name: transformers
license: other
base_model: apple/mobilevit-x-small
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: mobilevit-x-small
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.995850622406639

mobilevit-x-small

This model is a fine-tuned version of apple/mobilevit-x-small on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0196
  • Accuracy: 0.9959

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6911 1.0 34 0.6932 0.5083
0.6584 2.0 68 0.6287 0.7510
0.5388 3.0 102 0.4852 0.8734
0.3891 4.0 136 0.3065 0.9357
0.2915 5.0 170 0.2005 0.9647
0.2319 6.0 204 0.1498 0.9689
0.2038 7.0 238 0.1228 0.9710
0.1641 8.0 272 0.0892 0.9855
0.1525 9.0 306 0.0778 0.9834
0.1584 10.0 340 0.0565 0.9896
0.1194 11.0 374 0.0491 0.9917
0.1222 12.0 408 0.0436 0.9896
0.1229 13.0 442 0.0360 0.9979
0.1334 14.0 476 0.0326 0.9959
0.122 15.0 510 0.0425 0.9896
0.096 16.0 544 0.0315 0.9959
0.0989 17.0 578 0.0303 0.9938
0.1085 18.0 612 0.0262 0.9959
0.0957 19.0 646 0.0232 0.9959
0.1129 20.0 680 0.0266 0.9959
0.0843 21.0 714 0.0234 0.9959
0.0868 22.0 748 0.0217 0.9959
0.0867 23.0 782 0.0233 0.9959
0.0947 24.0 816 0.0204 0.9959
0.0786 25.0 850 0.0199 0.9959
0.1009 26.0 884 0.0212 0.9959
0.0785 27.0 918 0.0204 0.9959
0.0811 28.0 952 0.0180 0.9959
0.0883 29.0 986 0.0193 0.9959
0.0988 30.0 1020 0.0196 0.9959

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1