|
--- |
|
library_name: transformers |
|
license: other |
|
base_model: apple/mobilevit-x-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: mobilevit-x-small |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.995850622406639 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mobilevit-x-small |
|
|
|
This model is a fine-tuned version of [apple/mobilevit-x-small](https://huggingface.co/apple/mobilevit-x-small) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0196 |
|
- Accuracy: 0.9959 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 30 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.6911 | 1.0 | 34 | 0.6932 | 0.5083 | |
|
| 0.6584 | 2.0 | 68 | 0.6287 | 0.7510 | |
|
| 0.5388 | 3.0 | 102 | 0.4852 | 0.8734 | |
|
| 0.3891 | 4.0 | 136 | 0.3065 | 0.9357 | |
|
| 0.2915 | 5.0 | 170 | 0.2005 | 0.9647 | |
|
| 0.2319 | 6.0 | 204 | 0.1498 | 0.9689 | |
|
| 0.2038 | 7.0 | 238 | 0.1228 | 0.9710 | |
|
| 0.1641 | 8.0 | 272 | 0.0892 | 0.9855 | |
|
| 0.1525 | 9.0 | 306 | 0.0778 | 0.9834 | |
|
| 0.1584 | 10.0 | 340 | 0.0565 | 0.9896 | |
|
| 0.1194 | 11.0 | 374 | 0.0491 | 0.9917 | |
|
| 0.1222 | 12.0 | 408 | 0.0436 | 0.9896 | |
|
| 0.1229 | 13.0 | 442 | 0.0360 | 0.9979 | |
|
| 0.1334 | 14.0 | 476 | 0.0326 | 0.9959 | |
|
| 0.122 | 15.0 | 510 | 0.0425 | 0.9896 | |
|
| 0.096 | 16.0 | 544 | 0.0315 | 0.9959 | |
|
| 0.0989 | 17.0 | 578 | 0.0303 | 0.9938 | |
|
| 0.1085 | 18.0 | 612 | 0.0262 | 0.9959 | |
|
| 0.0957 | 19.0 | 646 | 0.0232 | 0.9959 | |
|
| 0.1129 | 20.0 | 680 | 0.0266 | 0.9959 | |
|
| 0.0843 | 21.0 | 714 | 0.0234 | 0.9959 | |
|
| 0.0868 | 22.0 | 748 | 0.0217 | 0.9959 | |
|
| 0.0867 | 23.0 | 782 | 0.0233 | 0.9959 | |
|
| 0.0947 | 24.0 | 816 | 0.0204 | 0.9959 | |
|
| 0.0786 | 25.0 | 850 | 0.0199 | 0.9959 | |
|
| 0.1009 | 26.0 | 884 | 0.0212 | 0.9959 | |
|
| 0.0785 | 27.0 | 918 | 0.0204 | 0.9959 | |
|
| 0.0811 | 28.0 | 952 | 0.0180 | 0.9959 | |
|
| 0.0883 | 29.0 | 986 | 0.0193 | 0.9959 | |
|
| 0.0988 | 30.0 | 1020 | 0.0196 | 0.9959 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.19.1 |
|
|