|
|
|
--- |
|
language: |
|
- "lb" |
|
license: "mit" |
|
tags: |
|
- "luxembourgish" |
|
- "lëtzebuergesch" |
|
- "text generation" |
|
model-index: |
|
- name: "LuxGPT2" |
|
results: |
|
- task: |
|
type: "text-generation" |
|
name: "Text Generation" |
|
dataset: |
|
type: "LuxembourgishTestDataset" |
|
name: "Luxembourgish Test Dataset" |
|
metrics: |
|
- type: "accuracy" |
|
value: "0.33" |
|
- name: "LuxGPT2" |
|
results: |
|
- task: |
|
type: "text-generation" |
|
name: "Text Generation" |
|
dataset: |
|
type: "LuxembourgishTestDataset" |
|
name: "Luxembourgish Test Dataset" |
|
metrics: |
|
- type: "perplexity" |
|
value: "46.69" |
|
--- |
|
## LuxGPT-2 |
|
|
|
GPT-2 model for Text Generation in luxembourgish language, trained on 667 MB of text data, consisting of RTL.lu news articles, comments, parlament speeches, the luxembourgish Wikipedia, Newscrawl, Webcrawl and subtitles. |
|
The training took place on a 32 GB Nvidia Tesla V100 |
|
- with an initial learning rate of 5e-5 |
|
- with Batch size 4 |
|
- for 109 hours |
|
- for 30 epochs |
|
- using the transformers library |
|
<br/> |
|
more detailed training information can be found in the "trainer_state.json". |
|
|
|
## Usage |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("laurabernardy/LuxGPT2") |
|
|
|
model = AutoModelForCausalLM.from_pretrained("laurabernardy/LuxGPT2") |
|
``` |
|
|
|
## Limitations and Biases |
|
|
|
See the [GPT2 model card](https://huggingface.co/gpt2) for considerations on limitations and bias. See the [GPT2 documentation](https://huggingface.co/transformers/model_doc/gpt2.html) for details on GPT2. |
|
|