xiaobu-embedding / README.md
3v324v23's picture
first commit
8ce1aac
metadata
tags:
  - mteb
model-index:
  - name: xiaobu-embedding
    results:
      - task:
          type: STS
        dataset:
          type: C-MTEB/AFQMC
          name: MTEB AFQMC
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 49.37874132528482
          - type: cos_sim_spearman
            value: 54.84722470052176
          - type: euclidean_pearson
            value: 53.0495882931575
          - type: euclidean_spearman
            value: 54.847727301700665
          - type: manhattan_pearson
            value: 53.0632140838278
          - type: manhattan_spearman
            value: 54.8744258024692
      - task:
          type: STS
        dataset:
          type: C-MTEB/ATEC
          name: MTEB ATEC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 48.15992903013723
          - type: cos_sim_spearman
            value: 55.13198035464577
          - type: euclidean_pearson
            value: 55.435876753245715
          - type: euclidean_spearman
            value: 55.13215936702871
          - type: manhattan_pearson
            value: 55.41429518223402
          - type: manhattan_spearman
            value: 55.13363087679285
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 46.722
          - type: f1
            value: 45.039340641893205
      - task:
          type: STS
        dataset:
          type: C-MTEB/BQ
          name: MTEB BQ
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 63.517830355554224
          - type: cos_sim_spearman
            value: 65.57007801018649
          - type: euclidean_pearson
            value: 64.05153340906585
          - type: euclidean_spearman
            value: 65.5696865661119
          - type: manhattan_pearson
            value: 63.95710619755406
          - type: manhattan_spearman
            value: 65.48565785379489
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringP2P
          name: MTEB CLSClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 43.24046498507819
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringS2S
          name: MTEB CLSClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 41.22618199372116
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv1-reranking
          name: MTEB CMedQAv1
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 87.12213224673621
          - type: mrr
            value: 89.57150793650794
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv2-reranking
          name: MTEB CMedQAv2
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 87.57290061886421
          - type: mrr
            value: 90.19202380952382
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CmedqaRetrieval
          name: MTEB CmedqaRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 25.22
          - type: map_at_10
            value: 37.604
          - type: map_at_100
            value: 39.501
          - type: map_at_1000
            value: 39.614
          - type: map_at_3
            value: 33.378
          - type: map_at_5
            value: 35.774
          - type: mrr_at_1
            value: 38.385000000000005
          - type: mrr_at_10
            value: 46.487
          - type: mrr_at_100
            value: 47.504999999999995
          - type: mrr_at_1000
            value: 47.548
          - type: mrr_at_3
            value: 43.885999999999996
          - type: mrr_at_5
            value: 45.373000000000005
          - type: ndcg_at_1
            value: 38.385000000000005
          - type: ndcg_at_10
            value: 44.224999999999994
          - type: ndcg_at_100
            value: 51.637
          - type: ndcg_at_1000
            value: 53.55799999999999
          - type: ndcg_at_3
            value: 38.845
          - type: ndcg_at_5
            value: 41.163
          - type: precision_at_1
            value: 38.385000000000005
          - type: precision_at_10
            value: 9.812
          - type: precision_at_100
            value: 1.58
          - type: precision_at_1000
            value: 0.183
          - type: precision_at_3
            value: 21.88
          - type: precision_at_5
            value: 15.974
          - type: recall_at_1
            value: 25.22
          - type: recall_at_10
            value: 54.897
          - type: recall_at_100
            value: 85.469
          - type: recall_at_1000
            value: 98.18599999999999
          - type: recall_at_3
            value: 38.815
          - type: recall_at_5
            value: 45.885
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/CMNLI
          name: MTEB Cmnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 83.22309079975948
          - type: cos_sim_ap
            value: 89.94833400328307
          - type: cos_sim_f1
            value: 84.39319055464031
          - type: cos_sim_precision
            value: 79.5774647887324
          - type: cos_sim_recall
            value: 89.82931961655366
          - type: dot_accuracy
            value: 83.22309079975948
          - type: dot_ap
            value: 89.95618559578415
          - type: dot_f1
            value: 84.41173239591345
          - type: dot_precision
            value: 79.61044343141317
          - type: dot_recall
            value: 89.82931961655366
          - type: euclidean_accuracy
            value: 83.23511725796753
          - type: euclidean_ap
            value: 89.94836342787318
          - type: euclidean_f1
            value: 84.40550133096718
          - type: euclidean_precision
            value: 80.29120067524794
          - type: euclidean_recall
            value: 88.9642272620996
          - type: manhattan_accuracy
            value: 83.23511725796753
          - type: manhattan_ap
            value: 89.9450103956978
          - type: manhattan_f1
            value: 84.44444444444444
          - type: manhattan_precision
            value: 80.09647651006712
          - type: manhattan_recall
            value: 89.29155950432546
          - type: max_accuracy
            value: 83.23511725796753
          - type: max_ap
            value: 89.95618559578415
          - type: max_f1
            value: 84.44444444444444
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CovidRetrieval
          name: MTEB CovidRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 76.87
          - type: map_at_10
            value: 84.502
          - type: map_at_100
            value: 84.615
          - type: map_at_1000
            value: 84.617
          - type: map_at_3
            value: 83.127
          - type: map_at_5
            value: 83.99600000000001
          - type: mrr_at_1
            value: 77.02799999999999
          - type: mrr_at_10
            value: 84.487
          - type: mrr_at_100
            value: 84.59299999999999
          - type: mrr_at_1000
            value: 84.59400000000001
          - type: mrr_at_3
            value: 83.193
          - type: mrr_at_5
            value: 83.994
          - type: ndcg_at_1
            value: 77.134
          - type: ndcg_at_10
            value: 87.68599999999999
          - type: ndcg_at_100
            value: 88.17099999999999
          - type: ndcg_at_1000
            value: 88.21
          - type: ndcg_at_3
            value: 84.993
          - type: ndcg_at_5
            value: 86.519
          - type: precision_at_1
            value: 77.134
          - type: precision_at_10
            value: 9.841999999999999
          - type: precision_at_100
            value: 1.006
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 30.313000000000002
          - type: precision_at_5
            value: 18.945999999999998
          - type: recall_at_1
            value: 76.87
          - type: recall_at_10
            value: 97.418
          - type: recall_at_100
            value: 99.579
          - type: recall_at_1000
            value: 99.895
          - type: recall_at_3
            value: 90.227
          - type: recall_at_5
            value: 93.888
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/DuRetrieval
          name: MTEB DuRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 25.941
          - type: map_at_10
            value: 78.793
          - type: map_at_100
            value: 81.57799999999999
          - type: map_at_1000
            value: 81.626
          - type: map_at_3
            value: 54.749
          - type: map_at_5
            value: 69.16
          - type: mrr_at_1
            value: 90.45
          - type: mrr_at_10
            value: 93.406
          - type: mrr_at_100
            value: 93.453
          - type: mrr_at_1000
            value: 93.45700000000001
          - type: mrr_at_3
            value: 93.10000000000001
          - type: mrr_at_5
            value: 93.27499999999999
          - type: ndcg_at_1
            value: 90.45
          - type: ndcg_at_10
            value: 86.44500000000001
          - type: ndcg_at_100
            value: 89.28399999999999
          - type: ndcg_at_1000
            value: 89.739
          - type: ndcg_at_3
            value: 85.62100000000001
          - type: ndcg_at_5
            value: 84.441
          - type: precision_at_1
            value: 90.45
          - type: precision_at_10
            value: 41.19
          - type: precision_at_100
            value: 4.761
          - type: precision_at_1000
            value: 0.48700000000000004
          - type: precision_at_3
            value: 76.583
          - type: precision_at_5
            value: 64.68
          - type: recall_at_1
            value: 25.941
          - type: recall_at_10
            value: 87.443
          - type: recall_at_100
            value: 96.54
          - type: recall_at_1000
            value: 98.906
          - type: recall_at_3
            value: 56.947
          - type: recall_at_5
            value: 73.714
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/EcomRetrieval
          name: MTEB EcomRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 52.900000000000006
          - type: map_at_10
            value: 63.144
          - type: map_at_100
            value: 63.634
          - type: map_at_1000
            value: 63.644999999999996
          - type: map_at_3
            value: 60.817
          - type: map_at_5
            value: 62.202
          - type: mrr_at_1
            value: 52.900000000000006
          - type: mrr_at_10
            value: 63.144
          - type: mrr_at_100
            value: 63.634
          - type: mrr_at_1000
            value: 63.644999999999996
          - type: mrr_at_3
            value: 60.817
          - type: mrr_at_5
            value: 62.202
          - type: ndcg_at_1
            value: 52.900000000000006
          - type: ndcg_at_10
            value: 68.042
          - type: ndcg_at_100
            value: 70.417
          - type: ndcg_at_1000
            value: 70.722
          - type: ndcg_at_3
            value: 63.287000000000006
          - type: ndcg_at_5
            value: 65.77
          - type: precision_at_1
            value: 52.900000000000006
          - type: precision_at_10
            value: 8.34
          - type: precision_at_100
            value: 0.9450000000000001
          - type: precision_at_1000
            value: 0.097
          - type: precision_at_3
            value: 23.467
          - type: precision_at_5
            value: 15.28
          - type: recall_at_1
            value: 52.900000000000006
          - type: recall_at_10
            value: 83.39999999999999
          - type: recall_at_100
            value: 94.5
          - type: recall_at_1000
            value: 96.89999999999999
          - type: recall_at_3
            value: 70.39999999999999
          - type: recall_at_5
            value: 76.4
      - task:
          type: Classification
        dataset:
          type: C-MTEB/IFlyTek-classification
          name: MTEB IFlyTek
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 49.74220854174683
          - type: f1
            value: 38.01399980618159
      - task:
          type: Classification
        dataset:
          type: C-MTEB/JDReview-classification
          name: MTEB JDReview
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 86.73545966228893
          - type: ap
            value: 55.72394235169542
          - type: f1
            value: 81.58550390953492
      - task:
          type: STS
        dataset:
          type: C-MTEB/LCQMC
          name: MTEB LCQMC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 69.96711977441642
          - type: cos_sim_spearman
            value: 75.54747609685569
          - type: euclidean_pearson
            value: 74.62663478056035
          - type: euclidean_spearman
            value: 75.54761576699639
          - type: manhattan_pearson
            value: 74.60983904582241
          - type: manhattan_spearman
            value: 75.52758938061503
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/Mmarco-reranking
          name: MTEB MMarcoReranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 28.076927649720986
          - type: mrr
            value: 26.98015873015873
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MMarcoRetrieval
          name: MTEB MMarcoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 65.58
          - type: map_at_10
            value: 74.763
          - type: map_at_100
            value: 75.077
          - type: map_at_1000
            value: 75.091
          - type: map_at_3
            value: 72.982
          - type: map_at_5
            value: 74.155
          - type: mrr_at_1
            value: 67.822
          - type: mrr_at_10
            value: 75.437
          - type: mrr_at_100
            value: 75.702
          - type: mrr_at_1000
            value: 75.715
          - type: mrr_at_3
            value: 73.91799999999999
          - type: mrr_at_5
            value: 74.909
          - type: ndcg_at_1
            value: 67.822
          - type: ndcg_at_10
            value: 78.472
          - type: ndcg_at_100
            value: 79.891
          - type: ndcg_at_1000
            value: 80.262
          - type: ndcg_at_3
            value: 75.138
          - type: ndcg_at_5
            value: 77.094
          - type: precision_at_1
            value: 67.822
          - type: precision_at_10
            value: 9.474
          - type: precision_at_100
            value: 1.019
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 28.281
          - type: precision_at_5
            value: 18.017
          - type: recall_at_1
            value: 65.58
          - type: recall_at_10
            value: 89.18599999999999
          - type: recall_at_100
            value: 95.64399999999999
          - type: recall_at_1000
            value: 98.541
          - type: recall_at_3
            value: 80.455
          - type: recall_at_5
            value: 85.063
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 72.86819098856758
          - type: f1
            value: 70.25369778283451
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 75.46738399462004
          - type: f1
            value: 75.02466838130249
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MedicalRetrieval
          name: MTEB MedicalRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 53.300000000000004
          - type: map_at_10
            value: 60.072
          - type: map_at_100
            value: 60.618
          - type: map_at_1000
            value: 60.659
          - type: map_at_3
            value: 58.550000000000004
          - type: map_at_5
            value: 59.425
          - type: mrr_at_1
            value: 53.5
          - type: mrr_at_10
            value: 60.187999999999995
          - type: mrr_at_100
            value: 60.73499999999999
          - type: mrr_at_1000
            value: 60.775999999999996
          - type: mrr_at_3
            value: 58.667
          - type: mrr_at_5
            value: 59.541999999999994
          - type: ndcg_at_1
            value: 53.300000000000004
          - type: ndcg_at_10
            value: 63.376999999999995
          - type: ndcg_at_100
            value: 66.24600000000001
          - type: ndcg_at_1000
            value: 67.408
          - type: ndcg_at_3
            value: 60.211000000000006
          - type: ndcg_at_5
            value: 61.781
          - type: precision_at_1
            value: 53.300000000000004
          - type: precision_at_10
            value: 7.380000000000001
          - type: precision_at_100
            value: 0.877
          - type: precision_at_1000
            value: 0.097
          - type: precision_at_3
            value: 21.667
          - type: precision_at_5
            value: 13.76
          - type: recall_at_1
            value: 53.300000000000004
          - type: recall_at_10
            value: 73.8
          - type: recall_at_100
            value: 87.7
          - type: recall_at_1000
            value: 97
          - type: recall_at_3
            value: 65
          - type: recall_at_5
            value: 68.8
      - task:
          type: Classification
        dataset:
          type: C-MTEB/MultilingualSentiment-classification
          name: MTEB MultilingualSentiment
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 76.27666666666667
          - type: f1
            value: 76.31280038435165
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/OCNLI
          name: MTEB Ocnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 78.72225230102869
          - type: cos_sim_ap
            value: 80.63941899467723
          - type: cos_sim_f1
            value: 80.52190121155638
          - type: cos_sim_precision
            value: 72.06005004170142
          - type: cos_sim_recall
            value: 91.23548046462513
          - type: dot_accuracy
            value: 78.72225230102869
          - type: dot_ap
            value: 80.63913939812744
          - type: dot_f1
            value: 80.51948051948052
          - type: dot_precision
            value: 71.7948717948718
          - type: dot_recall
            value: 91.65786694825766
          - type: euclidean_accuracy
            value: 78.72225230102869
          - type: euclidean_ap
            value: 80.64403797436798
          - type: euclidean_f1
            value: 80.52190121155638
          - type: euclidean_precision
            value: 72.06005004170142
          - type: euclidean_recall
            value: 91.23548046462513
          - type: manhattan_accuracy
            value: 78.18083378451544
          - type: manhattan_ap
            value: 80.5241189302444
          - type: manhattan_f1
            value: 80.43478260869566
          - type: manhattan_precision
            value: 72.7972626176219
          - type: manhattan_recall
            value: 89.86272439281943
          - type: max_accuracy
            value: 78.72225230102869
          - type: max_ap
            value: 80.64403797436798
          - type: max_f1
            value: 80.52190121155638
      - task:
          type: Classification
        dataset:
          type: C-MTEB/OnlineShopping-classification
          name: MTEB OnlineShopping
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 92.49000000000001
          - type: ap
            value: 90.66330807324402
          - type: f1
            value: 92.48245049107115
      - task:
          type: STS
        dataset:
          type: C-MTEB/PAWSX
          name: MTEB PAWSX
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 33.6275431596535
          - type: cos_sim_spearman
            value: 37.865700050451494
          - type: euclidean_pearson
            value: 38.1050665279388
          - type: euclidean_spearman
            value: 37.864125056066364
          - type: manhattan_pearson
            value: 38.11206873232881
          - type: manhattan_spearman
            value: 37.852977098473936
      - task:
          type: STS
        dataset:
          type: C-MTEB/QBQTC
          name: MTEB QBQTC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 32.137955501231104
          - type: cos_sim_spearman
            value: 33.68610910423116
          - type: euclidean_pearson
            value: 32.155444753547926
          - type: euclidean_spearman
            value: 33.685799252964124
          - type: manhattan_pearson
            value: 32.14490855334317
          - type: manhattan_spearman
            value: 33.656549820048554
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 63.63884916818661
          - type: cos_sim_spearman
            value: 64.3217581571435
          - type: euclidean_pearson
            value: 63.475760085926055
          - type: euclidean_spearman
            value: 64.31638169371887
          - type: manhattan_pearson
            value: 64.39677572604752
          - type: manhattan_spearman
            value: 64.85585019406021
      - task:
          type: STS
        dataset:
          type: C-MTEB/STSB
          name: MTEB STSB
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 79.74698333415277
          - type: cos_sim_spearman
            value: 81.1850043859317
          - type: euclidean_pearson
            value: 80.94512578669881
          - type: euclidean_spearman
            value: 81.18825478390181
          - type: manhattan_pearson
            value: 80.88114336824758
          - type: manhattan_spearman
            value: 81.12266715583868
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/T2Reranking
          name: MTEB T2Reranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 66.59971552953814
          - type: mrr
            value: 76.42177408088038
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/T2Retrieval
          name: MTEB T2Retrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 28.825
          - type: map_at_10
            value: 77.48899999999999
          - type: map_at_100
            value: 81.144
          - type: map_at_1000
            value: 81.216
          - type: map_at_3
            value: 55.435
          - type: map_at_5
            value: 67.496
          - type: mrr_at_1
            value: 91.377
          - type: mrr_at_10
            value: 94.062
          - type: mrr_at_100
            value: 94.122
          - type: mrr_at_1000
            value: 94.123
          - type: mrr_at_3
            value: 93.709
          - type: mrr_at_5
            value: 93.932
          - type: ndcg_at_1
            value: 91.377
          - type: ndcg_at_10
            value: 85.44800000000001
          - type: ndcg_at_100
            value: 89.11099999999999
          - type: ndcg_at_1000
            value: 89.752
          - type: ndcg_at_3
            value: 87.262
          - type: ndcg_at_5
            value: 85.668
          - type: precision_at_1
            value: 91.377
          - type: precision_at_10
            value: 41.525
          - type: precision_at_100
            value: 4.989
          - type: precision_at_1000
            value: 0.516
          - type: precision_at_3
            value: 75.452
          - type: precision_at_5
            value: 62.785000000000004
          - type: recall_at_1
            value: 28.825
          - type: recall_at_10
            value: 84.202
          - type: recall_at_100
            value: 95.768
          - type: recall_at_1000
            value: 98.791
          - type: recall_at_3
            value: 57.284
          - type: recall_at_5
            value: 71.071
      - task:
          type: Classification
        dataset:
          type: C-MTEB/TNews-classification
          name: MTEB TNews
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 52.160000000000004
          - type: f1
            value: 50.49492950548829
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringP2P
          name: MTEB ThuNewsClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 70.06019845009966
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringS2S
          name: MTEB ThuNewsClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 63.9370959228245
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/VideoRetrieval
          name: MTEB VideoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 60
          - type: map_at_10
            value: 69.362
          - type: map_at_100
            value: 69.819
          - type: map_at_1000
            value: 69.833
          - type: map_at_3
            value: 67.783
          - type: map_at_5
            value: 68.71300000000001
          - type: mrr_at_1
            value: 60
          - type: mrr_at_10
            value: 69.362
          - type: mrr_at_100
            value: 69.819
          - type: mrr_at_1000
            value: 69.833
          - type: mrr_at_3
            value: 67.783
          - type: mrr_at_5
            value: 68.71300000000001
          - type: ndcg_at_1
            value: 60
          - type: ndcg_at_10
            value: 73.59400000000001
          - type: ndcg_at_100
            value: 75.734
          - type: ndcg_at_1000
            value: 76.049
          - type: ndcg_at_3
            value: 70.33
          - type: ndcg_at_5
            value: 72.033
          - type: precision_at_1
            value: 60
          - type: precision_at_10
            value: 8.67
          - type: precision_at_100
            value: 0.9650000000000001
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 25.900000000000002
          - type: precision_at_5
            value: 16.38
          - type: recall_at_1
            value: 60
          - type: recall_at_10
            value: 86.7
          - type: recall_at_100
            value: 96.5
          - type: recall_at_1000
            value: 98.9
          - type: recall_at_3
            value: 77.7
          - type: recall_at_5
            value: 81.89999999999999
      - task:
          type: Classification
        dataset:
          type: C-MTEB/waimai-classification
          name: MTEB Waimai
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 88.36
          - type: ap
            value: 73.25144216855439
          - type: f1
            value: 86.75076261442027

xiaobu-embedding

模型:基于GTE模型[1]多任务微调。
数据:闲聊类Query-Query、知识类Query-Doc、BGE开源Query-Doc[2];清洗正例,挖掘中等难度负例;累计6M(质量更重要)。

Usage (Sentence-Transformers)

pip install -U sentence-transformers

相似度计算:

from sentence_transformers import SentenceTransformer
sentences_1 = ["样例数据-1", "样例数据-2"]
sentences_2 = ["样例数据-3", "样例数据-4"]
model = SentenceTransformer('lier007/xiaobu-embedding')
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)

Evaluation

参考BGE中文CMTEB评估[2]

Finetune

参考BGE微调模块[2]

Reference

  1. https://huggingface.co/thenlper/gte-large-zh
  2. https://github.com/FlagOpen/FlagEmbedding