SetFit with microsoft/Multilingual-MiniLM-L12-H384

This is a SetFit model that can be used for Text Classification. This SetFit model uses microsoft/Multilingual-MiniLM-L12-H384 as the Sentence Transformer embedding model. A SetFitHead instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0
  • 'Madam divyaக்கு 1கிலோ colgate paste வாங்கி கொடுங்க videoவில் வாய் நாற்றம் தாங்கல'
  • 'ഇനി ഇതുപോലുള്ള സാദനം ആയി വന്നാൽ ഞാൻ ഡിസ്ക്രൈബ് ചെയ്യും'
  • 'ஏன்பா behindwoods தயவு செய்து இப்படி கேவலமான programme ஐ telecast பண்ணாதீங்க ராஜா'
1
  • 'கம்பிய பழுக்க வச்சு சூத்துல வைங்க சார்'
  • 'ഇനി റെഡ് സ്ട്രീറ്റ്റിലും കൂടി പോയി ഇന്റർവ്യൂ എടുക്ക് ചേച്ചി'
  • 'നിങ്ങൾ പണ്ടേ വിവരക്കേടാണ്. ബോധം ഇല്ലായ്മ കാണിക്കാതെ സ്ത്രീ. മറ്റുള്ളവരുടെ കിഡ്ണി കളയിപ്പിച്ചിട്ടുവേണോ നിന്റെ കഞ്ഞി കുടിക്കൽ.'

Evaluation

Metrics

Label Accuracy
all 0.6875

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("livinNector/m-minilm-l12-h384-dra-tam-mal-aw-setfit-finetune")
# Run inference
preds = model("\"ഒരുപാട് ഇഷ്ട്ടപെട്ട പോലെ ഒരുപാട് വെറുത്ത് പോയി, ഡോക്ടറെ കിട്ടാനുള്ള ഭാഗ്യം ഇല്ല\"")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 2 15.4375 123
Label Training Sample Count
0 132
1 124

Training Hyperparameters

  • batch_size: (64, 64)
  • num_epochs: (10, 10)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 2
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: True
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0625 1 0.422 -
0.625 10 - 0.4029
1.25 20 - 0.2799
1.875 30 - 0.2464
2.5 40 - 0.2480
3.125 50 0.2964 0.2451
3.75 60 - 0.2368
4.375 70 - 0.2444
5.0 80 - 0.2393
5.625 90 - 0.2382
6.25 100 0.1825 0.2395
6.875 110 - 0.2405
7.5 120 - 0.2424
8.125 130 - 0.2468
8.75 140 - 0.2432
9.375 150 0.1308 0.2451
10.0 160 - 0.2454

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.45.2
  • PyTorch: 2.5.1+cu121
  • Datasets: 3.2.0
  • Tokenizers: 0.20.3

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
20
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for livinNector/m-minilm-l12-h384-dra-tam-mal-aw-setfit-finetune

Finetuned
(23)
this model

Evaluation results