metadata
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
"ഒരുപാട് ഇഷ്ട്ടപെട്ട പോലെ ഒരുപാട് വെറുത്ത് പോയി, ഡോക്ടറെ കിട്ടാനുള്ള
ഭാഗ്യം ഇല്ല"
- text: >-
ഒരു കരുണയും ഇല്ലാതെ ഒരാളുടെ ഫീലിംഗ് വെച്ച് കളിക്കുക... ആത്മാർഥതക്ക് ഒരു
വിലയും കൊടുക്കാതെ അയാളെ തൂത്തെറിയുക.... എല്ലാവർക്കും എല്ലാം മനസ്സിൽ ആയി..
ഇനി കൂടുതൽ ഒന്നും പറയണ്ട...
- text: >-
சொத்துக்கே வழி இல்லாம இங்க கஸ்டப்பற்றாங்க இதுங்களுக்கு அறிப்பு பிடிச்சி
அலைதுங்க தூ தூ மூதேவிங்களா
- text: >-
അടിപൊളി കൊള്ളാം സൂപ്പർ ഡയലോഗ് ആരാണ് ഈ അമ്മമാരും ചേച്ചിമാരും ചേട്ടന്മാരും
ഞങ്ങൾക്കറിയില്ല
- text: >-
24×7 എല്ലാം കാണണം കേട്ടോ. അപ്പോൾ അറിയാം. അവിടെ എന്തൊക്കെയാ
കാട്ടികൂട്ടിയതെന്ന്. എങ്കിലുംഡോക്റ്റരോട് നീ ഇത് ചെയ്യും എന്ന് ഞങ്ങൾ ആരും
കരുതിയില്ല.
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: microsoft/Multilingual-MiniLM-L12-H384
model-index:
- name: SetFit with microsoft/Multilingual-MiniLM-L12-H384
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.6875
name: Accuracy
SetFit with microsoft/Multilingual-MiniLM-L12-H384
This is a SetFit model that can be used for Text Classification. This SetFit model uses microsoft/Multilingual-MiniLM-L12-H384 as the Sentence Transformer embedding model. A SetFitHead instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: microsoft/Multilingual-MiniLM-L12-H384
- Classification head: a SetFitHead instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.6875 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("livinNector/m-minilm-l12-h384-dra-tam-mal-aw-setfit-finetune")
# Run inference
preds = model("\"ഒരുപാട് ഇഷ്ട്ടപെട്ട പോലെ ഒരുപാട് വെറുത്ത് പോയി, ഡോക്ടറെ കിട്ടാനുള്ള ഭാഗ്യം ഇല്ല\"")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 2 | 15.4375 | 123 |
Label | Training Sample Count |
---|---|
0 | 132 |
1 | 124 |
Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 2
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: True
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0625 | 1 | 0.422 | - |
0.625 | 10 | - | 0.4029 |
1.25 | 20 | - | 0.2799 |
1.875 | 30 | - | 0.2464 |
2.5 | 40 | - | 0.2480 |
3.125 | 50 | 0.2964 | 0.2451 |
3.75 | 60 | - | 0.2368 |
4.375 | 70 | - | 0.2444 |
5.0 | 80 | - | 0.2393 |
5.625 | 90 | - | 0.2382 |
6.25 | 100 | 0.1825 | 0.2395 |
6.875 | 110 | - | 0.2405 |
7.5 | 120 | - | 0.2424 |
8.125 | 130 | - | 0.2468 |
8.75 | 140 | - | 0.2432 |
9.375 | 150 | 0.1308 | 0.2451 |
10.0 | 160 | - | 0.2454 |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu121
- Datasets: 3.2.0
- Tokenizers: 0.20.3
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}