livinNector's picture
Add SetFit model
00a830f verified
metadata
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: >-
      "ഒരുപാട് ഇഷ്ട്ടപെട്ട പോലെ ഒരുപാട് വെറുത്ത് പോയി, ഡോക്ടറെ കിട്ടാനുള്ള
      ഭാഗ്യം ഇല്ല"
  - text: >-
      ഒരു കരുണയും ഇല്ലാതെ ഒരാളുടെ ഫീലിംഗ് വെച്ച് കളിക്കുക... ആത്മാർഥതക്ക് ഒരു
      വിലയും കൊടുക്കാതെ അയാളെ തൂത്തെറിയുക.... എല്ലാവർക്കും എല്ലാം മനസ്സിൽ ആയി..
      ഇനി കൂടുതൽ ഒന്നും പറയണ്ട...
  - text: >-
      சொத்துக்கே வழி இல்லாம இங்க கஸ்டப்பற்றாங்க இதுங்களுக்கு அறிப்பு பிடிச்சி
      அலைதுங்க தூ தூ மூதேவிங்களா
  - text: >-
      അടിപൊളി കൊള്ളാം സൂപ്പർ ഡയലോഗ് ആരാണ് ഈ അമ്മമാരും ചേച്ചിമാരും ചേട്ടന്മാരും
      ഞങ്ങൾക്കറിയില്ല
  - text: >-
      24×7 എല്ലാം കാണണം കേട്ടോ. അപ്പോൾ അറിയാം. അവിടെ എന്തൊക്കെയാ
      കാട്ടികൂട്ടിയതെന്ന്. എങ്കിലുംഡോക്റ്റരോട് നീ ഇത് ചെയ്യും എന്ന് ഞങ്ങൾ ആരും
      കരുതിയില്ല.
metrics:
  - accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: microsoft/Multilingual-MiniLM-L12-H384
model-index:
  - name: SetFit with microsoft/Multilingual-MiniLM-L12-H384
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.6875
            name: Accuracy

SetFit with microsoft/Multilingual-MiniLM-L12-H384

This is a SetFit model that can be used for Text Classification. This SetFit model uses microsoft/Multilingual-MiniLM-L12-H384 as the Sentence Transformer embedding model. A SetFitHead instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0
  • 'Madam divyaக்கு 1கிலோ colgate paste வாங்கி கொடுங்க videoவில் வாய் நாற்றம் தாங்கல'
  • 'ഇനി ഇതുപോലുള്ള സാദനം ആയി വന്നാൽ ഞാൻ ഡിസ്ക്രൈബ് ചെയ്യും'
  • 'ஏன்பா behindwoods தயவு செய்து இப்படி கேவலமான programme ஐ telecast பண்ணாதீங்க ராஜா'
1
  • 'கம்பிய பழுக்க வச்சு சூத்துல வைங்க சார்'
  • 'ഇനി റെഡ് സ്ട്രീറ്റ്റിലും കൂടി പോയി ഇന്റർവ്യൂ എടുക്ക് ചേച്ചി'
  • 'നിങ്ങൾ പണ്ടേ വിവരക്കേടാണ്. ബോധം ഇല്ലായ്മ കാണിക്കാതെ സ്ത്രീ. മറ്റുള്ളവരുടെ കിഡ്ണി കളയിപ്പിച്ചിട്ടുവേണോ നിന്റെ കഞ്ഞി കുടിക്കൽ.'

Evaluation

Metrics

Label Accuracy
all 0.6875

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("livinNector/m-minilm-l12-h384-dra-tam-mal-aw-setfit-finetune")
# Run inference
preds = model("\"ഒരുപാട് ഇഷ്ട്ടപെട്ട പോലെ ഒരുപാട് വെറുത്ത് പോയി, ഡോക്ടറെ കിട്ടാനുള്ള ഭാഗ്യം ഇല്ല\"")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 2 15.4375 123
Label Training Sample Count
0 132
1 124

Training Hyperparameters

  • batch_size: (64, 64)
  • num_epochs: (10, 10)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 2
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: True
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0625 1 0.422 -
0.625 10 - 0.4029
1.25 20 - 0.2799
1.875 30 - 0.2464
2.5 40 - 0.2480
3.125 50 0.2964 0.2451
3.75 60 - 0.2368
4.375 70 - 0.2444
5.0 80 - 0.2393
5.625 90 - 0.2382
6.25 100 0.1825 0.2395
6.875 110 - 0.2405
7.5 120 - 0.2424
8.125 130 - 0.2468
8.75 140 - 0.2432
9.375 150 0.1308 0.2451
10.0 160 - 0.2454

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.45.2
  • PyTorch: 2.5.1+cu121
  • Datasets: 3.2.0
  • Tokenizers: 0.20.3

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}