bert-german-ner / README.md
lunesco's picture
update model card README.md
707e548
|
raw
history blame
2.67 kB
---
license: mit
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-german-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.8333588604686782
- name: Recall
type: recall
value: 0.8620088719898605
- name: F1
type: f1
value: 0.8474417880227396
- name: Accuracy
type: accuracy
value: 0.9292245320451997
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-german-ner
This model is a fine-tuned version of [dbmdz/bert-base-german-cased](https://huggingface.co/dbmdz/bert-base-german-cased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3196
- Precision: 0.8334
- Recall: 0.8620
- F1: 0.8474
- Accuracy: 0.9292
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 300 | 0.3617 | 0.7310 | 0.7733 | 0.7516 | 0.8908 |
| 0.5428 | 2.0 | 600 | 0.2897 | 0.7789 | 0.8395 | 0.8081 | 0.9132 |
| 0.5428 | 3.0 | 900 | 0.2805 | 0.8147 | 0.8465 | 0.8303 | 0.9221 |
| 0.2019 | 4.0 | 1200 | 0.2816 | 0.8259 | 0.8498 | 0.8377 | 0.9260 |
| 0.1215 | 5.0 | 1500 | 0.2942 | 0.8332 | 0.8599 | 0.8463 | 0.9285 |
| 0.1215 | 6.0 | 1800 | 0.3053 | 0.8293 | 0.8619 | 0.8452 | 0.9287 |
| 0.0814 | 7.0 | 2100 | 0.3190 | 0.8249 | 0.8634 | 0.8437 | 0.9267 |
| 0.0814 | 8.0 | 2400 | 0.3196 | 0.8334 | 0.8620 | 0.8474 | 0.9292 |
### Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2