|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- conll2003 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert-german-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: conll2003 |
|
type: conll2003 |
|
config: conll2003 |
|
split: validation |
|
args: conll2003 |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8333588604686782 |
|
- name: Recall |
|
type: recall |
|
value: 0.8620088719898605 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8474417880227396 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9292245320451997 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-german-ner |
|
|
|
This model is a fine-tuned version of [dbmdz/bert-base-german-cased](https://huggingface.co/dbmdz/bert-base-german-cased) on the conll2003 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3196 |
|
- Precision: 0.8334 |
|
- Recall: 0.8620 |
|
- F1: 0.8474 |
|
- Accuracy: 0.9292 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 300 | 0.3617 | 0.7310 | 0.7733 | 0.7516 | 0.8908 | |
|
| 0.5428 | 2.0 | 600 | 0.2897 | 0.7789 | 0.8395 | 0.8081 | 0.9132 | |
|
| 0.5428 | 3.0 | 900 | 0.2805 | 0.8147 | 0.8465 | 0.8303 | 0.9221 | |
|
| 0.2019 | 4.0 | 1200 | 0.2816 | 0.8259 | 0.8498 | 0.8377 | 0.9260 | |
|
| 0.1215 | 5.0 | 1500 | 0.2942 | 0.8332 | 0.8599 | 0.8463 | 0.9285 | |
|
| 0.1215 | 6.0 | 1800 | 0.3053 | 0.8293 | 0.8619 | 0.8452 | 0.9287 | |
|
| 0.0814 | 7.0 | 2100 | 0.3190 | 0.8249 | 0.8634 | 0.8437 | 0.9267 | |
|
| 0.0814 | 8.0 | 2400 | 0.3196 | 0.8334 | 0.8620 | 0.8474 | 0.9292 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.2 |
|
|