|
--- |
|
license: gemma |
|
base_model: google/gemma-7b |
|
tags: |
|
- alignment-handbook |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
datasets: |
|
- masakhane/african-translated-alpaca |
|
model-index: |
|
- name: zephyr-7b-gemma-sft-african-alpaca |
|
results: [] |
|
language: |
|
- af |
|
- am |
|
- ar |
|
- en |
|
- ee |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# zephyr-7b-gemma-sft-alpaca |
|
|
|
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the masakhane/african-translated-alpaca dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2737 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- total_eval_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| 0.8671 | 1.0 | 5882 | 0.7445 | |
|
| 0.5235 | 2.0 | 11764 | 0.3905 | |
|
| 0.3309 | 3.0 | 17646 | 0.2737 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.0.dev0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.15.2 |
|
|
|
|
|
|
|
|
|
### Usage |
|
|
|
```python |
|
|
|
# Install transformers from source - only needed for versions <= v4.34 |
|
# pip install git+https://github.com/huggingface/transformers.git |
|
# pip install accelerate |
|
|
|
import torch |
|
from transformers import pipeline |
|
|
|
pipe = pipeline("text-generation", model="masakhane/zephyr-7b-gemma-sft-african-alpaca", torch_dtype=torch.bfloat16, device_map="auto") |
|
|
|
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating |
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "You are a friendly chatbot who answewrs question in given language", |
|
}, |
|
{"role": "user", "content": "what is the 3 biggest countrys in Africa?"}, |
|
] |
|
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
# <|system|> |
|
# You are a friendly chatbot who always responds in the style of a pirate<eos> |
|
# <|user|> |
|
# what is the 3 biggest countrys in Africa?<eos> |
|
# <|assistant|> |
|
# The 3 biggest countries in Africa are Nigeria, Ethiopia and South Africa. |
|
``` |
|
|
|
|
|
### Quantized Versions through bitsandbytes |
|
|
|
``` python |
|
|
|
import torch |
|
from transformers import pipeline |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
|
|
|
|
quantization_config = BitsAndBytesConfig(load_in_4bit=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("masakhane/zephyr-7b-gemma-sft-african-alpaca") |
|
model = AutoModelForCausalLM.from_pretrained("masakhane/zephyr-7b-gemma-sft-african-alpaca", quantization_config=quantization_config) |
|
|
|
|
|
pipe = pipeline("text-generation", model=model,tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto") |
|
|
|
messages = [ |
|
{ |
|
"role": "system", |
|
"content": "You are a friendly chatbot who answewrs question in given language", |
|
}, |
|
{"role": "user", "content": "list languages in Africa?"}, |
|
] |
|
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
|
|
``` |
|
|