File size: 1,939 Bytes
e0475a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: wav2vec2-large-xls-r-300m-tr-colab
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-300m-tr-colab

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4029
- Wer: 0.3116

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.8607        | 3.67  | 400  | 0.7144          | 0.7305 |
| 0.4094        | 7.34  | 800  | 0.4222          | 0.5035 |
| 0.1958        | 11.01 | 1200 | 0.4438          | 0.4228 |
| 0.1353        | 14.68 | 1600 | 0.4536          | 0.3914 |
| 0.1062        | 18.35 | 2000 | 0.4161          | 0.3659 |
| 0.0791        | 22.02 | 2400 | 0.4192          | 0.3366 |
| 0.0635        | 25.69 | 2800 | 0.4048          | 0.3225 |
| 0.0511        | 29.36 | 3200 | 0.4029          | 0.3116 |


### Framework versions

- Transformers 4.23.0
- Pytorch 1.12.1+cu113
- Datasets 2.5.2
- Tokenizers 0.13.1