matthieulel's picture
Model save
d5d514e verified
|
raw
history blame
4.44 kB
metadata
license: apache-2.0
base_model: microsoft/swinv2-small-patch4-window16-256
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: swinv2-small-patch4-window16-256-finetuned-galaxy10-decals
    results: []

swinv2-small-patch4-window16-256-finetuned-galaxy10-decals

This model is a fine-tuned version of microsoft/swinv2-small-patch4-window16-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4737
  • Accuracy: 0.8489
  • Precision: 0.8486
  • Recall: 0.8489
  • F1: 0.8472

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
1.6168 0.99 62 1.3397 0.5006 0.4880 0.5006 0.4599
0.9396 2.0 125 0.7823 0.7463 0.7602 0.7463 0.7410
0.782 2.99 187 0.5995 0.7948 0.7937 0.7948 0.7885
0.6373 4.0 250 0.5227 0.8230 0.8192 0.8230 0.8176
0.6047 4.99 312 0.5238 0.8281 0.8272 0.8281 0.8262
0.6143 6.0 375 0.5091 0.8348 0.8429 0.8348 0.8298
0.5805 6.99 437 0.4921 0.8264 0.8275 0.8264 0.8254
0.5476 8.0 500 0.4832 0.8320 0.8409 0.8320 0.8291
0.5333 8.99 562 0.4456 0.8501 0.8500 0.8501 0.8477
0.5062 10.0 625 0.4493 0.8467 0.8480 0.8467 0.8457
0.5001 10.99 687 0.4617 0.8450 0.8468 0.8450 0.8449
0.4572 12.0 750 0.4497 0.8467 0.8450 0.8467 0.8449
0.4681 12.99 812 0.4588 0.8489 0.8486 0.8489 0.8452
0.4747 14.0 875 0.4281 0.8529 0.8554 0.8529 0.8508
0.4283 14.99 937 0.4406 0.8602 0.8577 0.8602 0.8585
0.4296 16.0 1000 0.4458 0.8534 0.8512 0.8534 0.8498
0.3734 16.99 1062 0.4623 0.8416 0.8419 0.8416 0.8386
0.3921 18.0 1125 0.4438 0.8517 0.8506 0.8517 0.8496
0.3954 18.99 1187 0.4712 0.8467 0.8487 0.8467 0.8446
0.3995 20.0 1250 0.4648 0.8484 0.8467 0.8484 0.8448
0.3859 20.99 1312 0.4728 0.8495 0.8487 0.8495 0.8462
0.4046 22.0 1375 0.4720 0.8472 0.8467 0.8472 0.8453
0.3651 22.99 1437 0.4837 0.8416 0.8409 0.8416 0.8396
0.3481 24.0 1500 0.4742 0.8540 0.8522 0.8540 0.8524
0.3706 24.99 1562 0.4846 0.8478 0.8477 0.8478 0.8455
0.3278 26.0 1625 0.4798 0.8506 0.8502 0.8506 0.8484
0.3484 26.99 1687 0.4675 0.8529 0.8538 0.8529 0.8520
0.3626 28.0 1750 0.4768 0.8450 0.8446 0.8450 0.8429
0.3324 28.99 1812 0.4725 0.8484 0.8470 0.8484 0.8460
0.3462 29.76 1860 0.4737 0.8489 0.8486 0.8489 0.8472

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.15.1