language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
- sft
base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit
datasets:
- Lyte/Reasoning-Paused
pipeline_tag: text-generation
model-index:
- name: Llama-3.2-3B-Overthinker
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 64.08
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Lyte/Llama-3.2-3B-Overthinker
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 20.1
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Lyte/Llama-3.2-3B-Overthinker
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 2.64
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Lyte/Llama-3.2-3B-Overthinker
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 1.23
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Lyte/Llama-3.2-3B-Overthinker
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.9
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Lyte/Llama-3.2-3B-Overthinker
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 22.06
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Lyte/Llama-3.2-3B-Overthinker
name: Open LLM Leaderboard
Model Overview:
Training Data: This model was trained on a dataset with columns for initial reasoning, step-by-step thinking, verifications after each step, and final answers based on full context. Is it better than the original base model? Hard to say without proper evaluations, and I don’t have the resources to run them manually.
Context Handling: The model benefits from larger contexts (minimum 4k up to 16k tokens, though it was trained on 32k tokens). It tends to "overthink," so providing a longer context helps it perform better.
Performance: Based on my very few manual tests, the model seems to excel in conversational settings—especially for mental health, creative tasks and explaining stuff. However, I encourage you to try it out yourself using this Colab Notebook.
Dataset Note: The publicly available dataset is only a partial version. The full dataset was originally designed for a custom Mixture of Experts (MoE) architecture, but I couldn't afford to run the full experiment.
Acknowledgment: Special thanks to KingNish for reigniting my passion to revisit this project. I almost abandoned it after my first attempt a month ago. Enjoy this experimental model!
Inference Code:
- Feel free to make the steps and verifications collapsable and the initial reasoning too, you can show only the final answer to get an o1 feel(i don't know)
- Note: A feature we have here is the ability to control how many steps and verifications you want.
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Lyte/Llama-3.2-3B-Overthinker"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
def generate_response(prompt, max_tokens=16384, temperature=0.8, top_p=0.95, repeat_penalty=1.1, num_steps=3):
messages = [{"role": "user", "content": prompt}]
# Generate reasoning
reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True)
reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device)
reasoning_ids = model.generate(
**reasoning_inputs,
max_new_tokens=max_tokens // 3,
temperature=temperature,
top_p=top_p,
repetition_penalty=repeat_penalty
)
reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)
# Generate thinking (step-by-step and verifications)
messages.append({"role": "reasoning", "content": reasoning_output})
thinking_template = tokenizer.apply_chat_template(messages, tokenize=False, add_thinking_prompt=True, num_steps=num_steps)
thinking_inputs = tokenizer(thinking_template, return_tensors="pt").to(model.device)
thinking_ids = model.generate(
**thinking_inputs,
max_new_tokens=max_tokens // 3,
temperature=temperature,
top_p=top_p,
repetition_penalty=repeat_penalty
)
thinking_output = tokenizer.decode(thinking_ids[0, thinking_inputs.input_ids.shape[1]:], skip_special_tokens=True)
# Generate final answer
messages.append({"role": "thinking", "content": thinking_output})
answer_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
answer_inputs = tokenizer(answer_template, return_tensors="pt").to(model.device)
answer_ids = model.generate(
**answer_inputs,
max_new_tokens=max_tokens // 3,
temperature=temperature,
top_p=top_p,
repetition_penalty=repeat_penalty
)
answer_output = tokenizer.decode(answer_ids[0, answer_inputs.input_ids.shape[1]:], skip_special_tokens=True)
return reasoning_output, thinking_output, answer_output
# Example usage:
prompt = "Explain the process of photosynthesis."
response = generate_response(prompt, num_steps=5)
print("Response:", response)
Uploaded model
- Developed by: Lyte
- License: apache-2.0
- Finetuned from model : unsloth/llama-3.2-3b-instruct-bnb-4bit
This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.
Notice:
- The problem with runnning evals is that they won't make use of the correct template and it won't be a true eval then would it? so these barely test the model.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 19.00 |
IFEval (0-Shot) | 64.08 |
BBH (3-Shot) | 20.10 |
MATH Lvl 5 (4-Shot) | 2.64 |
GPQA (0-shot) | 1.23 |
MuSR (0-shot) | 3.90 |
MMLU-PRO (5-shot) | 22.06 |