yam-jom-7B / README.md
mayacinka's picture
Adding Evaluation Results (#1)
fcd8991 verified
metadata
license: apache-2.0
tags:
  - merge
  - mergekit
  - lazymergekit
  - eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2
  - yam-peleg/Experiment26-7B
base_model:
  - eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2
  - yam-peleg/Experiment26-7B
model-index:
  - name: yam-jom-7B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 73.38
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/yam-jom-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 89.15
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/yam-jom-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.51
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/yam-jom-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 78.04
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/yam-jom-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 84.93
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/yam-jom-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 69.6
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mayacinka/yam-jom-7B
          name: Open LLM Leaderboard

yam-jom-7B

yam-jom-7B is a task arithmetic merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: eren23/ogno-monarch-jaskier-merge-7b-OH-PREF-DPO-v2
    parameters:
      weight: 0.35
  - model: yam-peleg/Experiment26-7B
    parameters:
      weight: 0.65
base_model: yam-peleg/Experiment26-7B
merge_method: task_arithmetic
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mayacinka/yam-jom-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 76.60
AI2 Reasoning Challenge (25-Shot) 73.38
HellaSwag (10-Shot) 89.15
MMLU (5-Shot) 64.51
TruthfulQA (0-shot) 78.04
Winogrande (5-shot) 84.93
GSM8k (5-shot) 69.60